
CUBIC FOURFOLDS AND SPACES OF RATIONAL CURVES

A.J DE JONG AND JASON STARR

Abstract. For a general nonsingular cubic fourfold X ⊂ P5 and e ≥ 5 an odd
integer, we show that the space Me parametrizing rational curves of degree e

on X is non-uniruled. For e ≥ 6 an even integer, we prove that the generic
fiber dimension of the maximally rationally connected fibration of Me is at

most one, i.e. passing through a very general point of Me there is at most

one rational curve. For e < 5 the spaces Me are fairly well understood and we
review what is known.

1. Introduction

Let k be an algebraically closed field of characteristic 0. Let X be a nonsingu-
lar cubic hypersurface in P5

k. For each integer e ≥ 1 denote by Me the variety
parametrizing smooth, geometrically connected curves in X of degree e and arith-
metic genus 0, i.e., Me is the scheme of rational curves of degree e in X. The
scheme Me is an irreducible variety of dimension 3e + 1. This is nontrivial and is
discussed in Section 2. In this paper we consider the birational geometry of Me,
specifically the following questions:

(1) What is the Kodaira dimension of Me?
(2) In case the Kodaira dimension is negative, what is the dimension of the gen-

eral fiber of the maximally rationally connected fibration of Me (cf. [16])?
These questions were originally raised by Joe Harris with regard to the well-known
problem of rationality/irrationality of cubic fourfolds (we do not solve this problem).
It is a pleasure to acknowledge useful conversations with Joe Harris.

In Section 2 we discuss different compactifications of Me and how they are related.
Let Me be a desingularization of a compactification of Me. Question 2 can be
rephrased: For a very general point p ∈ Me, what is the maximal dimension of
a closed, rationally connected subvariety Z ⊂ Me containing p? Equivalently,
denoting by Me → Q the MRC fibration (in the sense of [16, Def. IV.5.3]), what is
the difference dim(Me)−dim(Q)? If this is 0, then for a very general point p ∈Me

there is no non-constant morphism P1 → Me whose image contains p, i.e., Me is
not uniruled. We note that the invariant dimZ is a birational invariant of Me (so
it is independent of the choice of desingularized compactification).

Discussions with Joe Harris have led to the list of maximal dimensions for small
values of e:

e 1 2 3 4
dimMe 4 7 10 13
dimZ 0 3 2 3

Date: February 7, 2004.
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We pause to explain this table. The case of lines is well known, namely M1 is a
4-dimensional hyperKähler manifold [3, Prop. 1]. In the case of conics, the set of
all conics residual to a fixed line is a 3 dimensional rationally connected variety Z.
In the case of cubic rational curves, note that a general cubic curve lies on a unique
cubic surface and moves in a 2-dimensional linear system on it. So Z has dimension
at least 2. A general quartic rational curve lies on a unique cubic threefold, and
moves in a 3-dimensional rationally connected family on it (c.f. [10, Theorem 8.2]),
so Z has dimension at least 3. This gives a lower bound for the numbers in the
bottom row of the diagram, which is easily seen to be the actual dimension of Z
when e = 1 or 2. For e = 3 and e = 4, we have not verified these numbers give
the actual dimensions, but we would be surprised if they turn out to be larger.
Ana-Maria Castravet conjectured that for e = 4, the actual dimension of Z is 3
and the target of the MRC fibration of M4 is birational to the relative intermediate
Jacobian of the family of hyperplane sections of X – in other words, the relative
intermediate Jacobian of the family of hyperplane sections of X is not uniruled.

Theorem 1.1. Let X ⊂ P5 be a very general cubic fourfold. For every odd degree
e ≥ 5, the variety Me is not uniruled. For every even degree e ≥ 6 the variety Me

has dim(Z) ≤ 1.

Actually our method gives something a little better than Theorem 1.1.

Theorem 1.2. Let X ⊂ P5 a smooth cubic hypersurface, and let Me be a nonsin-
gular projective model of Me. There is a canonical section ωe ∈ H0(Me,Ω2

Me
) with

the following property:
(a) If e is odd, e ≥ 5, if X is general, and if p is a general point of Me, then ωe

induces a nondegenerate pairing on Tp(Me).
(b) If e is even, e ≥ 6, if X is general, and if p ∈ Me a general point, then the
linear map Tp(Me) → T∨p (Me) induced by ωe has a 1-dimensional kernel.

Corollary 1.3. If e is odd, e ≥ 5, and if X is general, then the Kodaira dimension
κ(Me) ≥ 0.

The corollary follows as the form ω
(3e+1)/2
e is a nonzero section of the canonical line

bundle.

In Section 2 we recall three different moduli spaces and how they are related. In
Section 4 we give a general method to produce ωe on the Kontsevich moduli stack
Me of stable maps for any e ≥ 1. This is different than producing the form
ωe on Me. In a preliminary section, Section 3, we prove that every p-form on any
tame, finite type Deligne-Mumford stack over a field k (not necessarily algebraically
closed, nor of characteristic 0) gives rise to a p-form on every desingularization of the
coarse moduli space, cf. Lemma 3.6. Thus producing the 2-form on Me is stronger
than producing the 2-form on Me. In Section 5 we describe how to compute the
associated alternating pairing on Zariski tangent spaces of Me. In Section 6 we
show that this pairing is nondegenerate for a general point of M5. The case e = 5
is particularly simple: almost no explicit calculation is necessary. In Section 7 we
prove that ωe is generically non-degenerate for every odd degree e ≥ 5, and the
kernel of the pairing is generically 1-dimensional for every even degree e ≥ 6. In
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Section 8 we sketch a proof that M6 is not uniruled and pose some questions about
the spaces Me.

Finally, Theorem 1.2 implies Theorem 1.1 thanks to the following lemma.

Lemma 1.4. Let M be a smooth, projective scheme, let ω be a 2-form on M ,
and suppose that at a general point p ∈ Me the rank of the 2-form ω is r. Then
dim(Z) ≤ dim(M) − r, i.e., the codimension of the maximal rationally connected
subvariety Z passing through a very general point of M is at least r.

Proof. Denote d = dim(Z). If d = 0, there is nothing to prove. Suppose that d is
positive. Then, by [16, Theorem IV.5.8], for a very general point p ∈ M there is
a morphism g : P1 → M whose image contains p and such that g∗TM contains a
locally free subsheaf E ⊂ g∗TM with E an ample locally free sheaf of rank d and
whose cokernel is a trivial locally free sheaf of rank n−d (this is in the proof of [16,
Theorem IV.5.8], not in the statement). Consider the sheaf map induced by ω, i.e.,
g∗TM → g∗ΩM . Since g∗TM is semipositive, the sheaf g∗ΩM is seminegative. There
is no nonzero map from an ample locally free sheaf to a seminegative locally free
sheaf. So E is contained in the kernel of the sheaf map. Therefore d ≤ dim(M)− r.

�

2. Discussion of moduli spaces

In this section we discuss three related functors, each of which gives a compactifica-
tion of the space of smooth rational curves. The spaces representing these functors
are birational. Since we are studying birational properties of these spaces the dis-
tinction between them is not crucial to the rest of the paper. We find it useful to
pause, compare these three spaces, and point out what is and is not known about
them.

Let k be a field, not necessarily algebraically closed, nor of characteristic 0. LetX ⊂
PN be a quasi-projective scheme over k. Denote by Me the scheme parametrizing
families of smooth, proper, geometrically connected curves C ⊂ X of arithmetic
genus 0 and degree e. Even before compactifying Me, there are several versions
of Me and we concentrate on two of these: Mh

e and M c
e . The scheme Mh

e is the
open subscheme of the Hilbert scheme Hilbet+1(X) (cf. [9]) parametrizing smooth
curves. AndM c

e is the open subvariety of the Chow variety Chow1,e(X) (cf. [16, Def.
I.3.20]) parametrizing cycles of smooth curves. There is not universal acceptance
of the definition of the Chow variety (e.g. there is also the definition in [2]), but
Kollár’s definition is best suited to our needs. In particular, there is the fundamental
class morphism, also called the Hilbert-Chow morphism, from Mh

e to M c
e .

Lemma 2.1. [16, Thm. 6.3] There exists a fundamental class morphism FC :(
Mh

e

)sn → M c
e , where

(
Mh

e

)sn is the semi-normalization of Mh
e (cf. [16, Def.

I.7.2.1]). The morphism FC is an isomorphism. Therefore there is a morphism
(FC)−1 : M c

e →Mh
e that is equivalent to the semi-normalization of Mh

e . In partic-
ular it is bijective on points.

Proof. This follows from [16, Thm. 6.3] and the semi-normal analogue of Zariski’s
Main Theorem. �
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It does happen that Mh
e is not semi-normal so that M c

e and Mh
e are not isomorphic,

e.g. whenever Mh
e is not reduced. A simple example of this is given by any pair

(X,L) where L ⊂ P3 is a line and X ⊂ P3 is a smooth hypersurface of degree d ≥ 4
containing L. In this case there is a unique connected component of Mh

1 whose
reduced scheme consists just of the point [L] ∈Mh

1 , but Mh
1 is non-reduced.

For the special case that X ⊂ Pn is a smooth cubic hypersurface – the case of
interest in this paper – we expect that Mh

e is always semi-normal.

Question 2.2. If X ⊂ Pn is a smooth cubic hypersurface, and if char(k) = 0, is
Mh

e semi-normal? Is Mh
e normal?

There are some partial answers. For n arbitrary and e = 1, Mh
1 is smooth by [5,

Thm. 7.8]. For n = 3 and e arbitrary, Mh
e is an open subset of a projective

space and so it is smooth. For n = 4 and e = 2, 3, Mh
e is smooth by [11, Lemma

3.2, Lemma 4.6]. For n = 4 and e arbitrary, Mh
e is an irreducible, reduced, local

complete intersection scheme by [12]. So, by Serre’s criterion, to prove that Mh
e is

normal it suffices to prove that Mh
e is nonsingular in codimension one. We do not

know whether this is true.

Let X ⊂ PN be a projective scheme over a field k. Denote by M
h

e the closure of
Mh

e in Hilbet+1(X) and denote by M
c

e the closure of M c
e in Chow1,e(X). These are

the first two compactifications of Me which we consider.

Many results about the Hilbert scheme and the Chow variety are known. For
instance, by [16, Thm. I.6.3], the morphism FC extends to a morphism FC :
(M

h

e )sn → M
c

e. Both M
c

e and M
h

e have certain drawbacks. For example the
morphism (FC)−1 does not extend to a regular morphism M

c

e → M
h

e (this fails
even in the case X = PN ). Moreover, the closed subsets M

h

e ⊂ Hilbet+1(X) and
M

c

e ⊂ Chow1,e(X) are typically not open (i.e., they are typically not a union of
connected components of the full Hilbert scheme, resp. Chow variety). Because of
this, it is difficult to carry out an infinitesimal analysis of M

h

e and M
c

e as in [16,
Section I.2].

If char(k) = 0, there is a third compactification of Me that is very useful: the Kont-
sevich moduli space of stable maps (this compactification also exists in positive char-
acteristic, but it is not as well-behaved). A prestable map from an r-pointed curve of
genus g to X of degree e defined over a field L/k is a triple (C, (p1, . . . , pr), f) where
C is a geometrically connected, reduced, at-worst-nodal curve of arithmetic genus
g defined over L, where p1, . . . , pr is an ordered set of distinct L-rational points
in the nonsingular locus of C, and where f : C → X is a morphism of k-schemes
such that the degree of f∗O(1) is e. The triple is called a stable map if there are
no infinitesimal automorphisms of the triple. There is a notion of families of sta-
ble maps and morphisms between stable maps. There is a Deligne-Mumford stack
that is proper over k, Mg,n(X, e), parametrizing flat families of stable maps from
r-pointed curves of genus g to X of genus g of degree e. The coarse moduli space
Mg,n(X, e) of the stack Mg,n(X, e) is a projective k-scheme. The Deligne-Mumford
stack and its coarse moduli space are described in detail in [4, 7].
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In the special case that X ⊂ P5 is a smooth cubic hypersurface, we denote by Me

the Kontsevich moduli space of stable maps to X of genus 0 with no marked points
and degree e.

Lemma 2.3. The scheme Mh
e is isomorphic to an open substack of Me.

Proof. This follows from the definitions of Me and Mh
e . �

There is an analogue of the morphism FC, i.e., a 1-morphism FC :
(
Me

)sn →M
c

e.

One drawback of Me as compared to M
h

e and M
c

e is that it is a stack rather than
a scheme, which makes some arguments more technical. On the other hand, the
deformation and obstruction theory of Me and the “boundary” are understood
quite well. These are the key components in the proof of the following proposition.

Proposition 2.4. [13, Prop. 7.4] Let n ≥ 5 be an integer and let X ⊂ Pn a
cubic hypersurface. If X is general, the stack Me is irreducible and reduced of
the expected dimension (n− 2)e+ (n− 4) and has only local complete intersection
singularities.

Proof. Every case except n = 5 follows from [13, Prop. 7.4]. Thus suppose that
n = 5.

By [13, Cor. 7.3], to prove the proposition it suffices to check that for e = 1 and
e = 2, the following three conditions hold:

(i) the evaluation morphism ev : M0,0(X, e) → X is surjective and has con-
stant fiber dimension,

(ii) a general fiber of ev is irreducible, and
(iii) there exists a free stable map of degree e, i.e., a stable map [C, f ] such that

f∗TX is generated by global sections.

Case I, e = 1: First consider (iii). For every every smooth cubic hypersurface
X ⊂ P5, and for every point p ∈ X, there exists a line L ⊂ X containing p. By [6,
Prop. 4.14], for every smooth variety X and for a very general point p ∈ X, every
rational curve in X containing p is free. So for a very general point p in X, and for
any line L containing p, (iii) holds.

By [16, Cor. II.3.5.4.2], for a very general point p ∈ X, the evaluation morphism
ev : M0,1(X, 1) → X is smooth over p. The fiber F is canonically a complete inter-
section of hypersurfaces in Pn−1 of dimension n−4. Whenever n ≥ 5, this complete
intersection is connected. Since F is smooth and connected, it is irreducible. Thus
(ii) holds.

Finally, if X is a general hypersurface, then by [11, Thm. 2.1], (i) holds.

Case II, e = 2: Let p ∈ X be a general point and let L ⊂ X be any line containing
p. Then L is free. Thus any degree 2 cover of L by a rational curve is a stable map
that is free. Thus (iii) holds.

There is an a priori lower bound on the dimension of every irreducible component
of every fiber of evf : M0,1(X, 2) → X, namely the difference of the expected
dimension of M0,1(X, 2) and dim(X), which is 4. Condition (i) is the condition
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that every fiber of evf has dimension exactly 4. Condition (ii) is the condition that
at least one fiber is irreducible and reduced of dimension 4.

Suppose that X contains no linear P2 – this holds for a general cubic hypersurface
in P5. Then every stable map f : C → X of degree 2 that is not a double cover of
a line is an embedded plane conic. The span of the conic C, say Λ ⊂ Pn, intersects
X in a plane cubic curve C ′ ⊂ Λ. Of course C ⊂ C ′, and the residual curve is a
line L ⊂ X.

Conversely, for a general pair of a line L ⊂ X and a linear P2 Λ containing L, the
residual to L in Λ ∩X is a plane conic. Thus the set of embedded plane conics in
X passing through a general point p, is isomorphic to an open subset of the space
of lines M1. This space is smooth of dimension 4. So to finish the proof of (i) and
(ii), it suffices to show that this set is Zariski dense in ev−1(p) for every p ∈ X. In
other words, for every p ∈ X, the subset of ev−1(p) consisting of double covers of
lines is not dense in any irreducible component of ev−1(p).

Since X is general, the morphism ev : M0,1(X, 1) → X is flat. Thus the variety
parametrizing lines inX containing p has dimension 1. Thus the variety parametriz-
ing double covers of lines containing p has dimension 3 (there is a 2-dimensional
family of double covers of a given line by rational curves). Combined with the
lower bound of 4, it follows that the variety parametrizing double covers of lines
containing p is not dense in any irreducible component of ev−1(p). Therefore (i)
and (ii) hold. �

Remark 2.5. (1) The proposition is false for n = 3 and n = 4. For n = 3,
Me is disconnected (the Picard number of X is not 1). For n = 4 and
e ≥ 2, there is an irreducible component Ye ⊂ Me parametrizing degree e
covers of lines in X. The open subset Me − Ye is irreducible, reduced of
the expected dimension and has only local complete intersections (cf. [12]).

(2) Even though the proof above works only for a general hypersurface X, we
suspect the proposition holds for every smooth cubic hypersurface X ⊂ Pn.

(3) In fact the argument above proves much more than the proposition, namely
for every stable genus 0 A-graph τ and every flag f of τ , a certain condition
B(X, τ, f) holds (cf. [13, Cor. 7.3]). In particular, M(X, τ) is irreducible.

Corollary 2.6. For X ⊂ P5 a general cubic hypersurface, the schemes M c
e and

Mh
e are irreducible and reduced of dimension 3e + 1. They are birational to each

other and to Me.

3. Trace maps and descent for p-forms

Let X be a quasi-projective variety over a field k with char(k) = 0. If X is smooth
and projective and if k = C, Hodge theory gives linear maps from Hp+1,q+1(X) to
Hp,q(M̃e), where M̃e is a desingularization ofM0,0(X, e). The map pulls back forms
to the universal curve over M0,0(X, e), and then uses “integration along fibers”.
In the proof of the main theorem, we need a version of this that holds when X
is neither smooth nor projective. In the next two sections we prove the following
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version (the proof is algebraic, not Hodge-theoretic): Let X be a quasi-projective
variety. Let g, r, p and q be nonnegative integers. There are linear maps,

Hq+1
(
X,Ωp+1

)
→ Hq

(
Mg,r(X, e),Ωp

)
.

When q = 0 this map gives p-forms on the Kontsevich moduli stack. This, in turn,
gives p-forms on a desingularization of the coarse moduli space of the stack. This
follows by a more general result, Proposition 3.6, which is the main result of this
section: Let k be a field (not necessarily algebraically closed, nor of characteristic
0), and let M be a finite type Deligne-Mumford stack over k. If M is tame and if
the coarse moduli space M is smooth, then every p-form on M is the pullback of
a unique p-form on M (up to torsion).

The proof uses trace maps for proper morphisms, f : Y → Z, where Z is normal
and f is étale on a dense open subset of Y ,

Trp
f : f∗(Ω

p
Y ) → (Ωp

Z)∨∨.

3.1. If f is finite étale. Let f : Y → Z be a morphism of schemes and let F be a
coherent sheaf on Z. There is a morphism of OZ-modules, f∗OY ⊗OZ

F → f∗f
∗F .

If f is finite and f∗OY is a locally freeOZ-module, this morphism is an isomorphism.
Also, there is a trace map Trf : f∗OY → OZ defined in the usual way. Therefore,
there is a trace map Trf : f∗f∗F → F .

Let f : Y → Z be a finite étale k-morphism of finite type k-schemes. For each inte-
ger p ≥ 0, the pullback map (df)† : f∗Ωp

Z/k → Ωp
Y/k is an isomorphism. Combined

with the trace map from the last paragraph, we get a map satisfying the following
properties.

Lemma 3.1. Let f : Y → Z be a finite étale k-morphism of finite type k-schemes.
Denote by n the degree of f . For each integer p ≥ 0 there exists a unique morphism
of OZ-modules, Trp

f : f∗Ω
p
Y/k → Ωp

Z/k satisfying the following properties.

(i) For p = 0, Tr0f : f∗OY → OZ is the usual trace map.
(ii) For every open subset U ⊂ Z, for every pair of integers, p, p′ ≥ 0, for every

section σ ∈ H0(U,Ωp
Z/k), and for every section τ ∈ H0(f−1(U),Ωp′

Y/k),

Trp+p′

f f∗(f∗σ ∧ τ) = σ ∧ Trp′

f (f∗τ).

Moreover, the following properties hold.
(iii) For every integer p and every section τ ∈ H0(Y,Ωp

Y/k),

Trp+1
f (f∗dτ) = d(Trp

f (f∗τ)).

(iv) Let Z ′ be a finite type k-scheme and let g : Z ′ → Z be a morphism of k-
schemes. Denote by Y ′ the fiber product Z ′ ×Z Y , and denote by f ′ : Y ′ →
Z ′ and g′ : Y ′ → Y the projection morphisms. For each integer p ≥ 0,
there is a commutative diagram of OZ′-modules.

g∗f∗Ω
p
Y/k

g∗Trp
f−−−−→ g∗Ωp

Z/k

(dg)†−−−−→ Ωp
Z′/k

∼=
y y=

(f ′)∗(g′)∗Ω
p
Y/k

(f ′)∗(dg′)†−−−−−−−→ (f ′)∗Ω
p
Y ′/k

Trp

f′−−−−→ Ωp
Z′/k
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(v) Let h : X → Y be a finite étale morphism. Then for each integer p ≥ 0,
Trp

f◦h = Trp
f ◦ f∗Trp

h.

3.2. If f is proper and generically étale. Let f : Y → Z be a proper k-
morphism of finite type k-schemes. Suppose that Z is connected and geometrically
normal, and suppose that there is a dense open subset of Y on which f is étale.
Denote by Zsmooth ⊂ Z the maximal open subscheme that is smooth over k. Then
there exists an open subset U ⊂ Zsmooth, dense in Z, such that V = f−1(U) is
dense in Y and such that f |V : V → U is finite étale. By Lemma 3.1, for each
p ≥ 0, there is a trace map Trp

f |V : (f |V )∗Ω
p
V/k → Ωp

U/k.

Definition 3.2. A trace map is a morphism of OZ-modules, Trp
f : f∗Ω

p
Y → (Ωp

Z)∨∨,
whose restriction to U equals Trp

f |V .

It is straightforward to check that, if a trace map exists, it is unique and it is
independent of the choice of U .

Proposition 3.3. Let Z be a finite type k-scheme that is connected and geometri-
cally normal. Let f : Y → Z be a proper morphism that is étale on a dense open sub-
set of Y . For each integer p ≥ 0, there exists a trace map Trp

f : f∗Ω
p
Y/k → (Ωp

Z/k)∨∨.

Proof. Denote by i : U → Z the open immersion. The morphism Trf |V determines
a morphism of OZ-modules, i∗Trp

f |V : f∗Ω
p
Y/k → i∗i

∗Ωp
Z/k. Because U ⊂ Zsmooth,

i∗Ωp
Z/k = i∗(Ωp

Z/k)∨∨. Therefore there is a injective morphism of OZ-modules,
(Ωp

Z/k)∨∨ → i∗i
∗Ωp

Z/k. The proposition exactly says that the image of i∗Trp
f |V is

contained in (Ωp
Z/k)∨∨. By hypothesis, Z is normal. And (Ωp

Z/k)∨∨ is reflexive.
Therefore, (Ωp

Z/k)∨∨ is the intersection (in i∗i
∗Ωp

Z/k) of its localization at every
codimension 1 point. Thus it suffices to check that for every codimension 1 point
η ∈ Z − U , the image of i∗Trp

f |V is contained in the localization of (Ωp
Z/k)∨∨ at η.

The image of i∗Trp
f |V does not change if we replace Y by the disjoint union of the

irreducible components of Y , with the induced reduced scheme structure. Therefore
assume that Y is reduced and every connected component of Y is irreducible. The
morphism f is finite on an open subset of Z whose complement has codimension
≥ 2. Thus there exists an open affine W ⊂ Zsmooth such that η ∈ W and such
that f |W : f−1(W ) → W is finite. Denote A = H0(W,OZ) and denote B =
H0(f−1(W ),OY ). By [19], the image of Ωp

B/k under i∗Trp
f |V is contained in Ωp

A/k

(Zannier only proves this when Y is connected, but the generalization here follows
trivially). In particular, the image of i∗Trp

f |V is contained in the localization of
(Ωp

Z/k)∨∨ at η.
�

Remark 3.4. For each integer p ≥ 0, there is a generic trace map

(Tr⊗p
f )gen : f∗(Ω1

Y/k)⊗p → (Ω1
Z/k)⊗p ⊗OZ

K(Z).

By the proposition, when restricted to the submodule corresponding to an exterior
power, the generic trace map factors through (Ωp

Z)∨∨. One might hope that the
entire generic trace map factors through the reflexive hull of (Ω1

Z)⊗p. This is true,
8



for instance, if f : Y → Z is étale away from codimension 2. But typically this is
not the case: Consider the morphism f : A1

k → A1
k which pulls back a coordinate t

on the target to u2, the square of a coordinate u on the domain. Then the generic
trace of du⊗ du is 1

4tdt⊗ dt.

Lemma 3.5. Let Z be a finite type k-scheme that is connected and geometrically
normal. Let f : Y → Z be a proper morphism that is étale on a dense open subset
of Y . The trace maps Trp

f satisfy the following properties.

(i) For p = 0, Tr0f : f∗OY → OZ is the usual trace map.
(ii) For every pair of integers, p, p′ ≥ 0, for every section σ ∈ H0(Z,Ωp

Z), and
for every section τ ∈ H0(Y,Ωq

Y ),

Trp+p′

f f∗(f∗σ ∧ τ) = σ ∧ Trp′

f (f∗τ).

(iii) For every integer p and every section τ ∈ H0(Y,Ωp
Y/k),

Trp+1
f (f∗dτ) = d(Trp

f (f∗τ)).

(iv) Let Z ′ be a finite type k-scheme that is connected and geometrically normal.
Let g : Z ′ → Z be a morphism of k-schemes such that g−1(U) is dense in
Z ′. Denote by Y ′ the closure in Z ′ ×Z Y of the inverse image of g−1(U).
And denote by f ′ : Y ′ → Z ′ and g′ : Y ′ → Y the projection morphisms.
For each integer p ≥ 0, there is a commutative diagram of OZ′-modules.

g∗f∗Ω
p
Y/k

g∗Trp
f−−−−→ g∗Ωp

Z/k

(dg)†−−−−→ Ωp
Z′/ky y=

(f ′)∗(g′)∗Ω
p
Y/k

(f ′)∗(dg′)†−−−−−−−→ (f ′)∗Ω
p
Y ′/k

Trp

f′−−−−→ Ωp
Z′/k

(v) Let h : X → Y be a proper morphism. Suppose that Y is normal and h
is étale on a dense open subset of X. Then f ◦ h is étale on a dense open
subset of X, and for each integer p ≥ 0, Trp

f◦h = Trp
f ◦ f∗Trp

h.

3.3. Descent for p-forms on a stack. Let k be a field (not necessarily alge-
braically closed nor of characteristic 0). Let M be a finite type Deligne-Mumford
stack over k. Recall from [1], that M is tame if the stabilizer group of every geo-
metric point of M has order prime to char(k). Recall from [15] that there exists
a coarse moduli space, M , for M, and M is an algebraic space of finite type over
k. Suppose that M is tame, irreducible, and generically reduced and that M is a
geometrically normal k-scheme.

Denote by c : M → M the morphism of M to the coarse moduli space. Let
U ⊂M be the maximal open subscheme over which c is smooth. Then for every p,
the pullback map H0(U,Ωp

M/k) → H0(c−1(U),Ωp
M/k) is an isomorphism. It is not

true that the pullback map over all of M is an isomorphism, even modulo torsion.
For instance, let char(k) 6= 2, consider A2

k with coordinates x, y, let Γ be the cyclic
group of order 2, and let Γ act on A2

k by x 7→ −x, y 7→ −y. Let M be the quotient
stack [A2

k/Γ]. Then the 2-form dx∧ dy is Γ-invariant and thus gives rise to a global
section of Ω2

M/k. But this 2-form is not the pullback of any global section of Ω2
M/k.

9



A slightly weaker result is true, and will be proved in Proposition 3.6. This result
is good enough for our application. First we explain the result, then we prove it. If
M is tame, irreducible and generically reduced and if M is a geometrically normal
k-scheme, then for each integer p ≥ 0 there is a k-linear map,

c∗ : H0(M, (Ωp
M/k)free) → H0(M, (Ωp

M/k)∨∨).

Here, for a coherent sheaf F , the notation (F)free denotes the maximal torsion-free
quotient, i.e., the image of the sheaf map F → F ⊗OM

K(M). There is also a
generic pullback map,

c∗gen : H0(M, (Ωp
M/k)∨∨) → H0(M, (Ωp

M/k)free ⊗OM
K(M)).

And the composition c∗gen ◦ c∗ equals the obvious inclusion map.

Let N be a finite type k-scheme that is geometrically normal. Let g : N → M be
a k-morphism such that g−1(U) is dense. There is a generic pullback map,

g∗gen : H0(M, (Ωp
M/k)∨∨) → H0(N, (Ωp

N/k)∨∨ ⊗ON
K(N)).

In fact the image of g∗genc∗ is contained in the image of H0(N, (Ωp
N/k)∨∨).

Proposition 3.6. Let k be a field (not necessarily algebraically closed nor of char-
acteristic 0), and let M be a finite type Deligne-Mumford stack. Suppose that M is
tame, irreducible, and generically reduced, and that the coarse moduli space M is a
k-scheme that is geometrically normal. For each integer p ≥ 0, there is a k-linear
map,

c∗ : H0(M, (Ωp
M/k)free) → H0(M, (Ωp

M/k)∨∨),

whose composition with the generic pullback map, c∗gen, is the obvious inclusion map.
Moreover, for every finite type k-scheme N , and for every k-morphism g : N →M ,
if N is geometrically normal and if g−1(U) ⊂ N is dense, then the image of g∗genc∗
is contained in the image of H0(N, (Ωp

N/k)∨∨).

Proof. If there exists a map c∗ such that c∗genc∗ is the inclusion map, then c∗ is
unique. Thus we may prove that c∗ exists after étale base change of M : the
uniqueness of c∗ guarantees the cocycle condition for étale descent.

By [1, Lem. 2.2.3], there exists an étale covering {Mi →M} such that,

(i) each base change Mi ×M M is a finite quotient stack [Ui/Γi],
(ii) each Ui is a scheme finite over Mi,
(iii) each Γi is a finite group whose order is prime to char(k),
(iv) Γi acts on Ui by Mi-morphisms, and
(v) the quotient Mi-scheme Ui//Γi equals Mi.

Thus, without loss of generality, assume that M = [U/Γ] where U is a scheme finite
over M and where Γ is a group whose order is prime to char(k) acting on U by
M -morphisms.

Denote by h : U →M the morphism above. By Proposition 3.3, there is a morphism

Trp
h : H0(U, (Ωp

U/k)free) → H0(M, (Ωp
M/k)∨∨).

10



The global sections of (Ωp
M/k)free are precisely the Γ-invariant global sections of

(Ωp
U/k)free. So there is an induced morphism

(Trp
h)Γ : H0(M, (Ωp

M/k)free) → H0(M, (Ωp
M/k)∨∨).

It is straightforward to check that 1
|Γ| (Trp

h)Γ satisfies the condition for c∗.

Consider g∗genc∗. Denote by N the fiber product N ×M M. Denote by c′ : N → N
and g′ : N →M the projection morphisms. Then (c′)∗geng

∗
genc∗ equals (g′)∗c∗genc∗.

And this equals (c′)∗gen(c′)∗(g′)∗. Since (c′)∗gen is injective, g∗genc∗ = (c′)∗(g′)∗. In
particular, the image is contained in H0(N, (Ωp

N/k)∨∨).
�

4. Construction of the 2-form

Let k be a field (not necessarily algebraically closed, nor of characteristic 0). Let M
be a finite type Deligne-Mumford stack over k and let p : C →M be a representable
1-morphism of Deligne-Mumford stacks such that

(i) p is proper and flat of relative dimension 1, and
(ii) every geometric fiber of p is a reduced, at-worst-nodal curve,

i.e., p : C → M is a semi-stable family of curves. There is a canonical morphism
from the sheaf of relative Kähler differentials to the dualizing sheaf Ω1

p → ωp. This
is an isomorphism on the open substack U ⊂ C which is the smooth locus of p. For
each integer i ≥ 0, this isomorphism induces a morphism of OU -modules,

φU,i : Ωi+1
C/k|U → (Ωi+1

C/k/p
∗Ωi+1

M/k)|U ∼= p∗Ωi
M/k ⊗ ωp|U .

This morphism has the property that for every section α ∈ Ωi
M/k and β ∈ Ωj

C/k,
φU,i+j(p∗α ∧ β) = p∗α ∧ φU,j(β).

Lemma 4.1. For each integer i ≥ 0 there exists a unique morphism of OC-modules,
φi : Ωi+1

C/k → p∗Ωi
M/k ⊗OC ωp, such that φi|U = φU,i and such that for every section

α ∈ Ωi
M/k and β ∈ Ωj

C/k, φi+j(p∗α ∧ β) = p∗α ∧ φj(β).

Proof. If φi exists, then by construction it annihilates p∗Ωi+1
M , i.e., it factors through

the quotient. The quotient has a canonical subsheaf isomorphic to p∗Ωi
M⊗Ω1

p with
an obvious map to p∗Ωi

M ⊗ ωp. The lemma claims this map extends to the entire
quotient. It also claims the extension is unique. Uniqueness is straightforward:
the cokernel of p∗Ωi

M ⊗ Ω1
p is a sheaf that is torsion on fibers, whereas the sheaf

p∗Ωi
M ⊗ ωp is torsion-free on fibers. So there is no nonzero map from the cokernel

to p∗Ωi
M⊗ωp, i.e., if the map extends, then the extension is unique. The extension

problem is equivalent to the vanishing of a section of a sheaf Ext. This vanishing
can be checked after passing to the completion of the local ring at each geometric
closed point of C, i.e., it suffices to check that the sheaf map extends formally locally
at each geometric closed point of C.

Since the property can be checked formally locally, without loss of generality assume
that M is a scheme. Let z ∈ C be a closed point. Denoting A = ÔM,p(z) and
B = ÔC,z, there is an isomorphism

B ∼= A[[x, y]]/〈xy − a〉.
11



for some element a ∈ A. By Remark 4.4, the base change of φU,i does extend to a
map φi ⊗OC B as required. �

Corollary 4.2. For each pair of integers, i, j ≥ 0, there is a k-linear map,

Hj+1(C,Ωi+1
C/k) → Hj(M,Ωi

M/k).

Proof. The morphism φi induces a k-linear map,

Hj+1(C,Ωi+1
C/k) → Hj+1(C, p∗Ωi

M/k ⊗ ωp).

Associated to the morphism p, there is a Leray spectral sequence for the target
vector space. Because Rlp∗(p∗Ωi

M/k⊗ωp) = Ωi
M/k⊗R

lp∗ωp is zero for l ≥ 2, there
is an abutment map,

Hj+1(C, p∗Ωi
M/k ⊗ ωp) → Hj(M,Ωi

M/k ⊗R1p∗ωp).

And there is a trace isomorphism R1p∗ωp

∼=−→ OM. Composing these maps gives
the k-linear map,

Hj+1(C,Ωi+1
C/k) → Hj(M,Ωi

M/k).

�

Assume that char(k) = 0. Let X be a quasi-projective k-scheme and let Mg,r(X, e)
be the Kontsevich moduli space of stable maps from r-pointed curves of arithmetic
genus g to X of degree e. There is a universal curve p : C →Mg,r(X, e) satisfying
the hypotheses above. And there is an evaluation morphism ev : C → X. For each
pair of integers, i, j ≥ 0, there is a pullback morphism

ev∗ : Hj+1(X,Ωi+1
X/k) → Hj+1(C,Ωi+1

C/k).

Composing with the k-linear map from Corollary 4.2 gives the following.

Corollary 4.3. For each pair of integers i, j ≥ 0, there is an “integration along
fibers” morphism,

Hj+1(X,Ωi+1
X/k) → Hj(Mg,r(X, e),Ωi

Mg,r(X,e)/k
).

In particular, suppose X is the smooth locus of a cubic hypersurface in P4. As will
be recalled in the next section, the Griffiths residue calculus gives a canonical map
from a 1-dimensional k-vector space to H1(X,Ω3

X/k). If X is projective, this map
is an isomorphism of k-vector spaces. Using the map above, for each integer e > 0,
this gives a global section ωe of Ω2 on the stack Me parametrizing stable maps
from curves of arithmetic genus 0 to X of degree e. The section ωe is well-defined
up to non-zero scalar. This is the object of study in the rest of the article.

Remark 4.4. Let A be a ring and let B = A[x, y]/(xy − a) for some a ∈ A.
Consider the canonical exact sequence

0 → Ω1
A ⊗B → Ω1

B → Ω1
B/A → 0.

12



Exactness on the left follows as B is a complete intersection flat over A whose
cotangent complex LB/A is quasi-isomorphic to Ω1

B/A. Moreover, the relative dual-
izing sheaf is the determinant of LB/A (which is perfect of amplitude [−1, 0]). So,
the relative dualizing module ωB/A is free with generator

θ =
dx ∧ dy
xy − a

.

and there is a canonical B-module homomorphism

Ω1
B/A −→ ωB/A

which is determined by the rules dx 7→ xθ and dy 7→ −yθ. From this we will define
maps

Ωi
B → Ωi−1

A ⊗A ωB/A.

Namely, any element in Ωi
B can be written as a B-linear combination of forms of

the type η, η ∧ dx, η ∧ dy and η ∧ dx ∧ dy, where η is in Ωj
A, with j = i, i− 1, or

i− 2. We claim there exists a map as above such that

η 7→ 0, η ∧ dx 7→ η ⊗ xθ, η ∧ dy 7→ −η ⊗ yθ, η ∧ dx ∧ dy 7→ −η ∧ da⊗ θ.

The reader easily verifies that this is well defined (the main concern being that
forms of the type η ∧ (ydx+ xdy − da) and η ∧ (ydx+ xdy − da) ∧ dx get mapped
to zero).

5. Explicit description of the 2-form

Let k be a field of characteristic 0 and let X be a quasi-projective k-scheme.
As in the last section, for each pair of integers, i, j ≥ 0, there is k-linear map
Hj+1(X,Ωi+1

X/k) → Hj(Mg,r(X, e),Ωi
Mg,r(X,e)/k

). When j = 0, this gives global

sections of Ωi. Let z ∈ M be a geometric closed point, and consider the fiber of
this section at z. The goal of this section is to describe the fiber of the section
in terms of the local geometry of the associated stable map f : C → X, i.e., in
terms of the pullback of the tangent bundle of X, etc. In the special case that X
is the smooth locus of a cubic hypersurface in P4 and g = 0, we give an explicit
description of the fiber of this section.

5.1. Explicit description of H1(X,Ω3
X). First we recall a small part of the Grif-

fiths residue calculus [8, Section 8]. This is also discussed very briefly in [18, Section
0]. Let X ⊂ Pn be a hypersurface of degree d, and let U ⊂ X be the smooth locus.
The cotangent sequence is,

0 −−−−→ OU (−d) −−−−→ Ω1
Pn |U −−−−→ Ω1

U −−−−→ 0

Taking the exterior power of this sequence, and twisting by OX(d)|U , gives an exact
sequence,

0 −−−−→ Ωn−2
U −−−−→ Ωn−1

Pn |U ⊗OU (d) −−−−→ Ωn
Pn |U ⊗OU (2d) −−−−→ 0

(This also follows by taking the dual of the first exact sequence and twisting by
Ωn

Pn |U ⊗OU (d).) The connecting homomorphism in cohomology gives a map,

H0(Pn,Ωn
Pn ⊗OPn(2d)) → H1(U,Ωn−2

U ).

In the special case of a cubic fourfold, there is an exact sequence,

0 −−−−→ Ω3
U −−−−→ Ω4

P5 |U ⊗OU (3) −−−−→ Ω5
P5 |U ⊗OU (6) −−−−→ 0. (1)
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Of course Ω5
P5 ⊗OP5(6) ∼= OP5 . Thus the connecting homomorphism,

H0(P5,Ω5
P5 ⊗OP5(6)) → H1(U,Ω3

U ),

is a map from a 1-dimensional vector space to H1(U,Ω3
U ). If U = X, this map is an

isomorphism. Choose a nonzero element in H0(P5,Ω5
P5 ⊗OP5(6)), and define ωpre

e

to be the image of this element in H1(U,Ω3
U ). Define ωe ∈ H0(Me,Ω2

Me/k
) to be

the global section associated to ωpre
e .

5.2. The explicit description. Let f : C → X be a point of Me ⊂Me. Assume
that C ∼= P1 is smooth and that f is a regular embedding into the smooth locus
U ⊂ X. Consider the sequence of vector bundles over C given by the normal bundle
NC/X of C in X mapping to the normal bundle NC/P5 of C in P5,

0 −−−−→ NC/X −−−−→ NC/P5 −−−−→ f∗NX/P5 −−−−→ 0. (2)

Of course NX/P5 ∼= OX(3), so that f∗NX/P5 ∼= OC(3e), where the notation OC(a)
indicates any invertible sheaf of degree a on C. In particular, observe that

∧3
NC/X =

OC(3e− 2) and that
∧4

NC/P5 = OC(6e− 2). The Zariski tangent space T[f ](Me),
which is the same thing as the dual vector space of the fiber Ω1

Me
|[f ], is given by

the space of global sections H0(C,NC/X) (c.f. [16, Theorem I.2.8]). So the fiber
Ω2

Me
|[f ] is just the vector space dual of

∧2
H0(C,NC/X). And the 2-form ωe gives

a procedure to associate to any two sections of NC/X a complex number.

Next consider the exact sequence

0 −→
∧3

NC/X ⊗OC(−3e) −→
∧3

NC/P5 ⊗OC(−3e) −→
∧2

NC/X −→ 0. (3)

This sequence is obtained from Equation 2 by taking exterior powers and twisting
by OC(−3e). In any case, the sheaf on the left is OC(−2) by what was said above.
Choose an isomorphism H1(C,OC(−2)) = C, and let

δ : H0(C,
∧2

NC/X) → H1(C,
∧3

NC/X ⊗OC(−3)) = H1(C,O(−2)) = C,

be the boundary map on cohomology coming from the exact sequence above. This
is another procedure which associates to any two sections of NC/X a complex num-
ber. In the following theorem we prove that the two procedures agree. The best
argument for this is the usual one: What else could it be? The actual proof is even
more annoying.

Theorem 5.1. Up to a nonzero scalar factor the pairing associated to ωe on
T[f ](Me) = H0

(
C,NC/X

)
is equal to the pairing (s1, s2) 7→ δ(s1 ∧ s2).

Proof. Observe that the construction of Section 4 is compatible with arbitrary base
change of the stack M. To prove the theorem, perform a base change to the Artin
local ring Z = SpecA which is the base of the universal first order deformation of
C ⊂ X, say C ⊂ Z ×X. The construction of Section 4 restricts the exact sequence
from Equation 1 to C and then pushes-out the sequence by the map

f∗
(
Ω3

X

)
→ Ω3

C → p∗
(
Ω2

Z

)
⊗ ωC/Z .

Then the construction takes the cohomology of the resulting sequence to obtain the
2-form ωe. By a diagram chase, the resulting sequence is simply the “Serre dual”
of the sequence from Equation 3 from which the theorem follows.
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First consider the universal first order deformation of C ⊂ X. By Serre duality the
vector space V = H1

(
C, I/I2 ⊗ ωC

)
is dual to H0

(
C,NC/X

)
. Here I is the ideal

sheaf of C in X. Consider the local Artin k-algebra, A = k ⊕ V , where V ⊂ A is
an ideal of square zero. Set Z = SpecA. Denote by C → Z the universal first order
deformation of C. Let s1, . . . , sA be an ordered basis for H0

(
C,NC/X

)
and let

t1, . . . , tA in V be the dual ordered basis. The elements s1, . . . , sA are canonically
identified with OC-linear maps I/I2 → OC . Let p ∈ C be a point, let U ⊂ X be
an open affine subset containing p, and let g1, g2, g3 be generators for H0(U, I) as
an H0(U,OX)-module. Then the ideal of C is locally generated by the equations

g̃j := gj +
A∑

i=1

ti · si(fj), j = 1, 2, 3

g̃j ∈ OX [t1, . . . , tA]/〈titi′ , tigj , gjgj′ |i, i′ = 1, . . . , A, j, j′ = 1, 2, 3〉.

Denote by p : C → Z and f̃ : C → X the two projections.

To prove the theorem, we compute the 2-form on Z obtained from the construc-
tion of Section 4 applied to (p : C → Z, f̃ : C → X). This is not as crazy as it
sounds; namely Ω2

A/k ⊗A k = ∧2V , so this computation will provide the necessary
information.

To compute f̃∗η, form the pullback by f̃∗ of the exact sequence from Equation 1.
Considered as an element of the Yoneda-Ext group Ext1C(OC ,Ω3

C), the element f̃∗η
is simply the push-out of this exact sequence by the canonical map f̃∗

(
Ω3

X

)
→ Ω3

C .
According to Section 4, take the image of f∗η under the map

Ext1C(OC ,Ω3
C) → Ext1C(OC , p∗

(
Ω2

Z

)
⊗ ωC/Z)

In terms of Yoneda-Ext, take an additional push-out of the exact sequence by
Ω3
C → p∗

(
Ω2

Z

)
⊗ ωC/Z . So, in terms of Yoneda-Ext, the exact sequence is obtained

as the push-out of the pullback of Equation 1 by the map f̃∗Ω3
X → p∗

(
Ω2

Z

)
⊗ωC/Z .

Of course it is only necessary to compute the restriction of this exact sequence
to the closed fiber, so restrict the push-out exact sequence to the closed fiber. In
particular, the restriction to the closed fiber of p∗

(
Ω2

Z

)
⊗ωC/Z is

∧2
V ⊗k Ω1

C . The
next step is an explicit local description of the map

ψ : Ω3
X |C →

2∧
V ⊗k Ω1

C .

Let t be a regular function on X restricting to a local coordinate on C. Any local
3-form on X is an OX -linear combination of the forms εjj′ = dfj∧dfj′∧dt, 1 ≤ j <
j′ ≤ 3 and the form df1 ∧ df2 ∧ df3. So it suffices to evaluate ψ on these 3-forms.
The result is

ψ(ηjj′) =
A∑

i,i′=1

si(fj)si′(fj′)ti ∧ ti′ ⊗ dt, 1 ≤ j < j′ ≤ 3, (4)

ψ(df1 ∧ df2 ∧ df3) = 0. (5)

Of course there is a more “global” way of thinking about ψ. The exact sequence

0 −−−−→ I/I2 −−−−→ Ω1
X |C −−−−→ Ω1

C −−−−→ 0, (6)
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determines a canonical map α : Ω3
X |C →

∧2
I/I2 ⊗OC

Ω1
C . And there is a

map of OC-modules β : I/I2 → V ⊗k OC defined as the transpose of the map
H0

(
C,NC/X

)
⊗k OC → NC/X . The global description of ψ is as the composition

of α with
∧2

β ⊗ IdΩ1
C
.

Just as the exact sequence in Equation 6 induces the map α, also the exact sequence

0 −−−−→ Ĩ/Ĩ2 −−−−→ Ω1
P5 |C −−−−→ Ω1

C −−−−→ 0. (7)

induces a map α′ : Ω4
P5 |C →

∧3
Ĩ/Ĩ2 ⊗ Ω1

C where Ĩ is the ideal sheaf of C in
P5. By adjunction, there are isomorphisms Ω5

P5 |C ⊗ OC(3e) ∼= Ω4
X |C and Ω4

X |C ∼=∧3
I/I2 ⊗ Ω1

C . Combining these adjunction isomorphisms gives an isomorphism,

α′′ : Ω5
P5 |C ⊗OC(6e) →

3∧
I/I2 ⊗OC(3e)⊗ Ω1

C .

Both terms in this map are isomorphic to OC . Choosing such isomorphisms, α′′ is
just an isomorphism of OC to itself.

We leave it to the reader to verify that the following diagram commutes,

0 −−−−→ Ω3
X |C −−−−→ Ω4

P5 |C(3e) −−−−→ OC −−−−→ 0

α

y α′

y α′′

y
0 −−−−→

∧2
I/I2 ⊗ Ω1

C −−−−→
∧3

Ĩ/Ĩ2(3e)⊗ Ω1
C −−−−→ OC −−−−→ 0.

(8)

The top exact sequence is the restriction to C of Equation 1, and the bottom exact
sequence is the dual of Equation 3 tensored with Ω1

C . More canonically, the last
term in the top sequence is Ω5

P5 |C(6e) and the last term in the bottom sequence is∧3
I/I2(3e) ⊗ Ω1

C . The diagram follows using the isomorphisms of these sheaves
with OC from the last paragraph.

The conclusion is that the extension of OC by ∧2V ⊗k Ω1
C obtained from f̃∗η is

precisely the Serre dual exact sequence of Equation 3 used to define the coboundary
map δ. Hence the coboundary map on cohomology H0(C,OC) → H1(C,

∧2
I/I2⊗

Ω1
C) is the dual of δ. �

6. Proof of Theorem 1.2: degree five case

The strategy of the proof of Theorem 1.2 is the following. Form the P55 parametriz-
ing all cubic hypersurfaces in P5. Let Ue → P55 be the Deligne-Mumford stack over
P55 parametrizing pairs ([X], [C]) of a cubic hypersurface X ⊂ P5 and a smooth
rational curve C ⊂ X of degree e such that X is smooth along C and such that
H1(C,NC/X) is zero (i.e. C ⊂ X is unobstructed). The last condition guarantees
that Ue → P55 is a smooth morphism. Also, by Proposition 2.4, a general fiber of
Ue → P55 is irreducible. In particular, Ue is also irreducible.

There is a straightforward generalization of the construction of Section 4 to the
relative setting. This produces (locally over P55) a 2-form ωe that is a global
section of Ω2

Ue/P55 such that the restriction of ωe to any fiber is the 2-form of the
fiber constructed in Section 4. The rank of ωe on fibers is a lower semicontinuous
function on Ue, so to prove that the rank of ωe is the maximum possible for a
general pair ([X], [C]), it suffices to find a single pair ([X], [C]) ∈ Ue where the
rank of ωe is the maximum possible.
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Let

0 −→ O(a1)⊕O(a2)⊕O(a3) −→ NC/P5 −→ O(3e) −→ 0

be the usual exact sequence, where a1 + a2 + a3 = 3e− 2. In other words NC/X =⊕
O(ai). The extension class of this sequence is an element ψ of H1(P1,O(a1 −

3e)⊕O(a2 − 3e)⊕O(a3 − 3e)). Write P1 = Proj (S), where S = C[X0, X1]. Then,
using Serre duality, ψ equals ψ1 ⊕ ψ2 ⊕ ψ3 for ψi ∈ Hom (S3e−ai−2,C). Writing
elements of H0(C,NC/X) in the form (g1, g2, g3) for gi ∈ H0(C,O(ai)), then the
pairing takes the following form〈 g1

g2
g3

 ,

 h1

h2

h3

〉
= ψ3(g1h2 − g2h1) + ψ2(g1h3 − g3h1) + ψ1(g2h3 − g3h2).

To compute the pairing for a given curve, we have to find the linear functionals
ψ1, ψ2, ψ3 above. For large e this reduces to a rather involved computation. We
will present this computation later, but first we show that in the special case e = 5
there is a short solution (which will hopefully motivate the reader to brave the
computations of the next two sections).

Theorem 6.1. Let f : C → X be a general quintic rational curve on a general
cubic fourfold X. Then NC/X = O(4) ⊕ O(4) ⊕ O(5) and the extension class ψ
of the sequence 0 → NC/X → NC/P5 → O(15) → 0 is a general point of the space
Hom (S9 ⊕ S9 ⊕ S8,C).

Proof. Fix a rational normal curve C ⊂ P5 of degree 5. Its normal bundle NC/P5 is
O(7)⊕4. Thus any (not necessarily smooth) cubic fourfold X containing C deter-
mines a homomorphism of OC-modules

ϕX : O(7)⊕4 → O(15).

Note that ϕX = 0 if and only if X is singular along C, which happens if and only
if the defining equation of X is a section of I2(3). The following computations are
left to the reader,

dimH0(P5, I(3)) = 40, dimH0(P5, I2(3)) = 4, dim Hom C(O(7)4,O(15)) = 36.

Thus the rule X 7→ ϕX is onto. Hence a general exact sequence of the form
0 → Ker (α) → O(7)4 − α→ O(15) → 0 occurs as the normal bundle sequence for
a general (nonsingular) X. The theorem follows. �

To finish, choose ψi as follows,

ψ1(
∑9

i=0
aiX

9−i
0 Xi

1) =
∑9

i=0
νiai, ψ1(

∑9

i=0
aiX

9−i
0 Xi

1) =
∑9

i=0
µiai,

and

ψ1(
∑8

i=0
aiX

8−i
0 Xi

1) =
∑8

i=0
λiai.
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Choose νi, µi and λi general. Form the matrix of the pairing with respect to the
obvious basis of H0(P1,O(4)⊕O(4)⊕O(5)). The computation gives,

0 0 0 0 0 λ0 λ1 λ2 λ3 λ4 µ0 µ1 µ2 µ3 µ4 µ5

0 0 0 0 0 λ1 λ2 λ3 λ4 λ5 µ1 µ2 µ3 µ4 µ5 µ6

0 0 0 0 0 λ2 λ3 λ4 λ5 λ6 µ2 µ3 µ4 µ5 µ6 µ7

0 0 0 0 0 λ3 λ4 λ5 λ6 λ7 µ3 µ4 µ5 µ6 µ7 µ8

0 0 0 0 0 λ4 λ5 λ6 λ7 λ8 µ4 µ5 µ6 µ7 µ8 µ9

−λ0 −λ1 −λ2 −λ3 −λ4 0 0 0 0 0 ν0 ν1 ν2 ν3 ν4 ν5
−λ1 −λ2 −λ3 −λ4 −λ5 0 0 0 0 0 ν1 ν2 ν3 ν4 ν5 ν6
−λ2 −λ3 −λ4 −λ5 −λ6 0 0 0 0 0 ν2 ν3 ν4 ν5 ν6 ν7
−λ3 −λ4 −λ5 −λ6 −λ7 0 0 0 0 0 ν3 ν4 ν5 ν6 ν7 ν8
−λ4 −λ5 −λ6 −λ7 −λ8 0 0 0 0 0 ν4 ν5 ν6 ν7 ν8 ν9
−µ0 −µ1 −µ2 −µ3 −µ4 −ν0 −ν1 −ν2 −ν3 −ν4 0 0 0 0 0 0
−µ1 −µ2 −µ3 −µ4 −µ5 −ν1 −ν2 −ν3 −ν4 −ν5 0 0 0 0 0 0
−µ2 −µ3 −µ4 −µ5 −µ6 −ν2 −ν3 −ν4 −ν5 −ν6 0 0 0 0 0 0
−µ3 −µ4 −µ5 −µ6 −µ7 −ν3 −ν4 −ν5 −ν6 −ν7 0 0 0 0 0 0
−µ4 −µ5 −µ6 −µ7 −µ8 −ν4 −ν5 −ν6 −ν7 −ν8 0 0 0 0 0 0
−µ5 −µ6 −µ7 −µ8 −µ9 −ν5 −ν6 −ν7 −ν8 −ν9 0 0 0 0 0 0

.

Finally, to complete the proof of Theorem 1.2 for e = 5, consider the determinant
of this matrix. For λ0 = 1, λ1 = 2, λ2 = −1, λ3 = 1, λ4 = 1, λ5 = 1, λ6 = −1, λ7 =
−4, λ8 = 2, µ0 = 1, µ1 = 2, µ2 = −1, µ3 = 2, µ4 = 5, µ5 = −1, µ6 = 13, µ7 =
−1, µ8 = 1, µ9 = 1, ν0 = 1, ν1 = 2, ν2 = 3, ν3 = 5, ν4 = 4, ν5 = −5, ν6 = −6, ν7 =
−7, ν8 = −5, ν9 = 1 the determinant equals 445717799641. Since this is nonzero,
Theorem 1.2 is true for e = 5.

7. Proof of Theorem 1.2

By Section 6, to prove Theorem 1.2 it suffices to determine a certain extension
class ψ. The proof for e = 5 was short because ψ can be chosen to be a general
element of the Ext group. Comparing the dimension of the parameter space Ue of
pairs ([X], [C]) (cf. Section 6) and the dimension of the relevant Ext group, the
Ext group grows more quickly. So, for large e, the extension class ψ will not be a
general element of the Ext group.

Instead we work with a specific pair ([X], [C]) ∈ Ue for which we can prove the
rank of ωe is maximal and h1(C,NC/X) = 0. The reader is warned that for this
pair, X is not smooth! But X is smooth on an open set containing C, and this is
all that matters.

The proof of Theorem 1.2 in the case that e is odd is almost identical to the proof
in the case that e is even. For this reason, most of the argument is carried out
for both cases simultaneously. For each construction, the even case is specified by
a subscript “ε” and the odd case is specified by a subscript “o”. Arguments that
apply verbatim to both cases will not have a subscript (i.e., if there is no subscript,
a true statement is obtained by either applying the subscript “o” throughout, or by
applying the subscript “ε” throughout). In the odd case, the degree is eo = 2ro + 1
for some integer ro ≥ 2. In the even case, the degree is eε = 2rε for some integer
rε ≥ 3.
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7.1. Computation of NC/P5 . We begin by specifying C and computing NC/P5 .
As in the last section, choose homogeneous coordinates X0, X1 on P1. Choose
homogeneous coordinates Y0, Y1, Y2, Y3, Y4, Y5 on P5. Consider the maps fo : P1 →
P5, resp. fε : P1 → P5 given by

fo([X0 : X1]) = [X2ro+1
0 : X2ro

0 X1 : Xro+1
0 Xro

1 : Xro
0 Xro+1

1 : X0X
2ro
1 : X2ro+1

1 ],

resp.

fε([X0 : X1]) = [X2rε
0 : X2rε−1

0 X1 : Xrε+1
0 Xrε−1

1 : Xrε−1
0 Xrε+1

1 : X0X
2rε−1
1 : X2rε

1 ].

This is a closed immersion, and local inverses are given by [Y0 : · · · : Y5] 7→ [Y0 : Y1]
and [Y0 : · · · : Y5] 7→ [Y4 : Y5] on P5−V(Y0, Y1) and P5−V(Y4, Y5) respectively (the
image of C does not intersect V(Y0, Y1, Y4, Y5)). To compute the normal bundle of
C in P5, we use the Euler sequence for TP1 and for TP5 . There is a map between
these Euler sequences induced by fo, resp. fε, and the important term is

d̃fo : OP1(1)⊕2 → f∗o
(
OP5(1)⊕6

)
= OP1(2ro + 1)⊕6,

resp.

d̃fε : OP1(1)⊕2 → f∗ε
(
OP5(1)⊕6

)
= OP1(2rε)⊕6.

These maps are given by the matrices

d̃fo =



(2ro + 1)X2ro
0 0

2roX2ro−1
0 X1 X2ro

0

(ro + 1)Xro
0 Xro

1 roX
ro+1
0 Xro−1

1

roX
ro−1
0 Xro+1

1 (ro + 1)Xro
0 Xro

1

X2ro
1 2roX0X

2ro−1
1

0 (2ro + 1)X2ro
1

 ,

resp.

d̃fε =



2rεX2rε−1
0 0

(2rε − 1)X2rε−2
0 X1 X2rε−1

0

(rε + 1)Xrε
0 X

rε−1
1 (rε − 1)Xrε+1

0 Xrε−2
1

(rε − 1)Xrε−2
0 Xrε+1

1 (rε + 1)Xrε−1
0 Xrε

1

X2rε−1
1 (2rε − 1)X0X

2rε−2
1

0 2rεX2rε−1
1

 .

Observe that both matrices have rank 2 at every point of P1. The normal bundle
of C in P5 is the cokernel of d̃fo, resp. d̃fε. To compute this, consider the sheaf
morphism To : OP1(2ro+1)⊕6 → OP1(3ro+1)⊕4, resp. Tε : OP1(2rε)⊕6 → OP1(3rε−
1)⊕OP1(3rε)⊕OP1(3rε)⊕OP1(3rε − 1) given by the matrices

To =


(ro − 1)Xro

1 −roX0X
ro−1
1 Xro

0

0 Xro
1 −roXro−1

0 X1

0 0 (ro − 1)Xro
1

0 0 0

∣∣∣∣∣∣∣∣ . . .∣∣∣∣∣∣∣∣
0 0 0

(ro − 1)Xro
0 0 0

−roX0X
ro−1
1 Xro

0 0
Xro

1 −roXro−1
0 X1 (ro − 1)Xro

0

 ,
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resp.

Tε =


(rε − 2)Xrε−1

1 −(rε − 1)X0X
rε−1
1 Xrε−1

0

0 2Xrε
1 −rεXrε−2

0 X2
1

0 0 (rε − 2)X)1rε

0 0 0

∣∣∣∣∣∣∣∣ . . .∣∣∣∣∣∣∣∣
0 0 0

(rε − 2)Xrε
0 0 0

−rεX2
0X

rε−2
1 2Xrε

0 0
Xrε−1

1 −(rε − 1)Xrε−2
0 X1 (rε − 2)Xrε−1

0

 .
It is straightforward to verify that To ◦ d̃fo is zero, resp. Tε ◦ d̃fε is zero. And To,
resp. Tε, has rank 4 everywhere. Thus To, resp Tε, gives an isomorphism of NC/P5

with OP1(3ro +1)⊕4, resp. OP1(3rε−1)⊕OP1(3rε)⊕OP1(3rε)⊕OP1(3rε−1). Each
of these isomorphisms is taken to be an identification of locally free sheaves.

7.2. Computation of NC/X . Next we specify X and compute the normal bundle
NC/X . Observe that the quadric equations Qa = Y1Y4 − Y0Y5 and Qb = Y2Y3 −
Y0Y5 both vanish on the image of fo, resp. fε. Let La and Lb be any linear
homogeneous polynomials in Y0, . . . , Y5 which are linearly independent and consider
the homogeneous cubic polynomial F = LaQa + LbQb (later we will specialize to
the case that La and Lb are general linear homogeneous polynomials in Y0 and Y5

alone). For our purposes it is convenient to make a “change of variables” and define
M = La + Lb and No = La + roLb, resp. Nε = La + (rε − 1)Lb (here we are using
that ro 6= 1, resp. rε 6= 2, to see that La and Lb are uniquely determined by M
and No, resp. Nε). Consider X = {[Y0 : · · · : Y5] ∈ P5|F (Y0, . . . , Y5) = 0}. Observe
that X is singular along the common zero locus of La, Lb, Qa and Qb – which will
typically be a geometrically connected degree 4 curve of arithmetic genus 1.

To determine whether X is smooth along the image of fo, resp. fε, we need to
compute the pullback of the “gradient vector” [ ∂F

∂Yi
]i=0,...,5. Define L̃a = f∗La, L̃b =

f∗Lb, M̃ = f∗M and Ñ = f∗N , considered as sections of of H0(P1, f∗OP5(1)) =
H0(P1,OP1(5)). The pullback of the gradient vector of F is the sheaf morphism
Uo : OP1(2ro + 1)⊕6 → OP1(6ro + 3), resp. Uε : OP1(2rε)⊕6 → OP1(6rε) given by

Uo =

[
−X2ro+1

1 (L̃a + L̃b) X0X
2ro
1 L̃a Xro

0 Xro+1
1 L̃b

∣∣∣ . . .∣∣∣ Xro+1
0 Xro

1 L̃b X2ro
0 X1L̃a −X2ro+1

0 (L̃a + L̃b)
]
,

resp.

Uε =

[
−X2rε

1 (L̃a + L̃b) X0X
2rε−1
1 L̃a Xrε−1

0 Xrε+1
1 L̃b

∣∣∣ . . .∣∣∣ Xrε+1
0 Xrε−1

1 L̃b X2rε−1
0 X1L̃a −X2rε

0 (L̃a + L̃b)
]
.

If L̃a and L̃b have no common zeroes and if L̃a + L̃b is nonzero at the points [1 : 0]
and [0 : 1], then these matrices are everywhere nonzero, i.e., X is smooth along C.
From now on, assume this is the case. The matrix U factors as U = S ◦ T where
So : NC/P5 → OP1(6ro +3), resp. Sε : NC/P5 → OP1(6rε), are given by the matrices

So =
−1

ro − 1

[
Xro+1

1 M̃ X0X
ro
1 Ño Xro

0 X1Ño Xro+1
0 M̃

]
,
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resp.

Sε =
−1

2(rε − 2)

[
2Xrε+1

1 M̃ X0X
rε−1
1 Ñε Xrε−1

0 X1Ñε 2Xrε+1
0 M̃

]
.

The normal bundle NC/X is the kernel of the sheaf morphism S. To describe this
map, we write out{

Mo = c0,oY0 + c1,oY1 + c2,oY2 + c3,oY3 + c4,oY4 + c5,oY5,
No = d0,oY0 + d1,oY1 + d2,oY2 + d3,oY3 + d4,oY4 + d5,oY5

,

resp. {
Mε = c0,εY0 + c1,εY1 + c2,εY2 + c3,εY3 + c4,εY4 + c5,εY5,
Nε = d0,εY0 + d1,εY1 + d2,εY2 + d3,εY3 + d4,εY4 + d5,εY5

Then we have{
M̃o = c0,oX

2ro+1
0 + c1,oX

2ro
0 X1 + c2,oX

ro+1
0 Xro

1 + c3,oX
ro
0 Xro+1

1 + c4,oX0X
2ro
1 + c5,oX

2ro+1
1 ,

Ño = d0,oX
2ro+1
0 + d1,oX

2ro
0 X1 + d2,oX

ro+1
0 Xro

1 + d3,oX
ro
0 Xro+1

1 + d4,oX0X
2ro
1 + d5,oX

2ro+1
1

,

resp.{
M̃ε = c0,εX

2rε
0 + c1,εX

2rε−1
0 X1 + c2,εX

rε+1
0 Xrε−1

1 + c3,εX
rε−1
0 Xrε+1

1 + c4,εX0X
2rε−1
1 + c5,εX

2rε
1 ,

Ñε = d0,εX
2rε
0 + d1,εX

2rε−1
0 X1 + d2,εX

rε+1
0 Xrε−2

1 + d3,εX
rε−1
0 Xrε+1

1 + d4,εX0X
2rε−1
1 + d5,εX

2rε
1

Denote by no, n
′
o,mo,m

′
o the following expressions,

no = d4,oX
2
0X

ro
1 + d5,oX0X

ro+1
1 ,

n′o = d0,oX
ro+1
0 X1 + d1,oX

ro
0 X2

1 + d2,oX0X
ro+1
1 + d3,oX

ro+2
1 ,

mo = c4,oX0X
ro+1
1 + c5,oX

ro+2
1 ,

m′
o = c0,oX

ro+2
0 + c1,oX

ro+1
0 X1 + c2,oX

2
0X

ro
1 + c3,oX0X

ro+1
1

Denote by nε, n
′
ε,mε,m

′
ε the following expressions,

nε = d3,εX0X
rε
1 + d4,εX

2
0X

rε−1
1 + d5,εX0X

rε
1 ,

n′ε = d0,εX
rε
0 X1 + d1,εX

rε−1
0 X2

1 + d2,εX0X
rε
1 ,

mε = 2c4,εX0X
rε+1
1 + 2c5,εX

rε+2
1 ,

m′
ε = 2c0,εX

rε+2
0 + 2c1,εX

rε+1
0 X1 + 2c2,εX

3
0X

rε−1
1 + 2c3,εX0X

rε+1
1

Then X0X1Ño = Xro+1
1 no + Xro+1

0 n′o and M̃o = Xro−1
1 mo + Xro−1

0 m′
o, resp.

X0X1Ñε = Xrε+1
1 nε +Xrε+1

0 n′ε and 2M̃ε = Xrε−2
1 mε +Xrε−2

0 m′
ε.

Consider the sheaf morphism Ro : OP1(2ro)⊕OP1(2ro +2)⊕OP1(2ro−1) → NC/P5 ,
resp. Rε : OP1(2rε−2)⊕OP1(2rε+2)⊕OP1(2rε−2) → NC/P5 given by the matrices,

Ro =


Xro+1

0 0 no

0 Xro−1
0 −mo

0 −Xro−1
1 −m′

o

−Xro+1
1 0 n′o

 ,
resp.

Rε =


Xrε+1

0 0 nε

0 Xrε−2
0 −mε

0 −Xrε−2
1 −m′

ε

−Xrε+1
1 0 n′ε


The composition S ◦R is zero. The matrix R has rank 3 generically (in particular it
has rank 3 at [0 : 1] and [1 : 0] by the hypothesis that M̃ is nonzero at those points).
By degree considerations, R has rank 3 everywhere and gives an isomorphism of
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OP1(2ro)⊕OP1(2ro +2)⊕OP1(2ro−1), resp. OP1(2rε−2)⊕OP1(2rε)⊕OP1(2rε−2)
with the kernel of S, i.e. with NC/X . In particular, h1(P1, NC/X) = 0, so ([X], [C])
is a point of Ue.

7.3. Initial description of the pairing. In this subsection we begin the descrip-
tion of the skew-symmetric bilinear pairing on H0(C,NC/X) induced by ωe. We
complete the description in the next subsection. Elements in H0(P1, NC/X) are
denoted by (g1, g2, g3) or g1e1 + g2e2 + g3e3 where ei is the ith column of the
matrix R and where g1 ∈ H0(P1,OP1(2ro)), g2 ∈ H0(P1,OP1(2ro + 2)) and g3 ∈
H0(P1,OP1(2ro − 1)), resp. g1 ∈ H0(P1,OP1(2rε − 2)), g2 ∈ H0(P1,OP1(2rε + 2))
and g3 ∈ H0(P1,OP1(2rε − 2)).

By Theorem 5.1, to compute the bilinear pairing ωe on H0(P1, NC/X) it is equiva-
lent (up to a nonzero scalar) to compute the boundary map

δ : H0(P1,
∧2

NC/X) → H1(P1,OP1(−2)).

The next term in the long exact sequence of cohomology is H1(P1,OP1(3ro))⊕4,
resp. H1(P1,OP1(3rε − 1))⊕2 ⊕ H1(P1,OP1(3rε − 2))⊕2, both of which are zero.
Therefore the connecting homomorphism is the cokernel of the map on global sec-
tions

R†o : H0(P1,OP1(3ro))⊕4 → H0(P1,
∧2

NC/X)

resp.

R†ε : H0(P1,OP1(3rε − 1)⊕OP1(3rε − 2)⊕OP1(3rε − 2))⊕OP1(3rε − 1))

−→ H0(P1,
∧2

NC/X),

determined by the sheaf morphism R† : N∨
C/P5 ⊗

∧3
NC/X →

∧2
NC/X that is

adjoint to R. (The adjoint R† = diag(1,−1, 1) ◦ Rt, where Rt is the transpose of
R.) If we use as “ordered basis” for

∧2
NC/X the elements e2 ∧ e3, e1 ∧ e3 and

e1 ∧ e2, then the matrix of R† is

R†o =

 Xro+1
0 0 0 −Xro+1

1

0 −Xro−1
0 Xro−1

1 0
no −mo −m′

o n′o

 ,
resp.

R†ε =

 Xrε+1
0 0 0 −Xrε+1

1

0 −Xrε−2
0 Xrε−2

1 0
nε −mε −m′

ε n′ε

 .
In other words, the pairing ωe is given by

[(g1e1 + g2e2 + g3e3), (h1e1 + h2e2 + h3e3)] = (g1h2 − g2h1)e1 ∧ e2

+(g1h3 − g3h1)e1 ∧ e3 + (g2h3 − g3h2)e2 ∧ e3 mod Im(R†).
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7.4. The image of the map R†. To compute an explicit formula for the pair-
ing [·, ·], we need to find the image of R†. First consider the intersection of
H0(P1,OP1(4ro+2))e1∧e2 with the image of R†o, resp. H0(P1,OP1(4rε))e1∧e2 with
the image of R†ε . A global section of OP1(3ro)⊕4, resp. OP1(3rε−1)⊕OP1(3rε−2)⊕
OP1(3rε − 2)⊕OP1(3rε − 1) is mapped under R† into H0(P1,OP1(4ro + 2))e1 ∧ e2,
resp. H0(P1,OP1(4rε))e1 ∧ e2 iff it is of the form

vo =


Xro+1

1 po

−Xro−1
1 qo

−Xro−1
0 qo

Xro+1
0 po


for some po ∈ H0(P1,OP1(2ro − 1)) and qo ∈ H0(P1,OP1(2ro + 1)), resp. iff it is of
the form

vε =


Xrε+1

1 pε

−Xrε−2
1 qε

−Xrε−2
0 qε

Xrε+1
0 pε


for some pε ∈ H0(P1,OP1(2rε − 2)) and qε ∈ H0(P1,OP1(2rε)). The image of such
an element is,

R†o(vo) = (X0X1Ñopo + M̃oqo)e1 ∧ e2,

resp.
R†ε(vε) = (X0X1Ñεpε + 2M̃εqε)e1 ∧ e2.

There is one last simplification. Assume that c1 = c2 = c3 = c4 = 0 and
d1 = d2 = d3 = d4 = 0, in other words La and Lb are 2 linearly independent,
linear combinations of Y0 and Y5 and c0, c5, d0 and d5 are all nonzero. Con-
sider those q such that q = X0X1q

′ for some q′ ∈ H0(P1,OP1(2ro − 1)), resp.
q′ ∈ H0(P1,OP1(2rε − 2)). Then R†o(vo) equals X0X1(Ñopo + M̃oq

′
o), resp. R†ε(vε)

equals X0X1(Ñεpε + 2M̃εqε). Since M̃ and Ñ are linearly independent elements in
the span of X2ro+1

0 and X2ro+1
1 , resp. in the span of X2rε

0 and X2rε
1 , as p and q′

vary the expression R†(v) varies over the whole linear span of

X4ro+1
0 X1, . . . , X

2ro+2
0 X2ro

1 , X2ro
0 X2ro+2

1 , . . . , X0X
4ro+1
1 ,

resp.
X4rε−1

0 X1, . . . , X
2rε+1
0 X2rε−1

1 , X2rε−1
0 X2rε+1

1 , . . . , X0X
4rε−1
1 .

Notice that X4ro+2
0 , X2ro+1

0 X2ro+1
1 and X4ro+2

1 are missing, resp. X4rε
0 , X2rε

0 X2rε
1

and X4rε
1 are missing. Taking qo = X2ro+1

0 and qo = X2ro+1
1 gives c0,oX

4ro+2
0 +

c5,oX
2ro+1
0 X2ro+1

1 and c0,oX
2ro+1
0 X2ro+1

1 + c5,oX
4ro+2
1 . And taking qε = X2rε

0 and
qε = X2rε

1 gives c0,εX
4rε
0 + c5,εX

2rε
0 X2rε

1 and c0,εX
2rε
0 X2rε

1 + c5,εX
4rε
1 . Thus the

intersection of H0(P1,OP1(4r + 2))e1 ∧ e2 with the image of R† is the subspace
with basis

c0,oX
4ro+2
0 + c5,oX

2ro+1
0 X2ro+1

1 , X4ro+1
0 X1, X

4ro
0 X2

1 , . . . , X
2ro+2
0 X2ro

1 , X2ro
0 X2ro+2

1 , . . .

X0X
4ro+1
1 , c0,oX

2ro+1
0 X2ro+1

1 + c5,oX
4ro+2
1 ,

resp.

c0,εX
4rε
0 + c5,εX

2rε
0 X2rε

1 , X4rε−1
0 X1, X

4rε−2
0 X2

1 , . . . , X
2rε+1
0 X2rε−1

1 , X2rε−1
0 X2rε+1

1 , . . .

X0X
4rε−1
1 , c0,εX

2rε
0 X2rε

1 + c5,εX
4rε
1 .
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For each pair of nonnegative integers (i, j), denote by αi,j : H0(P1,OP1(i+ j)) → C
the linear functional such that for every homogeneous polynomial g of degree d,

g(X0, X1) =
∑

i+j=d

αi,j(g)Xi
0X

j
1 ,

i.e. αi,j(g) is the coefficient of Xi
0X

j
1 in g. Then the linear functional c25,oα4ro+2,0−

c0,oc5,oα2ro+1,2ro+1 + c20,oα0,4ro+2, resp. c25,εα4rε,0 − c0,εc5,εα2rε,2rε
+ c20,εα0,4rε

, is
a nonzero linear functional on H0(P1,OP1(4r + 2)) whose kernel is precisely the
intersection with the image of R†.

Using the first two rows of R†, every element in H0(P1,
∧2

NC/X) is congruent to
some element in H0(P1,OP1(4ro +2))e1∧e2, resp. H0(P1,OP1(4rε))e1∧e2 modulo
the image of R†. Carrying this out, up to a nonzero scalar, the pairing [·, ·] is,

[(g1e1 + g2e2 + g3e3), (h1e1 + h2e2 + h3e3)]o =
(c25,oα4ro+2,0 − c0,oc5,oα2ro+1,2ro+2 + c20,oα0,4ro+2)(g1h2 − g2h1) +

c0,oc5,o(c5,oα3ro,ro−1 − c0,oαro−1,3ro
)(g1h3 − g3h1) +

c0,oc5,o(d5,oα3ro+1,ro
− d0,oαro,3ro+1)(g2h3 − g3h2),

resp.

[(g1e1 + g2e2 + g3e3), (h1e1 + h2e2 + h3e3)]ε =
(c25,εα4rε,0 − c0,εc5,εα2rε,2rε + c20,εα0,4rε)(g1h2 − g2h1) +

2c0,εc5,ε(c5,εα3rε−2,rε−2 − c0,εαrε−2,3rε−2)(g1h3 − g3h1) +
c0,εc5,ε(d5,εα3rε,rε − d0,εαrε,3rε)(g2h3 − g3h2).

7.5. Diagonalizing the pairing. The antisymmetric bilinear map [·, ·] gives a
linear transformation ω̃e : H0(P1, NC/X) → H0(P1, NC/X)∨ and we want to find
the kernel of this linear transformation. This is done by “diagonalizing” the pair
(H0(P1, NC/X), [·, ·]), i.e. by finding a direct sum decomposition

H0(P1, NC/X)o =
ro−2⊕
i=0

Ei,o ⊕ Ero−1,o ⊕ Ero,o,

resp.

H0(P1, NC/X)ε =
rε−3⊕
i=0

Ei,ε ⊕ Erε−2,ε ⊕ Erε−1,ε ⊕ Er,ε

into pairwise orthogonal subspaces with respect to [·, ·]. In the odd case, to show
[·, ·]o has trivial kernel, it suffices to show the restriction to each space Ei,o has
trivial kernel.

In the even case, there is a vector w in Erε,ε lying in the kernel. On the quotient
vector space H0(P1, NC/X)/C {w}, there is an induced alternating bilinear form
[·, ·]′ε and an induced direct sum decomposition

⊕rε

i=0E
′
i,ε by pairwise orthogonal

subspaces. To show [·, ·]′ε has trivial kernel, it suffices to show the restriction to
each space E′i,ε has trivial kernel. In both case, this is done by computing the
determinant of the matrix of [·, ·]o, resp. [·, ·]′ε with respect to a suitable basis.
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For i = 0, . . . , ro − 2, denote by Ei,o ⊂ H0(P1, NC/X)o the subspace generated by

vi,1,o = Xro+1+i
0 Xro−1−i

1 e1

vi,2,o = Xro−i
0 Xro+2+i

1 e2

vi,3,o = X2ro−1−i
0 Xi

1e3

vi,4,o = Xi
0X

2ro−1−i
1 e3

vi,5,o = Xro+2+i
0 Xro−i

1 e2

vi,6,o = Xro−1−i
0 Xro+1+i

1 e1

For i = 0, . . . , rε − 3, denote by Ei,ε ⊂ H0(P1, NC/X)ε the subspace generated by

vi,1,ε = Xrε+i
0 Xrε−2−i

1 e1

vi,2,ε = Xrε−i
0 Xrε+2+i

1 e2

vi,3,ε = X2rε−2−i
0 Xi

1e3

vi,4,ε = Xi
0X

2rε−2−i
1 e3

vi,5,ε = Xrε+2+i
0 Xrε−i

1 e2

vi,6,ε = Xrε−2−i
0 Xrε+i

1 e1

For i = ro − 1 denote by Ero−1,o ⊂ H0(P1, NC/X)o the subspace generated by

vr−1,1,o = X2ro
0 e1

vr−1,2,o = X2ro+2
0 e2

vr−1,3,o = X2ro+1
0 X1e2

vr−1,4,o = Xro
0 Xro+1

1 e3

vr−1,5,o = Xro+1
0 Xro

1 e3

vr−1,6,o = X0X
2ro+1
1 e2

vr−1,7,o = X2ro+2
1 e2

vr−1,8,o = X2ro
1 e1

For i = rε − 2, denote by Erε−2,ε ⊂ H0(P1, NC/X)ε the subspace generated by

vr−2,1,ε = X2rε−2
0 e1

vr−2,2,ε = X2rε+2
0 e2

vr−2,3,ε = Xrε
0 X

rε−2
1 e3

vr−2,4,ε = X2
0X

2rε
1 e2

vr−2,5,ε = X2rε
0 X2

1e2

vr−2,6,ε = Xrε−2
0 Xrε

1 e3

vr−2,7,ε = X2rε+2
1 e2

vr−2,8,ε = X2rε−2
1 e1

For i = ro denote by Ero,o ⊂ H0(P1, NC/X)o the subspace generated by{
vr,1,o = Xr,o

0 Xr,o
1 e1

vr,2,o = Xro+1
0 Xro+1

1 e2

For i = rε − 1 denote by Erε−1,ε ⊂ H0(P1, NC/X)ε the subspace generated by{
vr−1,1,ε = Xrε−1

0 Xrε−1
1 e1

vr−1,2,ε = Xrε+1
0 Xrε+1

1 e2
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Finally, for i = rε, denote by Erε,ε ⊂ H0(P1, NC/X)ε the subspace generated by
vr,1,ε = X2rε+1

0 X1e2

vr,2,ε = Xrε−1
0 Xrε−1

1 e3

vr,3,ε = X0X
2rε+1
1 e2

Each of these generating sets is a subbasis of the standard monomial basis of
H0(P1, NC/X). Visibly, every monomial basis vector is in precisely one of the sub-
spaces Ei, and thus these spaces give a direct sum decomposition of H0(P1, NC/X).
As a consistency check, observe that for i = 0, . . . , ro − 2, resp. i = 0, . . . , rε − 3,
dim(Ei,o) = 6, resp. dim(Ei,ε) = 6, dim(Ero−1,o) = 8, resp. dim(Erε−2,ε) = 8,
dim(Ero,o) = 2, resp. dim(Erε−1,ε) = 2, and dim(Erε,ε) = 3. So the sum of the
dimensions of the spaces Ei,o is

6(ro − 1) + 8 + 2 = 6ro + 4 = (2ro + 1) + (2ro + 3) + 2ro,

i.e.,

dimH0(P1,OP1(2ro))e1 +dimH0(P1,OP1(2ro +2))e2 +dimH0(P1,OP1(2ro− 1))e3.

Similarly, the sum of the dimensions of the spaces Ei,ε is

6(rε − 2) + 8 + 2 + 3 = 6rε + 1 = (2rε − 1) + (2rε + 3) + (2rε − 1),

i.e.,

dimH0(P1,OP1(2rε−2))e1+dimH0(P1,OP1(2rε+2))e2+dimH0(P1,OP1(2rε−2))e3.

Checking the spaces Ei are pairwise orthogonal with respect to [·, ·] is straight-
forward, but tedious. One way to think of it is to consider the graph whose
vertices are the standard monomial basis vectors of H0(P1, NC/X), and where
there is an edge between two such basis vectors iff the pairing is nonzero for this
pair. Thus there is never an edge between g1e1 and h1e1, nor between g2e2 and
h2e2, nor between g3e3 and h3e3. There is an edge between g1e1 and h2e2 iff
g1h2 = X4ro+2

0 , X2ro+1
0 X2ro+1

1 or X4ro+2
1 , resp. iff g1h2 = X4rε

0 , X2rε
0 X2rε

1 or X4rε
1 .

There is an edge between g1e1 and h3e3 iff g1h3 = X3ro
0 Xro−1

1 or Xro−1
0 X3ro

1 , resp.
iff g1h3 = X3rε−2

0 Xrε−2
1 or Xrε−2

0 X3rε−2
1 . And there is an edge between g2e2 and

h3e3 iff g2h3 = X3ro+1
0 Xro

1 or Xro
0 X3ro+1

1 , resp. iff g2h3 = X3rε
0 Xrε

1 or Xrε
0 X

3rε
1 .

Thus, the valences of X2ro
0 e1 , X2ro

1 e1, Xro
0 Xro−1

1 e3 and Xro−1
0 Xro

1 e3 are each 3,
resp. the valences of X2rε−2

0 e1, X2rε−2
1 e1, Xrε

0 X
rε−2
1 e3 and Xrε−2

0 Xrε
1 e3 are each

3. Also the valences of Xro
0 Xro

1 e1 and Xro+1
0 Xro+1

1 e2 are each 1, resp. the valences
of Xrε−1

0 Xrε−1
1 e1, X

rε+1
0 Xrε+1

1 e2, X
2rε+1
0 X1e2 and X0X

2rε+2
1 e2 are each 1. Every

other vertex has valence two. Moreover, there is an symmetry of the graph by per-
muting the variables X0 and X1. Using this, it is straightforward to compute the
maximal connected subgraph containing the vector vi,1 for each i. The vertices of
this subgraph are the generators of Ei. Therefore the Ei are pairwise orthogonal.

7.6. Computing the determinants. Finally, we will compute the matrix and
determinant of the restriction of ω̃e to each of the subspace Ei. In the odd case,
each determinant is nonzero, proving that ω̃ has trivial kernel. In the even case,
all but one of the determinants is nonzero, and for Erε

, the restriction of ω̃ has a
1-dimensional kernel.
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For i = 0, . . . , ro − 2, resp. for i = 0, . . . , rε − 3 denote by Ai the matrix of
ω̃e : Ei → E∨i with respect to the ordered basis vi,1, . . . ,vi,6 and the dual ordered
basis of E∨i . The computation gives,

Ai,o =


0 c0c5 −c0c25 0 0 0

−c0c5 0 0 c0c5d0 0 0
c0c

2
5 0 0 0 c0c5d5 0
0 −c0c5d0 0 0 0 −c20c5
0 0 −c0c5d5 0 0 −c0c5
0 0 0 c20c5 c0c5 0

 ,
resp.

Ai,ε =


0 c0c5 −2c0c25 0 0 0

−c0c5 0 0 c0c5d0 0 0
2c0c25 0 0 0 c0c5d5 0

0 −c0c5d0 0 0 0 −2c20c5
0 0 −c0c5d5 0 0 −c0c5
0 0 0 2c20c5 c0c5 0


The Pfaffian of each matrix is Pfaff(Ai,o) = c30c

3
5(c0d5−c5d0), resp. Pfaff(Ai,ε) =

2c30c
3
5(c0d5 − c5d0). Thus the determinant is Det(Ai,o) = c60c

6
5(c0d5 − c5d0)2, resp.

Det(Ai,ε) = 4c60c
6
5(c0d5 − c5d0)2. By hypothesis, c0, c5 are nonzero and (c0, c5) is

linearly independent from (d0, d5). Thus each determinant is nonzero.

For i = ro − 1, resp. i = rε − 2, denote by Ai the matrix of ω̃e : Ei → E∨i with
respect to the ordered basis vi,1, . . . ,vi,8 and the dual ordered basis of E∨i . The
computation gives,

Aro−1,o =



0 −c25 0 −c0c25 0 c0c5 0 0
c25 0 0 0 −c0c5d5 0 0 0
0 0 0 −c0c5d5 0 0 0 −c0c5

c0c
2
5 0 c0c5d5 0 0 0 −c0c5d0 0
0 c0c5d5 0 0 0 −c0c5d0 0 −c20c5

−c0c5 0 0 0 c0c5d0 0 0 0
0 0 0 c0c5d0 0 0 0 c20
0 0 c0c5 0 c20c5 0 −c20 0


,

resp.

Arε−2,ε =



0 −c25 −2c0c25 c0c5 0 0 0 0
c25 0 0 0 0 −c0c5d5 0 0

2c0c25 0 0 0 c0c5d5 0 −c0c5d0 0
−c0c5 0 0 0 0 c0c5d0 0 0

0 0 −c0c5d5 0 0 0 0 −c0c5
0 c0c5d5 0 −c0c5d0 0 0 0 −2c20c5
0 0 c0c5d0 0 0 0 0 c20
0 0 0 0 c0c5 2c20c5 −c20 0


The Pfaffian of this matrix is Pfaff(Aro−1,o) = c30c

3
5(c0d5−c5d0)2, resp. Pfaff(Arε−2,ε) =

c30c
3
5(c0d5−c5d0)2. Thus the determinant is Det(Aro−1,o) = c60c

6
5(c0d5−c5d0)4, resp.

the determinant is Det(Arε−2,ε) = c60c
6
5(c0d5 − c5d0)4. By hypothesis, c0, c5 are

nonzero and (c0, c5) is linearly independent from (d0, d5). Thus each determinant
is nonzero.
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For i = ro, resp. i = rε − 1, denote by Ai the matrix of ω̃e : Ei → E∨i with respect
to the ordered basis vi,1,vi,2 and the dual ordered basis of E∨i . The computation
gives,

Aro,o =
[

0 c0c5
−c0c5 0

]
,

resp.

Arε−1,ε =
[

0 c0c5
−c0c5 0

]
.

Visibly the Pfaffian of this matrix is c0c5 and the determinant is c20c
2
5. By hypoth-

esis, c0, c5 are nonzero, thus each determinant is nonzero.

In the odd case, since the determinant of each matrix Ai,o is nonzero, the kernel of
ω̃e is trivial. This proves Theorem 1.2 in case e ≥ 5 is an odd integer. From this
point on, suppose that e ≥ 6 is even.

Denote by Arε,ε the matrix of ω̃e : Erε,ε → E∨rε,ε with respect to the ordered basis
vrε,1,ε,vrε,2,ε,vrε,3,ε and the dual ordered basis of E∨rε,ε. The computation gives,

Arε,ε =

 0 −c0c5d5 0
c0c5d5 0 −c0c5d0

0 c0c5d0 0


This matrix is singular: the kernel contains the vector w = d0,εvrε,1 +d5,εvrε,3, i.e.
(d0,εX

2rε
0 + d5,εX

2rε
1 )X0X1e2. So this vector is in the kernel of ω̃e. Consider the

quotient vector space V ′ = H0(P1, NC/X)/C{w}. There is an induced alternating
bilinear pairing ω̃′e on V ′. Since w′ ∈ Erε,ε, there is an induced direct sum decom-
position V ′ =

⊕rε

i=0E
′
i,ε by pairwise orthogonal subspaces where for i = 0, . . . , r−1

the quotient map Ei,ε → E′i,ε is an isomorphism. And E′rε,ε has as basis the images
of the vectors vrε,1,ε,vrε,2,ε provided d5,ε 6= 0, and has as basis the images of the
vectors vrε,2,εvrε,3,ε provided d0,ε 6= 0.

First consider the case, d5,ε 6= 0. Denote by A′rε,ε the matrix of ω̃′e : E′rε,ε →
(E′rε,ε)

∨ with respect to the ordered basis v′rε,1,ε,v
′
rε,2,ε and the dual ordered basis

of (E′rε,ε)
∨. The computation gives,

A′rε,ε =
[

0 −c0c5d5

c0c5d5 0

]
The Pfaffian of this matrix is c0c5d5 and the determinant is c20c

2
5d

2
5. By hypothesis

c0, c5, d5 are nonzero, thus the determinant is nonzero.

The remaining case is that d0 6= 0. Again denote by A′rε,ε the matrix of ω̃′e : E′rε,ε →
(E′r,ε)

∨ with respect to the ordered basis v′rε,2,ε,v
′
rε,3,ε and the dual ordered basis

of (E′rε,ε)
∨. The computation gives,

A′rε,ε =
[

0 −c0c5d0

c0c5d0 0

]
The Pfaffian of this matrix is c0c5d0 and the determinant is c20c

2
5d

2
0. By hypothesis

c0, c5, d0 are nonzero, thus the determinant is nonzero.

In both cases, the determinant of the restriction of ω̃′e to each subspace E′i,ε is
nonzero. Thus the kernel of ω̃e is spanned by w = (d0,εX

2rε
0 + d5,εX

2rε
1 )X0X1e2.

In particular, the kernel of ω̃e is 1-dimensional. This proves Theorem 1.2 in case
e ≥ 6 is an even integer.
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8. Comments and Questions

There are some generalizations of Theorem 1.2 to stable maps with marked points.
The cubic hypersurface X ⊂ P5 and the stable map f : P1 → P5 are the same as in
Section 7. The marked points are [0 : 1], [1 : 0] ∈ P1. The same method as Section 7
proves the following.

Theorem 8.1. Let X ⊂ P5 a smooth cubic hypersurface, let M0,n(X, e) denote
the Kontsevich moduli space of pointed stable maps to X of arithmetic genus 0 and
degree e, and let Me,n be a nonsingular projective model of the coarse moduli space.
Denote by ev : Me,n → Xn evaluation at each marked point. And denote by Tev,
the kernel of the derivative, dev : TMe,n

→ ev∗TXn .
There is a canonical section ωe ∈ H0(Me,n,Ω2

Me,n
). Suppose that X is general.

(1) (i) If n = 1, if e ≥ 5 is an odd integer, and if ζ = (C, p, f : C → X) is
a general point of Me,1, the restriction of ωe to Tev|ζ has a 1-dimensional
kernel.

(2) (ii) If n = 1, if e ≥ 6 is even, e ≥ 6, and if ζ = (C, p, f : C → X) is a gen-
eral point of Me,1, the restriction of ωe to Tev|ζ is nondegenerate. Therefore
a general fiber of ev has Kodaira dimension ≥ 0 and, in particular, it is not
uniruled.

(3) (iii) If n = 2, if e ≥ 5 is odd, and if ζ = (C, p1, p2, f : C → X) is a general
point of Me,2, the restriction of ωe to Tev|ζ is nondegenerate. Therefore a
general fiber of (ev1, ev2) has Kodaira dimension ≥ 0 and, in particular, it
is not uniruled.

(4) (iv) If n = 2, if e ≥ 6 is even, and if ζ = (C, p1, p2, f : C → X) is a general
point of Me,2, the restriction of ωe to Tev|ζ has a 1-dimensional kernel.

Proof. Most of the details are left to the reader. The technique is almost identical
to the proof of Theorem 1.2 and is roughly as follows: For (i) and (ii), consider
the special pairs ([X], [C]) used in Section 7. In addition, assume that d0,o, d5,o

are both nonzero. For the marked point on C, use either f([0 : 1]) or f([1 : 0]).
The tangent space to Tev|ζ is the subspace of sections of H0(P1, NC/X) vanishing
at [0 : 1], resp. [1 : 0]. The form ωe on this subspace is the form computed in
Section 7. In particular, since the space of sections vanishing at [0 : 1] is generated
by standard monomial basis vectors ofH0(P1, NC/X), the direct sum decomposition
into pairwise orthogonal subspaces yields a direct sum decomposition of the space
of sections vanishing at [0 : 1].

In the odd case, the kernel is generated by c5,ov0,2,o + v0,3,o + d5,ov0,6,o. And the
induced pairing on the quotient space is nondegenerate. In the even case, the kernel
is nontrivial: it is generated by d0,εvrε,1,ε + d5,εvrε,3,ε and vrε−2,1 + 2c5,εvrε−2,3 −
d5,εvrε−2,6,ε. However, under a nontrivial first-order deformation of the pointed
curve not changing the map f : P1 → X, only moving the point [0 : 1] on P1, the
kernel becomes trivial (this is a simple deformation theory exercise).

Parts (iii) and (iv) are the same. In the odd case, the kernel is trivial. In the even
case, the kernel is generated by d0,εvrε,1,ε + d5,εvrε,3,ε (no deformation theory is
needed). �
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Question 8.2. What is the Kodaira dimension of Me, resp. what is the dimension
of a fiber of the MRC quotient of Me, when the form ωe does have a kernel? If
e ≥ 6 is even, is Me uniruled?

We are convinced that Me is not uniruled, but we do not have a proof for e ≥ 8.
In case e is 6, we can prove that M6 is not uniruled by an ad hoc argument. It is
possible this could be used as the base case of an induction by considering how the
kernel of ωe+2 specializes on the boundary divisor ∆e,2 ⊂Me.

Proposition 8.3. If the cubic hypersurface X ⊂ P5 is general, then M6 is not
uniruled. More precisely, there exists a rational transformation f : M6 99K Hilb6t

X

whose general fiber is a genus 1 curve which is a leaf of the distribution Ker(ωe).

Here is a rough sketch of the proof. The method of proof is similar to that in [13],
but instead of using residual curves in an intersection of X with a cubic scroll,
we use residual curves in an intersection of X with a quartic scroll. For a general
nondegenerate, rational, degree 6 curve C ⊂ P5, there is a unique quartic scroll
Σ ⊂ P5 containing C. If X is general, then X contains no quartic scrolls (although
special smooth cubic fourfolds can contain a quartic scroll, [14, Section 4.1.3]). The
intersection Σ∩X is a degree 12 curve in Σ that is a local complete intersection (in
particular it is Gorenstein) and contains C as a subcurve of degree 6. By Gorenstein
liaison, the residual curve C ′ to C in Σ is a degree 6 curve of arithmetic genus 1,
and is a smooth, connected curve if C general. This gives a rational transformation
from M6 to the open subset U of the Chow variety/Hilbert scheme parametrizing
degree 6 curves in X of arithmetic genus 1; [C] 7→ [C ′]. The fiber of this rational
transformation containing [C] is isomorphic to Pic2(C ′), i.e., it is a connected,
smooth curve of genus 1 (actually it will only be a dense open subset since we are
working on the non-complete variety M6).

On M6 there is the 2-form ω6 constructed in Section 4. On U there is a 2-form
by the same process as in Section 4 corresponding to the family of degree 6 curves
of arithmetic genus 1. On the domain of definition of the rational transformation
M6 → U , form the pullback of the 2-form on U ; denote this pullback 2-form by ω′.
Over a dense open set of M6, the curve Σ∩X is a connected, reduced at-worst-nodal
curve and the process from Section 4 produces a 2-form ω′′ corresponding to this
family of curves. The relation between these forms is

ω6 + ω′ = ω′′

on the open, dense locus where all three are defined.

On the other hand, there is a unirational spaceW ⊂ Hilb(2t+1)(t+1)(P5) parametriz-
ing all smooth, nondegenerate quartic scrolls in Σ ⊂ P5 (in fact this is a homoge-
neous space for PGL6 since any two such scrolls are projectively equivalent). Over
a dense open subset of W the process from Section 4 produces a 2-form correspond-
ing to the family of curves whose fiber over [Σ] is Σ ∩X. And ω′′ is the pullback
of this 2-form by the obvious rational map M6 99K W . Since W is unirational, it
does not support any nonzero 2-form, i.e., ω′′ = 0. So ω6 = −ω′. In particular, the
kernel of ω6 coincides with the kernel of ω′. Since ω′ is a pullback by the rational
transformation M6 → U , in particular the tangent space of the fiber of this rational
transformation is contained in ω6. We know the fiber is one-dimensional. By Theo-
rem 1.2, also the kernel of ω6 is one-dimensional. Thus the kernel of ω6 at a general
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point of M6 is precisely the tangent space to the fiber of M6 → U . In other words,
the foliation determined by the kernel of ω6 is algebraically integrable on a dense
(Zariski) open subset of M6, the leaf space is (birationally) an open subset U of the
Hilbert scheme of smooth, degree 6 curves in X of genus 1, and the projection to
the leaf space is (birationally) the rational transformation M6 99K U .

From this it follows that U has Kodaira dimension ≥ 0, in particular it is not
uniruled. By the special case of the Iitaka conjecture proved in [17], the Kodaira
dimension of M6 is ≥ 0. In particular, M6 is not uniruled.

There are lots of missing details in this argument. They each follow by straightfor-
ward arguments of projective geometry, and are left to the reader.
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