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Abstract. On the Kontsevich moduli space of unpointed stable maps to P1

of genus 0 and degree e, there is a tautological vector bundle of rank e − 1.

Global sections of tensor powers of this vector bundle arise when considering
holomorphic contravariant tensors on Kontsevich spaces of stable maps to more

general projective varieties. The computation of the global sections is reduced
to an explicit combinatorial problem.

1. Introduction
sec-intro

This note concerns the computation of the global sections of tensor powers of a
tautological vector bundle on the Kontsevich moduli space of unpointed stable
maps to P1 of genus 0 and degree e. This computation is a small part of a larger
project whose goal is to prove the conjecture (apparently due to Fano) that there
exist smooth Fano hypersurfaces that are not unirational.

The strategy of the proof is as follows (cf. [3]). For a Fano hypersurface X and every
integer e > 0, the idea is to prove that on M0,0(X, e) there are many holomorphic
contravariant tensors, i.e. sections of tensor powers of the cotangent bundle. Be-
cause the restriction of a holomorphic contravariant tensor to a rational curve is 0,
these tensors “bound” the rational curves on M0,0(X, e), which in turn “bound”
the rational surfaces on X. The goal is to produce enough tensors to prove that
through a very general point of X there is no rational surface, thus proving X is
not unirational. In her thesis, Beheshti has done this for e = 1 and X a smooth
hypersurface of degree n or n − 1 in Pn: she proves that for a point of X in the
complement of countably many codimension 2 subvarieties, there is no rational sur-
face ruled by lines contained in X containing the point. Beheshti’s result appears
to extend to the case e ≤ n.

Two techniques are known for producing tensors on M0,0(X, e). The first uses the
correspondence coming from the universal stable map over M0,0(X, e) to obtain
holomorphic (p, 0)-forms on M0,0(X, e) from holomorphic (p + 1, 1)-forms on X,
cf. [1]. The second produces pluricanonical forms on M0,0(X, e) by computing the
canonical divisor class and proving it is big, cf. [3]. Neither of these techniques
produce enough tensors when e is large.

A third technique, to which this note is directly relevant, is to produce tensors
from the inside out. There is a closed substack Y of M0,0(X, e) parametrizing
degree e covers of lines on X. The technique is to produce tensors on the formal
neighborhood of Y in M0,0(X, e). The idea is to prove these tensors algebraize, or
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to at least understand the formal tensors well enough to guess which come from
algebraic tensors (hopefully suggesting some fourth technique for proving these
tensors algebraize).

Behind this is the fact that Y is much simpler than M0,0(X, e): The stack Y is the
total space of a fibration whose base is the Fano variety of lines on X, and whose
fiber is isomorphic to M0,0(P1, e). Everything is known about the Fano variety of
lines on X. And quite a bit is known about M0,0(P1, e). The restriction of the
cotangent bundle of M0,0(X, e) to Y has a filtration where the subquotients are the
pullback of the cotangent bundle on the Fano variety of lines, the relative cotangent
bundle of the fibration, and the conormal bundle of Y in M0,0(X, e). The conormal
bundle is essentially the tensor product of the pullback from the Fano variety of
lines of a well-understood vector bundle with the vector bundle R∨

Y considered in
this note.

The vector bundle R∨
Y is a relative version of a tautological vector bundle R∨ on

M0,0(P1, e). The vector bundle R∨ is very natural, but it has not been studied
before. The question here is the most basic one: What are the global sections of
R∨? More generally, what are the global sections of a tensor power of R∨, and
what are the global sections of the tensor product of a power of R∨ with a power of
the cotangent bundle? Forming the direct sum of global sections of every power of
R∨ gives a (non-commutative) ring, and forming the direct sum of global sections
of the tensor product of every power of R∨ with a fixed power of the cotangent
bundle gives a left-module over this ring. The question is to describe this ring and
to describe the module over this ring: in what degrees is the ring generated, in
what degrees are the relations, what are the dimensions of the graded pieces of this
ring, in what degrees is the module generated, etc?

2. The general constructionsec-gc
subsec-unptd 2.1. Unpointed curves. Let M be a Deligne-Mumford stack over B. Let π :

C → B be a proper, flat, representable 1-morphism of relative dimension 1. Let
g : C → PE be a 1-morphism. There is a natural map of coherent OM -modules,

φ†π,g : E∨ ⊗OB
OM → π∗g

∗OPE(1),

constructed as follows. There is a natural map of coherent sheaves on M ×B PE,

(π, g)# : OM×BPE → (π, g)∗OC .

This induces a map of coherent sheaves,

(π, g)#1 : pr∗PEOPE(1) → (π, g)∗g∗OPE(1).

The map φ†π,g is the map obtained by applying (prM )∗ to (π, g)#1 . The subject of
this note is the coherent sheaf,

Rπ,g = Coker(φ†π,g).

Assume that (π, g) : C → M ×B PE is surjective and generically finite of degree e.
prop-1

Proposition 2.1. Suppose the total derived pushforward R(π, g)∗OC is a perfect,
bounded complex. Suppose that for every geometric point p of M , h0(Cp,OCp) = 1
and h1(Cp,OCp) = 0. Then

(i) (π, g)# is injective and the cokernel is a locally free sheaf of rank e− 1,
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(ii) φ†π,g is injective and Rπ,g is locally free of rank e− 1, and
(iii) the cokernel of (π, g)#1 is isomorphic to pr∗MRπ,g.

Proof. (i) The claim is that R(π, g)∗OC is quasi-isomorphic to a locally free sheaf
concentrated in degree 0; in particular (π, g)∗OC is a locally free sheaf. A perfect,
bounded complex concentrated in nonnegative degrees is quasi-isomorphic to a
locally free sheaf concentrated in degree 0 iff all the higher cohomology sheaves
are zero. By a standard downward induction argument, it suffices to prove that for
every geometric point p ∈ M , all the higher cohomology sheaves of R(π, g)∗OC⊗L

OM

κ(p) are zero.

Denote by gp : Cp → PEp the fiber of (π, g) over p. The higher cohomology sheaves
are the same as the higher direct image sheaves Ri(gp)∗OCp

. Every fiber of gp

has dimension ≤ 1. Thus Ri(gp)∗OCp = (0) for i > 1. It remains to prove that
R1(gp)∗OCp

is zero. Since gp is finite over a dense open subset of PEp, R1(gp)∗OCp

is a torsion sheaf. By the Leray spectral sequence, H0(PEp, R
1(gp)∗OCp

) is a
subspace of H1(Cp,OCp

), which is zero. A torsion sheaf on PEp with no global
sections is the zero sheaf. So R1(gp)∗OCp

= (0), proving the claim.

Item (i) claims that (π, g)# is injective and the cokernel is locally free. The domain
and target of (π, g)# are locally free sheaves. So, by the local flatness criterion, it
suffices to prove that for every geometric point p of M×BPE, the map (π, g)#⊗κ(p)
is injective. This map is the inclusion of scalars κ(p) in the ring of global sections
of the fiber (π, g)−1(p). Because (π, g) is surjective, the fiber is nonempty. Thus
inclusion of scalars is injective.

(ii) and (iii) Because h0(O) = 1 for every geometric fiber of π, by the same type of
argument as above, (prM )∗(π, g)# is an isomorphism of OM -modules. In particular,
the cokernel of (π, g)# is a locally free sheaf of rank e − 1 such that both (prM )∗
and R(prM )∗ are zero. Combined with Grothendieck’s Lemma, this implies that
the cokernel is of the form pr∗MR′⊗pr∗PEOPE(−1) for some locally free OM -module
of rank e− 1, R′. Therefore there is a short exact sequence,

0 → pr∗PEOPE(1) → (π, g)∗g∗OPE(1) → pr∗MR′ → 0.

Item (ii) follows by applying (prM )∗. In particular, R′ = Rπ,g, which is (iii). �
rmk-1

Remark 2.2. If π is a local complete intersection morphism, then also (π, g) is
a local complete intersection morphism so that R(π, g)∗OC is a perfect, bounded
complex. In particular, if π is a proper, flat family of connected, at-worst-nodal
curves of arithmetic genus 0, the hypotheses of Proposition 2.1 hold.

Let π′ : C ′ → M and g′ : C ′ → PE be a second pair satisfying the hypotheses
of Proposition 2.1. Let h : C → C ′ be a 1-morphism of M -stacks such that
g is equivalent to g′ ◦ h. Then there is an induced morphism of OM -modules,
h∗ : Rπ′,g′ → Rπ,g.

Let u : N → M be a 1-morphism of Deligne-Mumford stacks. Denote by CN the
2-fiber product, N×M C. Denote by πN : CN → N and gN : CN → PE the induced
1-morphisms. There is a canonical isomorphism ofON -modules, u∗Rπ,g → RπN ,gN

.
notat-1

Notation 2.3. For M = M0,0(PE/B, e) and for π and g as in Section 1 denote
Rπ,g by RPE,e, or simply R when there is no risk of confusion.
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subsec-ptd 2.2. Pointed curves. Let M , C, π and g be as in Subsection 2.1. Let σ : M → C
be a section of π. Denote by τ : M → M ×B PE the composition (π, g) ◦σ. Denote
by I the ideal sheaf of σ(M) in C. Denote by OM×BPE(−τ) the invertible ideal
sheaf of τ(M) in M ×B PE.

There is a natural map of coherent OM -modules,

φ†π,g,σ : (prM )∗(pr∗PEOPE(1)⊗ (−τ)) → π∗(g∗OPE(1)⊗ I),

constructed as follows. There is a natural map of coherent sheaves on M ×B PE,

(π, g)#σ : OM×BPE(−τ) → (π, g)∗I.

This induces a map of coherent sheaves,

(π, g)#σ,1 : pr∗PEOPE(1)(−τ) → (π, g)∗(g∗OPE(1)⊗ I).

The map φ†π,g,σ is the map obtained by applying (prM )∗ to (π, g)#σ,1. As above,
assume that (π, g) is surjective and generically finite of degree e.

prop-2
Proposition 2.4. Suppose the total derived pushforward R(π, g)∗OC is a perfect
bounded complex. Suppose that for every geometric point p of M , h0(Cp,OCp

) = 1
and h1(Cp, I ⊗ κ(p)) = 0. Then

(i) (π, g)#σ is injective and the cokernel is canonically isomorphic to the coker-
nel of (π, g)#, and

(ii) φ†π,g,σ is injective and the cokernel is canonically isomorphic to Rπ,g.

Proof. Because OC and σ∗OM are flat over M , also I is flat over M . Therefore
I ⊗ κ(p) is the ideal sheaf of σ(p) in Cp. Because h1 of this sheaf is zero, also
h1(Cp,OCp

) = 0. So the hypotheses of Proposition 2.1 hold. Therefore (π, g)∗OC

is locally free.

Associated to the short exact sequence,

0 → I → OC → σ∗OM → 0,

there is a long exact sequence of higher direct images,

0 → (π, g)∗I → (π, g)∗OC → τ∗OM → R1(π, g)∗I → 0.

To prove that R1(π, g)∗I is zero, it suffices to prove that for every geometric point
p of M , the fiber R1(π, g)∗I ⊗κ(p) is zero. The fiber is R1(gp)∗(I ⊗κ(p)). Because
gp is generically finite, this is a torsion sheaf. By the Leray spectral sequence, the
space of global sections of this sheaf is a subspace of H1(Cp, I⊗κ(p)), which is zero
by hypothesis. A torsion sheaf on PEp with no global sections is the zero sheaf.
Therefore R1(π, g)∗I = (0).

There is a commutative diagram with exact rows,

0 −−−−→ OM×BPE(−τ) −−−−→ OM×BPE −−−−→ τ∗OM −−−−→ 0

(π,g)#σ

y y(π,g)#
y=

0 −−−−→ (π, g)∗I −−−−→ (π, g)∗OC −−−−→ τ∗OM −−−−→ 0

By Proposition 2.1, (π, g)# is injective and the cokernel is canonically isomorphic
to π∗MR⊗ π∗PEOPE(−1). Therefore, by the Snake Lemma, (π, g)#σ is injective and
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the cokernel is canonically isomorphic to π∗MR⊗π∗PEOPE(−1). This proves (i), and
(ii) follows by applying (prM )∗. �

3. The case e = 2 sec-e2
In the special case that e = 2, the Deligne-Mumford stack M0,0(PE/B, e) has a
particularly simple description. This leads to a complete description of the global
sections of each (R∨)⊗a. The symmetric square, Sym2(PE/M) is canonically iso-
morphic to the Hilbert scheme of degree 2 divisors on fibers of PE, i.e. PSym2(E∨).
There is a branch morphism, i.e. a 1-morphism br : M0,0(PE/B, 2) → PSym2(E∨),
cf. [2].

The morphism (π, g) is finite and flat of degree 2. The trace morphism gives a
splitting of the short exact sequence,

0 → OM×BPE → (π, g)∗OC → pr∗MR⊗ pr∗PEOPE(−1) → 0.

Then the multiplication map on (π, g)∗OC induces a morphism,

(pr∗MR⊗ pr∗PEOPE(−1))⊗2 → OM×BPE .

Computing étale locally, or even formally locally, this morphism is an isomorphism
onto the ideal sheaf of the branch divisor. By definition of the branch morphism,
this ideal sheaf is,

pr∗Mbr∗OPSym2(E∨)(−1)⊗ pr∗PEOPE(−2).

The upshot is that there is a canonical isomorphism of coherent sheaves,

pr∗M (R)⊗2 → pr∗Mbr∗OPSym2(E∨)(−1).

Applying (prM )∗ gives an isomorphism of invertible sheaves on M0,0(PE/B, 2),

R⊗2 → br∗OPSym2(E∨)(−1).

Therefore there is a 1-morphism fromM0,0(PE/B, 2) to the Deligne-Mumford stack
Y over PSym2(E∨) parametrizing square roots of O(−1).

Conversely, on Y ×B PE, one can reverse the logic above to construct an algebra
whose relative Spec is a finite flat scheme over Y ×B PE, say CY → Y ×B PE.
Computing locally, this is a family of stable maps to PE. So there is an induced
1-morphism Y → M0,0(PE/B, 2). It is straightforward to compute that these
1-morphisms define an equivalence of stacks. In particular, the space of global
sections of (R∨)⊗a is canonically isomorphic to the space of global sections of the
same power of the square root of O(1). Therefore,

H0(M0,0(PE/B, 2), (R∨)⊗a) ∼=
{

Sym
a
2 (Sym2E), a is even

(0), a is odd

4. The global quotient description of an open substack
subsec-gq

Unfortunately, for e ≥ 3, there is no such simple description of M0,0(PE/B, e).
However, there is a dense open substack that is a global quotient by the action
of PGL2 of a dense open subscheme of a projective space. The idea is to first
compute the spaces of sections over this open subset by invariant theory, and then
to determine which sections extend to regular sections on all of M0,0(PE/B, e).

Let e be an integer ≥ 2. For i = 1, . . . , b e
2c, denote by ∆i ⊂ M0,0(PE/B, e) the

irreducible Cartier divisor whose general point parametrizes a stable map whose
5



domain has two irreducible components, one of degree i over PE and one of degree
e− i over PE. Define U ⊂M0,0(PE/B, e) to be the complement of ∆2∪· · ·∪∆b e

2 c.
In case e = 2 or 3, U is all of M0,0(PE/B, e). In every case, U intersects ∆1.

Let F be a locally free sheaf of rank 2 on B. This sheaf is auxiliary; the simplest
choice is F = OB ⊕ OB . Denote by P = Pe1 the Hilbert scheme over B of flat
families of closed subschemes of PE × PF whose fibers are in the complete linear
system of pr∗PEOPE(1)⊗ pr∗PFOPF (e), i.e.

P = PH0(PE ×B PF,pr∗PEOPE(1)⊗ pr∗PFOPF (e)) = P(E∨ ⊗ SymeF∨).

Denote by D = De the Cartier divisor in P × PE × PF that is the universal closed
subscheme. There is a resolution of the structure sheaf,

0 → pr∗POP (−1)⊗ pr∗PEOPE(−1)⊗ pr∗PFOPF (−e) → O → OD → 0.

The morphism (prP ,prPE) : D → P × PE is finite and flat of degree e. There is
a maximal open subscheme of P over which D is a family of stable maps to PE.
Denote this open subscheme by V . The complement of V in P is a closed set that
has codimension ≥ 3. There is an induced 1-morphism f : V → M0,0(PE/B, e).
By consideration of divisors on PE × PF , the image of f is in U . Thus consider f
as a 1-morphism, f : V → U .

There is an induction argument that proves that f : V → U is surjective on
geometric points (the induction is on the number of irreducible components of the
domain curve). There is an action m of Aut(PF ) = PGL(F ) on P . The open
subscheme V is PGL(F )-invariant. The 1-morphism f is PGL(F )-invariant, in
the sense that there is a 2-isomorphism between the following 1-morphisms,

PGL(F )×B V
prV−−→ V

f−→ U,

PGL(F )×B V
m−→ V

f−→ U.

There is an induced 1-morphism f ′ : PGL(F )×B V → V ×U V such that pr1 ◦ f ′ =
m and pr2 ◦ f ′ = prV . By a straightforward (but tedious) argument, f ′ is an
isomorphism of schemes. So there is an induced 1-morphism,

u : [PGL(F )\V ] → U.

The claim is that u is an equivalence of stacks. This can be checked after base-
change by the surjective, smooth morphism f : V → U . But the base change is the
identity morphism IdV by construction. Because u is an equivalence of stacks, there
is a canonical isomorphism between the space of sections of (R∨)⊗a over U and the
space of PGL(F )-invariant sections of f∗(R∨)⊗a over V . This can be computed by
invariant theory.

5. Invariant theory descriptionsec-invt
The morphisms prP : D → P and prPE : D → PE satisfy the hypotheses of
Proposition 2.1. Denote by RP the associated locally free sheaf. Twisting the
short exact sequence in the last section, there is a short exact sequence,

0 → pr∗POP (−1)⊗ pr∗PFOPF (−e) → pr∗PEOPE(1) → pr∗PEOPE(1)⊗OD → 0.
6



Applying (prP )∗, gives an isomorphism of RP with OP (−1)⊗OB
H1(PF,OPF (−e)).

Therefore the dual, R∨
P is isomorphic to,

R∨
P
∼= OP (1)⊗OB

H0(PF,OPF (e)⊗ωPF/B) ∼= OP (1)⊗OB

[
Syme−2(F∨)⊗ ∧2(F∨)

]
.

This uses the canonical isomorphism, ωPF/B
∼= OPF (−2)⊗OB

∧2(F∨).
By definition of f , there is an isomorphism of V ×P D with the pullback by f of the
universal stable map. Therefore there is a canonical isomorphism of f∗R∨ with the
restriction of RP to V . So there is a canonical isomorphism between the space of
sections of (R∨)⊗a on U with the space of PGL(F )-invariant sections of (R∨

P )⊗a

on V . Because the complement of V has codimension ≥ 3, every section on V
extends to a global section. So there is a canonical isomorphism,

H0(U, (R∨)⊗a) ∼= H0(P, (R∨
P )⊗a)PGL(F ) =(

Syma(E ⊗ SymeF )⊗
[
Syme−2(F∨)⊗ ∧2(F∨)

]⊗a
)PGL(F )

.

A few words about this. First, there is an obvious action of GL(F ) on the space of
global sections. By inspection the center of GL(F ) acts trivially on this space, so
there is an induced action of PGL(F ). But it is more convenient to consider this
as a GL(F )-representation and compute the GL(F )-invariants.

Second, there is an obvious action of the symmetric group Sa. A full description
of H0(U, (R∨)⊗a) should include a description as a Sa-representation. Likewise,
there is an action of GL(E), and a full description should describe this action.
Finally, there is an obvious product map,

H0(U, (R∨)⊗a)⊗H0(U, (R∨)⊗b) → H0(U, (R∨)⊗(a+b)).

A full description should describe this product map.

In some sense the formula,

H0(U, (R∨)⊗a) ∼=
(
Syma(E ⊗ SymeF )⊗

[
Syme−2(F∨)⊗ ∧2(F∨)

]⊗a
)GL(F )

,

satisfies all of these conditions. In another sense, it satisfies none of them. By
inspection, the center of GL(E) acts by the character t 7→ ta. Thus the irreducible
decomposition of this representation is of the form,

b a
2 c⊕

u=0

Syma−2u(E)⊗ (∧2E)⊗u ⊗Q Wa,u,

where Wa,u is a finite dimensional Sa-representation over Q. The irreducible Sa-
representations are in 1-to-1 correspondence with partitions λ = (λ1, . . . , λk) of a;
denote by Vλ the corresponding representation. There is an irreducible decomposi-
tion,

Wa,u =
⊕

λ

Wa,u,λ ⊗ Vλ,

where Wa,u,λ is a trivial Sa-representation over Q.

The first goal is to compute, for each (a, u, λ), the dimension of the Q-vector space
Wa,u,λ. The second goal is to compute the multiplication map on the direct sum-
mands. For each pair of integers a, b ≥ 0, for each triple of integers 0 ≤ u ≤ ba

2 c,
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0 ≤ v ≤ b b
2c, 0 ≤ w ≤ ba+b

2 c, and for each triple of a partition λ of a, µ of b and ν
of a + b, there is a map T(a,b),(u,v,w),(λ,µ,ν),

Syma−2u(E)⊗ Symb−2v(E)⊗ (∧2E)⊗(u+v) ⊗ Vλ ⊗ Vµ ⊗Wa,u,λ ⊗Wb,v,µ

→ Syma+b−2w(E)⊗ (∧2E)⊗w ⊗ Vν ⊗Wa+b,w,ν .

The multiplication map is the sum of all these maps.

This map is equivariant for all the obvious groups, so the map can be decomposed
by plethysm into a sum of smaller maps. For the triple of partitions λ, µ, ν, denote
by Nλ,µ,ν the corresponding Littlewood-Richardson coefficient, so that,

Vλ ⊗ Vµ
∼=

⊕
ν

(Vν)⊕Nλ,µ,ν .

Without loss of generality, suppose a− 2u ≥ b− 2v. There is an irreducible decom-
position,

Syma−2u(E)⊗ Symb−2v(E) =
b−2v⊕
k=0

Syma+b−2u−2v−2k(E)⊗ (∧2E)⊗k.

It is clear that T(a,b),(u,v,w),(λ,µ,ν) is zero unless u+v ≤ w ≤ u+b−v and Nλ,µ,ν 6= 0.
And in this case, the map is equivalent to a map of Q-vector spaces,

T ′
(a,b),(u,v,w),(λ,µ,ν) : (Wa,u,λ ⊗Mb,v,µ)⊕Wλ,µ,ν → Wa+b,w,ν .

The second goal is to compute each of these maps.

The final goal is to compute H0(M0,0(PE/B, e), (R∨)⊗a), not the space of sections
H0(U, (R∨)⊗a). This requires understanding for each i = 2, . . . , b e

2c the map send-
ing a section over U to its principal part along ∆i. Because of this, the description
of the space of sections should be as explicit as possible.

6. Computationssec-comps
To compute the Q-vector spaces Wa,w,λ, it suffices to consider the case B = Spec Q.
From now on B = Spec Q. Let F be OB ⊕ OB . Let α, β be a basis for F . To
simplify notation, the invertible sheaves spanned by α and β will also be written as
α and β. This basis determines a maximal torus Gm(α)×Gm(β) ⊂ GL(F ). Every
finite dimensional representation M of GL(F ) has an eigenspace decomposition, or
weight decomposition, with respect to this torus,

M =
⊕

l,m∈Z
Ml,m

where the torus acts on Ml,m by the character (s, t) 7→ sltm. Of course MGL(F ) ⊂
M0,0. Moreover, the subspace ⊕l+m=0Ml,m is invariant under the action of SL(F ).
The intersection of Gm(α) × Gm(β) with SL(F ) is a maximal torus. Choose a
positive root for this maximal torus. The action of the positive root determines an
injective map,

χ : M−1,1 → M0,0,

and the following composition is an isomorphism,

MGL(F ) ↪→ M0,0 → Coker(χ).

In the case of M = H0(P, (R∨
P )⊗a), there is an action of GL(E) ×Sa on each of

the weight spaces Ml,k. Because the category of representations of GL(E) × Sa
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is semisimple, to determine the representation MGL(F ), it suffices to determine
the representations M0,0 and M−1,1. The goal of this section is to give a simple
combinatorial description of the representations M0,0 and M−1,1.

As a representation of Gm(α)×Gm(β), there is a weight decomposition,

Syme(F ) ∼= αe ⊕ · · · ⊕ αe−iβi ⊕ · · · ⊕ βe.

Therefore there is a decomposition,

Syma(E ⊗ Syme(F )) ∼=
⊕

i∈Ie,a

Symi(E)⊗ αl(i)βm(i) ⊗ bi,

where i is a sequence of nonnegative integers (i0, . . . , ie), where Ie,a is the set of
sequences such that

∑e
k=0 ik = a, where l(i) is defined to be

∑
k(e − k)ik, where

m(i) is defined to be
∑

k kik, where bi is just a placeholder bi0
0 · · · · ·bie

e , and where

Symi(E) =
e⊗

k=0

Symik(E).

Of course Ie,a is in bijection with the set of Young tableaux with at most a rows
and at most e columns, and m(i) is the number of squares in the corresponding
tableaux.

Similarly, there is a weight decomposition,

Syme−2(F∨)⊗ ∧2(F∨) ∼= Ae−1B ⊕ · · · ⊕Ae−jBj ⊕ · · · ⊕ABe−1,

where (A,B) is the dual ordered basis to (α, β). Therefore there is a decomposition,[
Syme−2(F∨)⊗ ∧2(F∨)

]⊗a ∼=
⊕

j∈Je,a

Aea−|j|B|j| ⊗ cj ,

where j is a sequence of integers (j1, . . . , ja) such that each 1 ≤ jκ ≤ e− 1, where
|j| = j1 + · · ·+ ja, and where cj is a placeholder cj1 ⊗ · · · ⊗ cja

. The action of Sa

is the obvious one: for σ ∈ Sa,

σ · cj1 ⊗ · · · ⊗ cjκ
⊗ · · · ⊗ cja

= cjσ(1) ⊗ · · · ⊗ cjσ(κ) ⊗ · · · ⊗ cjσ(a) .

Putting this together, the weight-(0, 0) subspace of M = H0(P, (R∨
P )⊗a) is,

M0,0 =
⊕

(i,j)∈Ke,a

Symi(E)⊗ α0β0 ⊗ bi ⊗ cj ,

where, as before, bi and cj are placeholders, and where Ke,a is,

Ke,a =
{
(i, j) ∈ Ie,a × Je,a|m(i) = |j|

}
.

And the weight-(−1, 1) subspace is,

M−1,1 =
⊕

(i,j)∈K′
e,a

Symi(E)⊗ α−1β1 ⊗ bi ⊗ cj ,

where,
K ′

e,a =
{
(i, j) ∈ Ie,a × Je,a|m(i) = 1 + |j|

}
.

To relate this to the spaces Wa,u, choose an ordered basis (ε, η) of E. This deter-
mines a maximal torus Gm(ε)×Gm(η) in GL(E). The weights of M0,0 and M−1,1
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with respect to this torus are (a−w,w), w = 0, . . . , a. The weight decompositions
are,

M0,0 =
a⊕

u=0

⊕
(h,i,j)∈Ke,a,u

εa−uηu ⊗ α0β0 ⊗ ah ⊗ bi ⊗ cj

M−1,1 =
a⊕

u=0

⊕
(h,i,j)∈K′

e,a,u

εa−uηu ⊗ α−1β1 ⊗ ah ⊗ bi ⊗ cj ,

where h is a sequence of nonnegative integers (h0, . . . , he), where ah is a placeholder
ah0

0 · · · · · ahe
e , and where,

Ke,a,u = {(h, i, j)|(i, j) ∈ Ke,a, each 0 ≤ hk ≤ ik, and
∑

k

hk = u},

K ′
e,a,u = {(h, i, j)|(i, j) ∈ K ′

e,a, each 0 ≤ hk ≤ ik, and
∑

k

hk = u}.

For each e, a, u, there is a Sa-representation W ′
e,a,u, unique up to isomorphism,

such that, ⊕
(h,i,j)∈Ke,a,u

ah ⊗ bi ⊗ cj
∼= W ′

e,a,u ⊕
⊕

(h,i,j)∈K′
e,a,u

ah ⊗ bi ⊗ cj .

Finally, the relation to Wa,u is,

W ′
e,a,u

∼=
⊕

0≤u′≤u

Wa,u.

Because the category of Sa-representations is semisimple, determining all the rep-
resentations W ′

e,a,u determines Wa,u. Therefore, determining all the Sa-sets Ke,a,u

and K ′
e,a,u determines all the representations Wa,u. In particular,

dimQWa,u = (#Ke,a,u −#K ′
e,a,u)− (#Ke,a,u−1 −#K ′

e,a,u−1),

where Ke,a,−1 and K ′
e,a,−1 are defined to be the empty set.

7. The case e = 2 and the case a = 1sec-ce2
subsec-ce2 7.1. The case e = 2. In the case e = 2, the sets K2,a,u and K ′

2,a,u can be computed
explicitly. For each a, J2,a = {(1, . . . , 1)}. In particular, the action of Sa is trivial.
Also,

K2,a =
{

(i0, a− 2i0, i0)|0 ≤ io ≤ ba
2
c
}

,

K ′
2,a =

{
(i0, a− 1− 2i0, i0 + 1)|0 ≤ io ≤ ba− 1

2
c
}

.

For each i = (i0, i1, i2), the number of h’s is (i0 + 1)(i1 + 1)(i2 + 1). Therefore,

dimQM0,0 =
b a

2 c∑
ı=0

(i0 + 1)2(a + 1− 2i0),

dimQM−1,1 =
b a−1

2 c∑
ı=0

(i0 + 1)(i0 + 2)(a− 2i0).

10



If a is odd, say a = 2b + 1, then ba
2 c = ba−1

2 c = b, and the difference of dimensions
is,

dimQM0,0 − dimQM−1,1 =
b∑

i=0

(i0 + 1)(3i0 − 2b).

After some tedious calculation, this comes out as 0 (since it is a cubic polynomial
in b, it suffices to consider b = 0, 1, 2). If a is even, say a = 2b, then ba

2 c = b and
ba−1

2 c = b− 1. So the difference of dimensions is,

dimQM0,0 − dimQM−1,1 = (b + 1)2 +
b−1∑
i0=0

(3i20 − (2b− 4)i0 − (2b− 1)).

After more tedious calculation, this comes out as,

dimQM0,0 − dimQM−1,1 =
1
2
(b + 2)(b + 1),

(since it is a cubic polynomial in b, again it suffices to consider b = 0, 1, 2). This
is precisely the dimension of Symb(Sym2E), so the computation agrees with the
result of Section 3.

7.2. The case a = 1. The case a = 1 is also simple. The elements of Ke,1 are
sj = (ij , (j)), 1 ≤ j ≤ e− 1, where

ijk =
{

1, k = j
0, otherwise

The elements of K ′
e,1 are tj = (ij , (j − 1)), 2 ≤ j ≤ e. In particular Ke,1 and K ′

e,1

have the same number of elements. For each element, there are 2 choices for h.
Thus Ke,1,u and K ′

e,1,u have the same number of elements for u = 0, 1. Therefore,

H0(M0,0(PE/B, e),R∨) = (0).
subsec-a1
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