
18.725 PROBLEM SET 4

Due date: Friday, October 15 in lecture. Late work will be accepted only with a
medical note or for another Institute-approved reason. You are strongly encouraged
to work with others, but the final write-up should be entirely your own and based
on your own understanding.

Read through all the problems. Write solutions to the “Required Problems”, 1, 2,
3, and 4, together with 2 others of your choice to a total of 6 problems. The last 5
problems on this problem set are taken from Problem Set 2 (the solutions to these
problems were not given). You can use them for the non-required problems only if
you did not use them for Problem Set 2.

Required Problem 1: Let F be an element of k[X0, . . . , Xn]e. Prove the Euler
identity,

e · F (X0, . . . , Xn) = X0
∂F

∂X0
+ · · ·+Xn

∂F

∂Xn
.

Remark: This isn’t a proof, but to see where this identity comes from, differentiate
with respect to t both sides of the identity,

teF (X) = F (tX).

Solution: By linearity, it suffices to prove the case when F is a monomial Xe =
Xe0

0 ·· · ··Xen
n . For every i = 0, . . . , n, ∂F/∂Xi = eiF/Xi so thatXi(∂F/∂Xi) = eiF .

Therefore X0(∂F/∂X0)+ · · ·+Xn(∂F/∂Xn) = e0F+ · · ·+enF = (e0+ · · ·+en)F =
eF .

Required Problem 2: Let X0, X1, X2 be homogeneous coordinates on P2
k. Let

(P2
k)∨ be a copy of P2

k with homogeneous coordinates Y0, Y1, Y2. Denote by (P2
k ×

(P2
k)∨, π1, π2) a product of (P2

k, (P2
k)∨). Define Λ ⊂ P2

k × (P2
k)∨ to be,

{([a0, a1, a2], [b0, b1, b2])|a0b0 + a1b1 + a2b2 = 0} .

A projective line in P2
k is V(s) for any nonzero s ∈ k[X0, X1, X2]1.

(a) Prove there is a bijection between (P2
k)∨ and the set of lines in P2

k defined by
q ∈ (P2

k)∨ 7→ π1(Λ ∩ π−1
2 (q)).

Solution: Every nonzero element s ∈ k[X0, X1, X2]1 is of the form b0X0 + b1X1 +
b2X2, thus V(s) = π1(Λ ∩ π−1

2 (q)) for q = [b0, b1, b2]. If q = [b0, b1, b2] and r =
[c0, c1, c2] are such that π1(Λ ∩ π−1

2 (q)) = π1(Λ ∩ π−1
2 (r)), then by the projective

ideal variety correspondence 〈b0X0 + b1X1 + b2X2〉 = 〈c0X0 + c1X1 + c2X2〉, from
which it easily follows that [b0, b1, b2] = [c0, c1, c2] as elements of (P2

k)∨.

(b) Let F ∈ k[X0, X1, X2]e be an irreducible polynomial. Denote C = V(F ) ⊂ P2
k.

Let p = [a0, a1, a2] be an element of C. A line L ⊂ P2
k is tangent to C at p if p ∈ L

and the restriction of F to L has a repeated root at p. Assuming char(k) does
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not divide e, prove the line L associated to [b0, b1, b2] ∈ (P2
k)∨ is tangent to C at

[a0, a1, a2] iff the following matrix has rank 1,(
(∂F )/(∂X0)(a0, a1, a2) (∂F )/(∂X1)(a0, a1, a2) (∂F )/(∂X2)(a0, a1, a2)

b0 b1 b2

)
.

(Hint: After a change of coordinates, arrange that (a0, a1, a2) = (1, 0, 0) and
(b0, b1, b2) = (0, 0, 1). Combine this with the Euler identity from Problem 1.)

Solution: There is an action of GL3 on P2
k and (P2

k)∨. For every g ∈ GL3, clearly
L is tangent to C at p iff g ·L is tangent to g ·C at g ·p. Moreover, for q = [b0, b1, b2],
the matrix Mg above for g ·F and g · q is simply M · g†. Thus Mg has rank 1 iff M
has rank 1. So it suffices to prove the result after applying an element of GL3. It is
easy to prove that GL3 acts transitively on Λ, so assume p = [a0, a1, a2] = [1, 0, 0]
and q = [b0, b1, b2] = [0, 0, 1]. Then L is tangent to C at p iff F (x0, x1, 0) has a
repeated root at (1, 0, 0), i.e., iff f(t) = F (1, t, 0) has a repeated root at t = 0. This
is true iff F (1, 0, 0) = 0 and (∂F )/(∂X1)(1, 0, 0) = 0. Because char(k) does not
divide e, F (1, 0, 0) = 0 iff (∂F )/(∂X0)(1, 0, 0) = 0. Therefore L is tangent to C at
p iff (∂F )/(∂X0)(1, 0, 0) = (∂F )/(∂X1)(1, 0, 0) = 0. This is precisely the condition
that the following matrix has rank 1,(

∂F
∂X0

(1, 0, 0) ∂F
∂X1

(1, 0, 0) ∂F
∂X2

(1, 0, 0)
0 0 1

)
.

(c) A line L ⊂ P2
k is tangent to C if there exists p ∈ L such that L is tangent to

C at p. Using (b) and the universal closedness of P2
k, prove the following subset of

(P2
k)∨ is Zariski closed,{

q|π1(Λ ∩ π−1
2 (q)) is tangent to C

}
.

Solution: The 2×2-minors of the matrix from (b) are bihomogeneous in X and Y
of bidegree (e−1, 1). The vanishing locus is a Zariski closed subset of (P2

k)× (P2
k)∨.

So the intersection with Λ is a Zariski closed subset. By universal closedness, the
image of this closed set under π2 is a closed subset of (P2

k)∨. The set above is
precisely this set.

Remark: Even if char(k) does divide e, this set is closed. In (b), the condition
on the matrix is not enough to guarantee that L is tangent to C at p. But the
condition on the matrix together with the condition F (a0, a1, a2) = 0 is equivalent
to the condition that L is tangent to C at p, with no hypothesis on char(k). These
conditions define a Zariski closed subset of Λ, whose image under π2 is a Zariski
closed subset of (P2

k)∨.

Required Problem 3: Let k be an algebraically closed field and let R be a finitely
generated, reduced k-algebra. Define the max spectrum of R, Spec max(R), to be
the set of k-algebra homomorphisms φ : R → k. For every element r ∈ R, there
is a mapping r̃ : Spec max(R) → A1

k = k by r̃(φ) = φ(r). Define the Zariski
topology on Spec max(R) to be the weakest topology such that r̃ is continuous (with
respect to the Zariski topology on A1

k) for every r ∈ R. Denote by F the sheaf on
Spec max(R) of all continuous maps from open subsets to A1

k. Define the structure
sheaf of Spec max(R), O, to be the smallest subsheaf of F such that,

(i) for every nonempty open subset U ⊂ Spec max(R), the constant mappings
are in O(U),
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(ii) for every open subset U ⊂ Spec max(R) and every g ∈ O(U) that is every-
where nonzero, also 1/g ∈ O(U), and

(iii) for every r ∈ R, r̃ ∈ O(Spec max(R)).

(a) Prove that a basis for the topology on Spec max(R) is given by the basic open
affines, D(r) := {φ : R→ k|φ(r) 6= 0}.
Solution: The weakest topology such that all of the maps r̃ is continuous is the
topology with basis r̃−1

1 (U1)∩· · ·∩ r̃−1
n (Un) for r1, . . . , rn ∈ R and U1, . . . , Un ⊂ A1

k

Zariski open sets. The Zariski open subsets U ⊂ A1
k are the sets D(f) for f ∈ k[x].

So a basis for the topology consists of

r̃−1
1 (D(f1))∩· · ·∩r̃−1

n (D(fn)) = D(f1◦r1)∩· · ·∩D(fn◦rn) = D((f1◦r1)·· · ··(fn◦rn)).

(b) Prove that for every open U , every continuous map g : U → A1
k and every

point φ ∈ U , there exists a neighborhood φ ∈ V ⊂ U such that g|V is in O(V ) iff
there exist h, s ∈ R such that φ ∈ D(s) ⊂ U and g|D(s) = h̃/r̃. Using Theorem 4.5,
prove that for every s ∈ R, O(D(s)) ∼= R[1/s].

Solution: By definition of O, h̃/s̃ ∈ O(D(s)). It remains to prove that if g|V ∈ OV ,
then there exist h, s ∈ R such that g|D(s) = h̃/r̃. Denote by F the sub-presheaf of
the sheaf of continuous maps to A1

k, where

F(U) = {h̃/s̃|h, s ∈ R, U ⊂ D(s)}.
By definition, O is the sheafification of F . As discussed in lecture, the stalk of
O at φ equals the stalk of F at φ, as subsets of the stalk at φ of the sheaf of all
continous functions. So there exist f, q ∈ R such that φ(s) 6= 0 and the stalk (g)φ

equals (f̃/q̃)φ. By the definition of the stalk, there exists φ ∈ V ⊂ U ∩D(q) such
that g|V = (f̃/q̃)V . By (a), there exists r ∈ R such that φ ∈ D(r) ⊂ V . Define
s = rq and h = rf . Then φ ∈ D(s) ⊂ V and g|D(s) = h̃/s̃.

By the sheaf axiom, a continuous function g : U → A1
k is in O(U) iff for every

element φ ∈ U there exists φ ∈ V ⊂ U such that g|V ∈ O(V ). By the last
paragraph, g ∈ O(U) iff for every φ ∈ U , there exists h, s ∈ R such that φ(s) 6= 0
and g|D(s) = h̃/s̃. This is precisely the same as the definition of regularity of
functions on a quasi-affine algebraic set. Therefore, by exactly the same argument
as in the case of affine algebraic sets, the k-algebra of regular functions on D(s) is
R[1/s].

(c) Prove that (Spec max(R),O) is an affine variety. Not to be written up:
What is the universal property of this affine variety?

Solution: Let r1, . . . , rn ∈ R be a finite set of generators. Define ψ : k[x1, . . . , xn] →
R to be the k-algebra homomorphism f(x1, . . . , xn) 7→ f(r1, . . . , rn). Define I ⊂
k[x1, . . . , xn] to be the kernel. Define X = V(I) ⊂ An

k and define (X,OX) to
be the associated algebraic variety. Because R is reduced, I is radical ideal, so
k[X] = k[x1, . . . , xn]/I. There is an induced k-algebra homomorphism ψ : k[X] →
R. By the universal property of affine varieties, there exists a regular morphism
F : Spec max(R) → X such that ψ = F ∗. Of course, ψ is an isomorphism and
F (φ) = (φ(r1), . . . , φ(rn)). By the Weak Nullstellensatz, F is a bijection. By (a),
F identifies the standard basis for the Zariski topology on Spec max(R) with the
standard basis for the Zariski topology on X, i.e., F is a homeomorphism. Denote
by G : X → Spec max(R) the inverse homeomorphism. By (b), for every open
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U ⊂ Spec max(R), for every φ ∈ U and every continuous g : U → A1
k, g is regu-

lar at φ iff G∗(g) is regular at F (φ) as a function on a quasi-affine algebraic set.
Hence, for every g ∈ O(U), G∗(g) ∈ OX(G−1(U)), i.e., G is a regular morphism.
Since F and G are inverse regular morphisms, Spec max(R) is isomorphic to X, i.e.,
Spec max(R) is an affine variety.

Using the isomorphisms F and ψ, for every SWF (T,OT ), the following set map is
a bijection:

HomSWF ((T,OT ), (Spec max(R),O)) → Homk−alg(R,OT (T )),
(F : T → Spec max(R)) 7→ (F ∗ : R→ OT (T )).

Required Problem 4: Let F : X → Y be a regular morphism of affine algebraic
sets.

(a) For every element y ∈ Y , denote by my ⊂ k[Y ] the corresponding maximal ideal.
Prove there is a bijection between the elements of F−1({y}) and the maximal ideals
of k[X]/F ∗(my)k[X].

Solution: There is a bijection between maximal ideals of k[X]/F ∗(my)k[X] and
maximal ideals of k[X] containing F ∗(my)k[X]. By the Nullstellensatz, there is
a bijection between the maximal ideals of k[X] containing F ∗(my)k[X] and the
elements of X contained in V(F ∗(my)). Of course V(F ∗(my)) = F−1V(my), i.e.,
F−1({y}).

(b) If F is a finite morphism, and if F−1({y}) is empty, prove there exists g ∈
k[Y ] such that g(y) 6= 0 and F ∗(g) = 0, i.e., F ∗(g) · k[X] = {0}. (Hint: Apply
Nakayama’s lemma to the finitely-generated k[Y ]-module k[X].)

Solution: Denote by I ⊂ k[Y ] the ideal my. Denote by M the finitely-generated
k[Y ]-module, M = k[X]. By hypothesis, M/IM = {0}. By Nakayama’s lemma,
there exists g ∈ k[Y ] such that g ∼= 1 mod I and g ·M = {0}. Therefore, g(y) = 1
and F ∗(g) = {0}.

(c) If F is a finite morphism, conclude that F (X) ⊂ Y is a closed subset: if
y ∈ Y −F (X), then there exists g ∈ k[Y ] such that y ∈ D(g) ⊂ Y −F (X). Not to
be written up: Combined with Corollary 14.19, conclude that finite morphisms
of algebraic varieties are universally closed.

Solution: The subset F (X) ⊂ Y is closed iff the complement Y − F (X) is open.
Let y ∈ Y − F (X). Because F−1({y}) is empty, by (b) there exists g ∈ k[Y ] such
that g(y) = 1 and F ∗(g) = {0}, i.e., y ∈ D(g) and F−1(D(g)) = ∅. Therefore
y ∈ D(g) ⊂ Y − F (X), proving Y − F (X) is open.

Problem 5 (a): Assume char(k) 6= 2. Prove the subset of (P2
k)∨ parametrizing

lines tangent to C = V(X2
0 +X2

1 +X2
2 ) is V(Y 2

0 +Y 2
1 +Y 2

2 ). For a “general” element
p ∈ P2

k, how many tangent lines to C contain p?

(b) Let F ∈ k[X0, X1, X2]e be an irreducible polynomial. Define U = V(F ) −
V(∂F/∂X0, ∂F/∂X1, ∂F/∂X2). Prove the following mapping U → (P2

k)∨ is a reg-
ular morphism whose image is contained in the set of lines tangent to V(F ) (this
mapping is the Gauss map):

[p] ∈ U 7→ [(∂F/∂X0)(p), (∂F/∂X1)(p), (∂F/∂X2)(p)].
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Problem 6: Let R be a finitely-generated k-algebra that is not necessarily re-
duced. Repeat the definition of Spec max(R) and Ored as in Problem 3 (except
that, for reasons that will become clear, the sheaf is denoted Ored instead of
O). Prove (Spec max(R),Ored) is an affine variety, and identify the k-algebra
Ored(Spec max(R)).

Solution: Denote by Rred the reduced k-algebra of R, i.e., the quotient of R by the
nilradical. Denote by p : R → Rred the canonical surjection. There is an induced
set map F : Spec max(Rred) → Spec max(R), by F (φ) = φ ◦ p. This is a bijection
since the nilradical is contained in every maximal ideal of R. For every element
r ∈ R, the function p̃(r) ◦ F equals r̃. First this implies that F (D(r)) = D(p(r))
and F−1(D(p(r))) = D(r), i.e., p∗ is a homeomorphism. Second the image of R
in the k-algebra of continuous functions Spec max(R) → A1

k equals F ∗(Rred). It
follows that F∗Ored equals the O as subsheaves of the sheaf of continuous functions
Spec max(Rred) → A1

k. Therefore F : (Spec max(R),Ored) → (Spec max(Rred),O) is
an isomorphism of SWFs.

Problem 7: Another proof of existence of sheafification Let X be a topo-
logical space and let F be a presheaf of sets. Define the éspace étalè as a set in
Definition 10.8, p : |F| → X.

(a) Let U ⊂ X be an open set, p ∈ U an element and f, g ∈ F(U) elements
whose images are equal in the stalk Fp. Prove there exists an open neighborhood
p ∈ V ⊂ U such that f |V = g|V .

Solution: This is part of the definition of direct limits.

(b) For every open set U ⊂ X and every f ∈ F(U), define D(U, f) ⊂ |F| to be the
set of pairs (p, fp) of an element p ∈ U and the image fp of f in Fp. Prove these
sets form the basis for a topology on |F|, called the natural topology.

Solution: This is not technically correct, because the empty set should be added.
The other axioms for a basis are satisfied. First of all, for every p ∈ X and every
fp ∈ Fp, there exists an open set p ∈ U ⊂ X and f ∈ F(U) such that fp is
the germ of f at p. So (p, fp) ∈ D(U, f). Next, let (p, hp) be an element of
D(U, f)∩D(V, g). Then by (a), there exists p ∈W ⊂ U ∩ V such that f |W = g|W .
So (p, hp) ∈ D(W, f |W ).

(c) For every open set U ⊂ X and every f ∈ F(U), prove the induced set map
f̃ : U → |F| is continuous with respect to the natural topology on |F|.

Solution: It suffices to prove that for every pair (V, g), f̃−1(D(V, g)) is open. For
every p ∈ f̃−1(D(V, g)), fp = gp. By (a), there exists p ∈ W ⊂ U ∩ V such that
f |W = g|W . Therefore W ⊂ f̃−1(D(V, g)), proving f̃−1(D(V, g)) is open.

(d) Denote by F+ the sheaf of sections of the continuous mapping p : |F| → X as
in Example 10.4(ii). By (c) there is a presheaf homomorphism φ : F → F+. Prove
this is a sheafification of F .

Solution: First of all, it is easy to prove F+ is a sheaf because continuous maps
satisfy the gluing lemma. To prove φ : F → F+ is a sheafification, it suffices to
prove for every p ∈ X that the induced map of stalks is a bijection, φp : Fp → F+

p .
5



Injectivity: Let U ⊂ X be an open set, p ∈ U an element and f, g ∈ F(U)
elements such that φp(fp) = φp(gp), i.e., f̃p = g̃p. By (a), there exists p ∈ V ⊂ U

such that f̃ |V = g̃|V . In particular, fp = f̃ |V (p) = g̃|V (p) = gp.

Surjectivity: Let p ∈ X, let p ∈ U ⊂ X be an open neighborhood, and let
f ∈ F+(U). There exists an open subset p ∈ V ⊂ U and g ∈ F(V ) such that
f(p) = (p, gp), i.e., p ∈ f−1(D(V, g)). Because f is continuous, the subset W :=
f−1(D(V, g)) is open. By definition, f |W = g̃|W . So fp = φp(gp).

Problem 8 Let A and B be categories. An adjoint pair of functors is a pair of
functors (L,R), L : A → B, R : G → A, together with a rule associating to every
object A of A and every object B of B a bijection,

ηA,B : HomB(L(A), B) → HomA(A,R(B)),

which is a natural bijection in the sense that for every object A of A, resp. every
object B of B, the induced transformation of functors B → Sets,

ηA,∗ : HomB(L(A), ∗) ⇒ HomA(A,R(∗)),
is a natural transformation, resp. the induced transformation of contravariant
functors A → Sets,

η(∗, B) : HomB(L(∗), B) ⇒ HomA(∗, R(B)),

is a natural transformation.

(a) Let A = Sets and let B = Groups, Rings, or R −modules. Define R : B → A
to be the functor that sends each object to its underlying set of elements. Prove
there is a functor L : A → B and a natural bijection η so that (L,R) is an adjoint
pair. Hint: For each B, there is a notion of a free object.

Solution: For B = Groups, for every set S define FS together with the set map
i : S → FS to be the free group on S, i.e., the group whose elements are all finite
words w = x1x2 . . . xn where every xi is either an element of S or the formal inverse
of an element of S, and product is defined by concatenating words and contracting
inverses. The free group has the universal property that for every group G, the
following set map is a bijection,

HomGroups(FS , G) → HomSets(S,G), (φ : FS → G) 7→ (φ ◦ i : S → G).

This is precisely the condition for an adjoint pair. The construction for rings and
for R-modules is similar.

(b) In each case above, prove that (L,R) has the additional property that a mor-
phism f : B → B′ in B is an isomorphism iff R(f) is an isomorphism (this is not
an axiom for an adjoint pair).

Solution: The point is that a homomorphism of groups, rings or R-modules is
invertible iff the underlying set map is a bijection. This is because the inverse set
map automatically preserves the group product, resp. addition and multiplication,
resp. addition and scaling by elements in R.

Problem 9: Let A = Sets, let B be a category, and let (L,R, η) be an adjoint pair
such that for every morphism f : B → B′ in B, f is an isomorphism iff R(f) is an
isomorphism. Let X be a topological space, and let F be a presheaf of objects in
B on X.

(a) Prove that F is a sheaf iff the presheaf of sets R(F) on X is a sheaf.
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Correction: The assertion is false. A corrected version of this exercise appears on
the next problem set.

(b) Prove that F satisfies Axiom (A) from Definition 10.1 iff F satisfies Axiom
(A’) from Remark 10.2.

Correction: Same as above.

Difficult Problem 10: Let F : P1
k → P3

k be the regular morphism [a0, a1] 7→
[a3

0, a
2
0a1, a0a

2
1, a

3
1]. Denote by C ⊂ P3

k the image of F (which is a projective subva-
riety by Problem 10 from PS# 2). For every element p = [b0, b1, b2, b3] ∈ P3

k−F (P1
k),

define a morphism Gp : C → P5
k by

[c0, c1, c2, c3] 7→ [b1c0−b0c1, b2c0−b0c2, b3c0−b0c3, b2c1−b1c2, b3c1−b1c3, b3c2−b2c3].

(a) Prove there exists a linear embedding H : P2
k ⊂ P5

k whose image contains the
image of Gp.

Solution: Choose homogeneous coordinates on P5
k, (Z(i,j)|0 ≤ i < j ≤ 3). Then,

up to relabelling coordinates, Gp is the restriction of a regular morphism gp :
P1

k − {p} → P5
k determined by g∗pZi,j = bjXi − biXj . Denote Z(j,i) := −Z(i,j).

There exists 0 ≤ i ≤ 3 such that bi 6= 0. For every 0 ≤ j < k ≤ 3 with j, k 6= i,

g∗pZj,k = −(bk/bi)g∗pZ(i,j) + (bj/bi)g∗pZ(i,k).

Choose homogeneous coordinates on P2
k, (Yj |0 ≤ j ≤ 3, j 6= i). Define H : P2

k → P5
k

to be the regular morphism determined by H∗Z(i,j) = Yj for j 6= i, and H∗Z(j,k) =
−(bk/bi)Yj +(bj/bi)Yk for j, k 6= i. The image of gp is contained in the image of H.

(b) With respect to your linear embedding, find the equation of the plane curve
Cp = H−1(Gp(C)) for p = [1, 0, 0, 1]. Write down all the elements q ∈ Cp where
there is not a unique tangent line to Cp at q.

Solution: Choose i = 0 in (a) above. There is a unique regular morphism ip :
P3

k − {p} → P2
k such that H ◦ ip = gp, namely,

i∗pY1 = −X1, i∗pY2 = −X2, i∗pY3 = X0 −X3.

The composition ip ◦ F is [a0, a1] = [−a2
0a1,−a0a

2
1, a

3
0 − a3

1]. The equation of the
image is Y 3

1 − Y 3
2 + Y1Y2Y3. For every point q except [Y1, Y2, Y3] = [0, 0, 1] there is

a unique tangent line, namely,

V(a1(2a3
0 + a3

1)Y1 − a0(a3
0 + 2a3

1)Y2 + a2
0a

2
1Y3).

For the point q = [0, 0, 1], every line containing q is a tangent line to Cp at q.

(c) A secant line to C is a projective line in P3 that intersects C in at least 2
distinct points. How many secant lines to C contain p? Not to be written up:
What if p is another (general) element of P3

k? How many secant lines to C contain
p? Pay special attention if you go to Alexei Oblomkov’s PUMA-GRASS lecture.

Solution: The lines in P3
k containing p are in bijective correspondence with the

elements of P2
k via q 7→ i−1

p ({q}). Thus the secant lines to C containing p correspond
to pairs of distinct points r, s ∈ C such that ip(r) = ip(s). For such a pair, the
corresponding point q = ip(r) = ip(s) is a point of Cp for which there is not a unique
tangent line. Since there is precisely one such point on Cp, there is one secant line
to C containing p, namely V(X1, X2) ⊂ P3

k which contains p = [1, 0, 0, 1], contains
[1, 0, 0, 0] = F ([1, 0]) and contains [0, 0, 0, 1] = F ([0, 1]).
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It is true that there is a unique secant line to C containing p for every point
p ∈ P3

k − V(Q), where

Q = 4(X0X3 −X2
1 )(X1X3 −X2

2 )− (X0X3 −X1X2)2.

Moreover, for every point p ∈ V(Q) − C, there is a unique tangent line to C
containing p. This implies a peculiar property of C: every pair of distinct tangent
lines to C in P3

k are disjoint (for any non-planar curve, 2 general tangent lines
are disjoint, but typically every tangent line intersects finitely many other tangent
lines).

Problem 11: For every integer n ∈ Z, define Xn to be a copy of the affine variety
V(xy) ∈ A2, define Xn,n+1 ⊂ Xn to be D(x) and Xn,n−1 ⊂ Xn to be D(y).
Define φn,n+1 : Xn,n+1 → Xn+1,n to be the regular morphism (a, 0) 7→ (0, 1/a). If
|m− n| > 1, define Xm,n = ∅ and define φm,n to be the empty mapping.

(a) Prove that the collection ({Xn}, {Xm,n}, {φm,n}) satisfy the axioms for Lemma
12.11, the Gluing Lemma for spaces with functions. Denote by X the associated
space with functions.

Solution: This comes to the fact that Xn,n−1 ∩Xn,n+1 = ∅.
(b) Prove that X is a connected algebraic variety that is not quasi-compact.

Solution: The collection (φn(Xn)|n ∈ Z) is an open covering of X that has no
finite subcovering.
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