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MAT 536 Problem Set 5

Homework Policy. Please read through all the problems. Please solve 5 of the problems. I will
be happy to discuss the solutions during office hours.

Problems.

Problem 1. Let A and B be Abelian categories. For every additive functor,

F : A → B,

there is an associated additive functor,

Ch(F ) : Ch(A)→ Ch(B),

that associates to every cochain complex in Ch(A),

A• = ((An)n∈Z, (d
n
A)n∈Z)

the cochain complex in Ch(B),

Ch(F )(A•) = ((F (An))n∈Z, (F (dnA))n∈Z),

and that associates to every morphism of cochain complexes in Ch(A),

u• : C• → A•, (un : Cn → An)n∈Z,

the morphism of cochain complexes in Ch(B),

Ch(F )(u•) = (F (un) : F (Cn)→ F (An))n∈Z.

In particular, for every homotopy

s• = (sn : Cn → An−1)n∈Z,

from u• to 0, also
Ch(F )(s•) := (F (sn) : F (Cn)→ F (An−1))n∈Z,

is a homotopy from Ch(F )(u•) to 0.
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(a) For additive functors,
F,G : A → B,

let
α : F ⇒ G,

be a natural transformation. For every cochain complex A• in Ch(A), prove that

(αAn : F (An)→ G(An))n∈Z

is a morphism of cochain complexes in Ch(B),

Ch(α)(A•) : Ch(F )(A•)→ Ch(G)(A•).

(b) Prove that the rule A• 7→ Ch(α)(A•) is a natural transformation

Ch(α) : Ch(F )⇒ Ch(G).

Moreover, for every morphism u• : C• → A• in Ch(A), and for every homotopy (sn : Cn → An−1)n∈Z
from u• to 0, prove that also Ch(α)(A•) ◦ Ch(F )(s•) equals Ch(G)(s•) ◦ Ch(α)(C•).

(c) For the identity natural transformation IdF : F ⇒ F , prove that Ch(IdF ) is the identity natural
transformation Ch(F )⇒ Ch(F ). Also, for every pair of natural transformations of additive functors
A → B,

α : F ⇒ G, β : E ⇒ F,

for the composite natural transformation α ◦β, prove that Ch(α ◦β) equals Ch(α) ◦Ch(β). In this
sense, Ch is a “functor” from the “2-category” of Abelian categories to the “2-category” of Abelian
categories.

Problem 2. Let A and B be Abelian categories. Let F : A → B be an additive functor. Assume
that A has enough injective objects. Thus, every object A admits an injective resolution in Ch(A),

A[0] : . . . −−−→ 0 −−−→ A −−−→ 0 −−−→ . . .

εA

y y ε

y y
I•A : . . . −−−→ 0 −−−→ I0

d0
I−−−→ I1

d1
I−−−→ . . .

,

which is functorial up to null homotopies (in particular, any two injective resolutions are homotopy
equivalent). Moreover, for every short exact sequence in A,

Σ : 0 −−−→ K
q−−−→ A

p−−−→ Q −−−→ 0,

there exists a diagram of injective resolutions with rows being short exact sequences in Ch(A),

Σ[0] : 0 −−−→ K[0]
q[0]−−−→ A[0]

p[0]−−−→ Q[0] −−−→ 0

εΣ

y εK

y yεA yεQ
IΣ : 0 −−−→ I•K

q•−−−→ I•A
p•−−−→ I•Q −−−→ 0
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whose associated short exact sequences in A,

InΣ : 0 −−−→ InK
qn−−−→ InA

pn−−−→ InQ −−−→ 0,

are automatically split. Moreover, this diagram of injective resolutions is functorial up to homotopy,
i.e., for every commutative diagram of short exact sequences in A,

Σ : 0 −−−→ K
q−−−→ A

p−−−→ Q −−−→ 0

u

y uK

y yuA yuQ
Σ̃ : 0 −−−→ K̃

q̃−−−→ Ã
p̃−−−→ Q̃ −−−→ 0

,

there exists a commutative diagram in Ch(A),

IΣ : 0 −−−→ IK
q•−−−→ IA

p•−−−→ IQ −−−→ 0

u•

y u•K

y yu•A yu•Q
IΣ̃ : 0 −−−→ IK̃

q̃•−−−→ IÃ
p̃•−−−→ IQ̃ −−−→ 0

compatible with the morphisms ε−, and the cochain morphisms u• making all diagrams commute
are unique up to homotopy.

As proved in lecture, there is an associated cohomological δ-functor in degrees ≥ 0, R•F , with

RnF : A → B, RnF (A) = Hn(Ch(F )(A•)).

For every short exact sequence in A,

Σ : 0 −−−→ K
q−−−→ A

p−−−→ Q −−−→ 0,

the corresponding complex in B, Ch(B),

Ch(F )(IΣ) : 0 −−−→ Ch(F )(I•K)
Ch(F )(q•)−−−−−−→ Ch(F )(I•A)

Ch(F )(p•)−−−−−−→ Ch(F )(I•Q) −−−→ 0,

has associated complexes in B,

Ch(F )(IΣ)n : 0 −−−→ F (InK)
F (qn)−−−→ F (InA)

F (pn)−−−→ F (InQ) −−−→ 0,

being split exact sequences (since the additive functor F preserves split exact sequences), and hence
Ch(F )(IΣ) is a short exact sequence in B. The maps δnR•F,Σ are the connecting maps determined
by the Snake Lemma for this short exact sequence,

δnCh(F )(IΣ) : Hn(Ch(F )(I•Q))→ Hn+1(Ch(F )(I•K)).
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Associated to ε, there are morphisms in B

F (εA) : F (A)→ R0F (A).

(a) Let G : A → B be an additive functor. Let

α : F ⇒ G,

be a natural transformation. For every object A ofA and for every injective resolution ε : A[0]→ I•A,
there is an induced morphism in textCh(B),

Ch(α)(I•A) : Ch(F )(I•A)→ Ch(G)(I•A).

This induces morphisms,
Rnα(A) : RnF (A)→ RnG(A),

given by,
Hn(Ch(α)(I•A)) : Hn(Ch(F )(I•A))→ Hn(Ch(G)(I•A)).

For every n, prove that A 7→ Rnα(A) defines a natural transformation

Rnα : RnF ⇒ RnG.

Moreover, prove that this natural transformation is a morphism of δ-functors, i.e., for every short
exact sequence,

Σ : 0 −−−→ K
q−−−→ A

p−−−→ Q −−−→ 0,

for every integer n, the following diagram commutes,

RnF (Q)
δn
R•F,Σ−−−−→ Rn+1F (K)

Rnα(Q)

y yRn+1α(K)

RnG(Q) −−−−→
δn
R•G,Σ

Rn+1G(K)

.

(b) Prove that the morphisms F (εA) form a natural transformation, ρF : F → R0F .

(c) Prove that R0F is a left-exact functor. Assuming that F is left-exact, prove that ρF is a natural
equivalence of funcors. In particular, conclude that ρR0F : R0F → R0(R0F ) is a natural equivalence
of functors.

(d) For every half-exact functor,
G : A → B,

and for every natural transformation,
γ : F ⇒ G,
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prove that the two natural transformations,

R0γ ◦ ρF , ρG ◦ γ : F ⇒ R0G,

are equal. In particular, if G is left-exact, so that ρG is a natural equivalence, conclude that there
exists a unique natural transformation,

γ̃ : R0F ⇒ G,

such that γ equals γ̃ ◦ ρF .

(e) Now assume that A and B are small Abelian categories. Thus, functors from A to B are well-
defined in the usual axiomatization of set theory. Let Fun(A,B) be the category whose objects
are functors from A to B and whose morphisms are natural transformations of functors. Let
AddFun(A,B) be the full subcategory of additive functors. Let

e : LExactFun(A,B)→ AddFun(A,B),

be the full subcategory whose objects are left-exact additive functors from A to B. Prove that the
rule associating to F the left-exact functor R0F and associating to every natural transformation
α : F ⇒ G the natural transformation R0α : R0F ⇒ R0G is a left adjoint to e.

(f) With the same hypotheses as above, denote by Fun≥0
δ (A,B) the category whose objects are

cohomological δ-functors from A to B concentrated in degrees ≥ 0,

T • = ((T n : A → B)n∈Z, (δ
n
T )n∈Z),

and whose morphisms are natural transformations of δ-functors,

α• : S• → T •, (αn : Sn ⇒ T n)n∈Z.

Denote by
(−)0 : Fun≥0

δ (A,B)→ LExactFun(A,B),

the functor that associates to every cohomological δ-functor, T •, the functor, T 0, and that as-
sociates to every natural transformation of cohomological δ-functors, u• : S• → T •, the natural
transformation u0 : S0 → T 0. Denote by

R : LExactFun(A,B)→ Fun≥0
δ (A,B),

the functor that associates to every left-exact functor, F , the cohomological δ-functor, R•F , and
that associates to the natural transformation, α : F ⇒ G, the natural transformation of cohomo-
logical δ-functors, R•α : R•F ⇒ R•G. Prove that R is left adjoint to (−)0.

(g) In particular, for n > 0, prove that R0(RnF ) is the zero functor. Thus, for every m ≥ n,
Rm(RnF ) is the zero functor.

5

http://www.math.stonybrook.edu/~jstarr/M536f15/index.html
mailto:jstarr@math.stonybrook.edu


MAT 536 Algebra III
Stony Brook University
Problem Set 5

Jason Starr
Fall 2015

Problem 3.(Enough Projective and Injective Objects) Recall that for a category C, for every object
X of C, there is a covariant Yoneda functor,

hX : C → Sets, B 7→ HomC(X,B),

and for every object Y of C, there is a contravariant Yoneda functor,

hY : Copp → Sets, A 7→ HomC(A, Y ).

An object X of C is projective if the Yoneda functor hX sends epimorphisms to epimorphisms.
An object Y of C is injective if the Yoneda functor hY sends monomorphisms to epimorphisms.
The category has enough projectives if for every object B there exists a projective object X and
an epimorphism X → B. The category has enough injectives if for every object A there exists
an injective object Y and a monomorphism from A to Y .

(a) Check that this notion agrees with the usual definition of projective and injective for objects
in an Abelian category.

(b) For the category Sets, assuming the Axioms of Choice, prove that every object is both projec-
tive and injective. Deduce the same for the opposite category, Setsopp.

(c) Let C and D be categories. Let (L,R, θ, η) be an adjoint pair of covariant functors,

L : C → D, R : D → C.

For every object d of D, prove that

η(d) : L(R(d))→ d,

is an epimorphism. For every object c ov C, prove that

θ : c→ R(L(c)),

is a monomorphism. Thus, if every L(R(d)) is a projective object, then C has enough projective
objects. Similarly, if every R(L(c)) is an injective object, then C has enough injective objects.

(d) Assuming that R sends epimorphisms to epimorphisms, prove that L sends projective objects
of C to projective objects of D. Thus, if every object of C is projective, conclude that D has
enough projective objects. More generally, assume further that R is faithful, i.e., R sends distinct
morphisms to distinct morphisms. Then conclude for every epimorphism X → R(D) in C, the
associated morphism L(X)→ D in D is an epimorphism. Thus, if C has enough projective objects,
also D has enough projective objects.

Similarly, assuming that L sends monomorphisms to monomorphisms, prove that R sends injective
objects of D to injective objects of C. Thus, if every object of D is injective, conclude that
there are enough injective objects of C. More generally, assume further that L is faithful. Then
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conclude for every monomorphism L(C)→ Y in D, the associated morphism C → R(Y ) in C is a
monomorphism. Thus, if D has enough injective objects, also C has enough injective objects.

(e) Let S and T be associative, unital algebras. Let C be the category Sets. Let D be the category
S − T −mod of S − T -bimodules. Let

R : S − T −mod→ Sets

be the forgetful functor that sends every S − T -bimodule to the underlying set of elements of the
bimodule. Prove that R sends epimorphisms to epimorphisms and R is faithful. Prove that there
exists a left adjoint functor,

L : Sets→ S − T −mod,

that sends every set Σ to the corresponding S − T -bimodule, L(Σ) of functions f : Σ → S ⊗Z T
that are zero except on finitely many elements of Σ. Since Sets has enough projective objects (in
fact every object is projective), conclude that S − T −mod has enough projective objects.

(e) Let S, T and U be associative, unital rings. Let B be a T −U -bimodule. Let C be the Abelian
category of S−T -bimodules, let D be the Abelian category of S−U -bimodules, let L be the exact,
additive functor,

L : S − T −mod→ S − U −mod, L(A) = A⊗T B,

and let R be the right adjoint functor,

R : S − U −mod→ S − T −mod, R(C) = Hommod−U(B,C).

Prove that if B is a flat (left) T -module, resp. a faithfully flat (left) T -module, then L sends
monomorphisms to monomorphisms, resp. L sends monomorphism to monomorphisms and is
faithful. Conclude, then, that R sends injective objects of S − U − mod to injective objects of
S−T −mod, resp. if S−U −mod has enough injective objects then also S−T −mod has enough
injective objects.

(f) Continuing as above, for every ring homomorphism U → T , prove that the induced T − U -
module structure on T is faithfully flat as a left T -module. Thus, given rings Λ and Π, define
S = Λ, define T = Π, and define U to be Z with its unique ring homomorphism to T . Conclude
that if there exist enough injective objects in Λ−mod, then there exist enough injective objects in
Λ− Π−mod.

(g) For the next step, define T and U to be Λ, define B to be Λ as a left-right T -module, and
define S to be Z. Conclude that if there are enough injective Z-modules, then there are enough
injective Λ-modules, and hence there are enough injective Λ − Π-bimodules. Thus, to prove that
there are enough Λ− Π-bimodules, it is enough to prove that there are enough Z-modules.

Problem 4.(Enough Abelian Groups.) Let A be an Abelian category that has all small products.
An object Y of A is an injective cogenerator if Y is injective and for every pair of distinct
morphisms,

u, v : A′ → A,
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in A, there exists a morphism w : A→ Y such that w ◦ u and w ◦ v are also distinct.

(a) Let C be the category Setsopp. For an object Y of A, define L to be the Yoneda functor

hY : A → Setsopp, hY (A) = HomA(A, Y ).

Similarly, define the functor,

R : Setsopp → A, L(Σ) = ”HomSets(Σ, Y )”,

that sends every set Σ to the object R(Σ) in A that is the direct product of copies of Y indexed
by elements of Σ. Prove that L and R are an adjoint pair of functors.

(b) Assuming that A has an injective cogenerator Y , prove that L sends monomorphisms to
monomorphisms, and prove that L is faithful. Conclude that A has enough injective objects.

(c) Now let S be an associative, unital ring (it suffices to consider the special case that S is Z). Let
A be mod− S. Use the Axiom of Choice to prove Baer’s criterion: a right S-module Y is injective
if and only if for every right ideal J of S, the induced set map

Hommod−S(S, Y )→ Hommod−S(J, Y )

is surjective. In particular, if S is a principal ideal domain, conclude that Y is injective if and only
if Y is divisible.

(d) Finally, defining S to be Z, conclude that Y = Q/Z is injective, since it is divisible. Finally,
for every Abelian group A and for every nonzero element a of A, conclude that there is a nonzero
Z-module homomorphism Z · a → Q/Z. Thus, for every pair of elements a′, a′′ ∈ A such that
a = a′ − a′′ is nonzero, conclude that there exists a Z-module homomorphisms w : A→ Q/Z such
that w(a′)−w(a′′) is nonzero. Conclude that Q/Z is an injective cogenerator of Z. Thus mod−Z
has enough injective objects. Thus, for every pair of associative, unital rings Λ, Π, the Abelian
category Λ− Π−mod has enough injective objects.

Problem 5. Let S be an associative, unital ring. Prove that Ch≥0(S) has enough injective objects,
and prove that Ch≤0(S) has enough projective objects.

Problem 6. Let R be an associative, unital ring, and let J ⊂ R be a right ideal. For every left
R-module M , prove that there is a natural isomorphism,

TorR1 (R/J,M) ∼= Ker(J ⊗RM →M),

and for every q > 0, there are isomorphisms,

TorRq (J,M) ∼= TorRq+1(R/J,M).

In particular, if J is a principal ideal generated by a nonzerodivisor, say J = sR for some nonze-
rodivisor s of R, conclude that

TorR1 (R/sR,M) ∼= {m ∈M : sm = 0},
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and Torq+1(R/sR,M) is zero for all q > 0. In every case, conclude that for every left ideal I of R,
TorR1 (R/J,R/I) is the same whether R/I is held fixed or whether R/J is held fixed.

Problem 7. Let R be a commutative, unital ring that is a principal ideal domain. Review the
structure theorem of finitely generated modules over a principal ideal domain. Prove that for all
finitely generated R-modules M and N , TorRq (M,N) is zero for all q ≥ 2. By realizing every
R-module as a colimit of finitely generated R-modules, conclude that for every pair M , N of R-
modules (whether or not finitely generated), TorRq (M,N) is zero for all q ≥ 2. Finally, for every

pair s, t of nonzerodivisors in R, compute that TorR1 (R/sR,R/tR) is R/uR, where sR+ tR equals
uR as a principal ideal in R.

Problem 8. Let R and T be commutative, unital rings. Let f : R→ T be a ring homomorphism
such that T is flat as an R-module. Prove that for every R-module M and for every T -module N ,
there are natural isomorphisms,

TorRq (M,N)⊗R T → TorTq (M ⊗R T,N).

In particular, if T is the ring of fractions T = S−1R for a multiplicatively closed subset S of R,
prove that for every pair of R-modules M and N , the induced S−1R-module homomorphism,

S−1TorRq (M,N)→ TorTq (S−1M,S−1N),

is an isomorphism.

Problem 9. Let R and T be commutative, unital rings. Let f : R→ T be a ring homomorphism.
For every R-module M and for every T -module N , there is a binatural isomorphism,

HomR−mod(M,N) ∼= HomT−mod(M ⊗R T,N).

If M is a finitely presented R-module, conclude that also M ⊗R T is a finitely presented T -module.
If also T is a flat R-module, conclude that for every R-module L,

HomR−mod(M,L)⊗R T → HomR−mod(M,L⊗R T ),

is an isomorphism. Finally, conclude that the natural map

HomR−mod(M,L)⊗R T → HomT−mod(M ⊗R T, L⊗R T )

is an isomorphism. Give a counterexamples when M is not finitely presented.

Problem 10. Continuing the previous problem, if M is a finitely presented R-module and if T is
R-flat, prove that for every q ≥ 0, the natural map

ExtqR(M,L)⊗R T → ExtqT (M ⊗R T, L⊗R T )

is an isomorphism.
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