MAT 536 Problem Set 5

Homework Policy. Please read through all the problems. Please solve 5 of the problems. I will be happy to discuss the solutions during office hours.

Problems.

Problem 1. Let \mathcal{A} and \mathcal{B} be Abelian categories. For every additive functor,

$$F: \mathcal{A} \to \mathcal{B},$$

there is an associated additive functor,

$$\operatorname{Ch}(F) : \operatorname{Ch}(\mathcal{A}) \to \operatorname{Ch}(\mathcal{B}),$$

that associates to every cochain complex in $Ch(\mathcal{A})$,

$$A^{\bullet} = ((A^n)_{n \in \mathbb{Z}}, (d^n_A)_{n \in \mathbb{Z}})$$

the cochain complex in $Ch(\mathcal{B})$,

$$\operatorname{Ch}(F)(A^{\bullet}) = ((F(A^n))_{n \in \mathbb{Z}}, (F(d^n_A))_{n \in \mathbb{Z}}),$$

and that associates to every morphism of cochain complexes in $Ch(\mathcal{A})$,

 $u^{\bullet}: C^{\bullet} \to A^{\bullet}, \quad (u^n: C^n \to A^n)_{n \in \mathbb{Z}},$

the morphism of cochain complexes in $Ch(\mathcal{B})$,

$$\operatorname{Ch}(F)(u^{\bullet}) = (F(u^n) : F(C^n) \to F(A^n))_{n \in \mathbb{Z}}.$$

In particular, for every homotopy

$$s^{\bullet} = (s^n : C^n \to A^{n-1})_{n \in \mathbb{Z}},$$

from u^{\bullet} to 0, also

$$\operatorname{Ch}(F)(s^{\bullet}) := (F(s^n) : F(C^n) \to F(A^{n-1}))_{n \in \mathbb{Z}},$$

is a homotopy from $Ch(F)(u^{\bullet})$ to 0.

(a) For additive functors,

$$F, G: \mathcal{A} \to \mathcal{B},$$

let

$$\alpha: F \Rightarrow G,$$

be a natural transformation. For every cochain complex A^{\bullet} in $Ch(\mathcal{A})$, prove that

$$(\alpha_{A^n}: F(A^n) \to G(A^n))_{n \in \mathbb{Z}}$$

is a morphism of cochain complexes in $Ch(\mathcal{B})$,

$$\operatorname{Ch}(\alpha)(A^{\bullet}) : \operatorname{Ch}(F)(A^{\bullet}) \to \operatorname{Ch}(G)(A^{\bullet}).$$

(b) Prove that the rule $A^{\bullet} \mapsto \operatorname{Ch}(\alpha)(A^{\bullet})$ is a natural transformation

$$\operatorname{Ch}(\alpha) : \operatorname{Ch}(F) \Rightarrow \operatorname{Ch}(G).$$

Moreover, for every morphism $u^{\bullet} : C^{\bullet} \to A^{\bullet}$ in $Ch(\mathcal{A})$, and for every homotopy $(s^n : C^n \to A^{n-1})_{n \in \mathbb{Z}}$ from u^{\bullet} to 0, prove that also $Ch(\alpha)(A^{\bullet}) \circ Ch(F)(s^{\bullet})$ equals $Ch(G)(s^{\bullet}) \circ Ch(\alpha)(C^{\bullet})$.

(c) For the identity natural transformation $\mathrm{Id}_F : F \Rightarrow F$, prove that $\mathrm{Ch}(\mathrm{Id}_F)$ is the identity natural transformation $\mathrm{Ch}(F) \Rightarrow \mathrm{Ch}(F)$. Also, for every pair of natural transformations of additive functors $\mathcal{A} \to \mathcal{B}$,

$$\alpha: F \Rightarrow G, \quad \beta: E \Rightarrow F,$$

for the composite natural transformation $\alpha \circ \beta$, prove that $Ch(\alpha \circ \beta)$ equals $Ch(\alpha) \circ Ch(\beta)$. In this sense, Ch is a "functor" from the "2-category" of Abelian categories to the "2-category" of Abelian categories.

Problem 2. Let \mathcal{A} and \mathcal{B} be Abelian categories. Let $F : \mathcal{A} \to \mathcal{B}$ be an additive functor. Assume that \mathcal{A} has enough injective objects. Thus, every object A admits an injective resolution in Ch(\mathcal{A}),

which is functorial up to null homotopies (in particular, any two injective resolutions are homotopy equivalent). Moreover, for every short exact sequence in \mathcal{A} ,

$$\Sigma: 0 \longrightarrow K \xrightarrow{q} A \xrightarrow{p} Q \longrightarrow 0,$$

there exists a diagram of injective resolutions with rows being short exact sequences in $Ch(\mathcal{A})$,

whose associated short exact sequences in \mathcal{A} ,

 $I_{\Sigma}^{n}: 0 \longrightarrow I_{K}^{n} \xrightarrow{q^{n}} I_{A}^{n} \xrightarrow{p^{n}} I_{Q}^{n} \longrightarrow 0,$

are automatically split. Moreover, this diagram of injective resolutions is functorial up to homotopy, i.e., for every commutative diagram of short exact sequences in \mathcal{A} ,

Σ :	$0 \longrightarrow K$	\xrightarrow{q}	$A \xrightarrow{p}$	$Q \longrightarrow 0$)
$u \downarrow$	$u_K \downarrow$		$\int u_A$	$\downarrow u_Q$	
$\widetilde{\Sigma}$:	$0 \longrightarrow \widetilde{K}$	$\xrightarrow{\widetilde{q}}$	$\widetilde{A} \xrightarrow{\widetilde{p}} \longrightarrow$	$\widetilde{Q} \longrightarrow 0$)

there exists a commutative diagram in $Ch(\mathcal{A})$,

compatible with the morphisms ϵ_{-} , and the cochain morphisms u^{\bullet} making all diagrams commute are unique up to homotopy.

As proved in lecture, there is an associated cohomological δ -functor in degrees $\geq 0, R^{\bullet}F$, with

 $R^n F : \mathcal{A} \to \mathcal{B}, \quad R^n F(A) = H^n(\mathrm{Ch}(F)(A^{\bullet})).$

For every short exact sequence in \mathcal{A} ,

 $\Sigma: 0 \longrightarrow K \xrightarrow{q} A \xrightarrow{p} Q \longrightarrow 0,$

the corresponding complex in \mathcal{B} , $Ch(\mathcal{B})$,

$$\operatorname{Ch}(F)(I_{\Sigma}): 0 \longrightarrow \operatorname{Ch}(F)(I_{K}^{\bullet}) \xrightarrow{\operatorname{Ch}(F)(q^{\bullet})} \operatorname{Ch}(F)(I_{A}^{\bullet}) \xrightarrow{\operatorname{Ch}(F)(p^{\bullet})} \operatorname{Ch}(F)(I_{Q}^{\bullet}) \longrightarrow 0,$$

has associated complexes in \mathcal{B} ,

$$\operatorname{Ch}(F)(I_{\Sigma})^{n}: 0 \longrightarrow F(I_{K}^{n}) \xrightarrow{F(q^{n})} F(I_{A}^{n}) \xrightarrow{F(p^{n})} F(I_{Q}^{n}) \longrightarrow 0,$$

being split exact sequences (since the additive functor F preserves split exact sequences), and hence $\operatorname{Ch}(F)(I_{\Sigma})$ is a short exact sequence in \mathcal{B} . The maps $\delta_{R^{\bullet}F,\Sigma}^{n}$ are the connecting maps determined by the Snake Lemma for this short exact sequence,

$$\delta^n_{\operatorname{Ch}(F)(I_{\Sigma})} : H^n(\operatorname{Ch}(F)(I_Q^{\bullet})) \to H^{n+1}(\operatorname{Ch}(F)(I_K^{\bullet})).$$

Associated to ϵ , there are morphisms in \mathcal{B}

$$F(\epsilon_A): F(A) \to R^0 F(A).$$

(a) Let $G: \mathcal{A} \to \mathcal{B}$ be an additive functor. Let

$$\alpha: F \Rightarrow G,$$

be a natural transformation. For every object A of \mathcal{A} and for every injective resolution $\epsilon : A[0] \to I_A^{\bullet}$, there is an induced morphism in $textCh(\mathcal{B})$,

$$\operatorname{Ch}(\alpha)(I_A^{\bullet}) : \operatorname{Ch}(F)(I_A^{\bullet}) \to \operatorname{Ch}(G)(I_A^{\bullet}).$$

This induces morphisms,

$$R^n\alpha(A): R^nF(A) \to R^nG(A),$$

given by,

$$H^{n}(\mathrm{Ch}(\alpha)(I_{A}^{\bullet})): H^{n}(\mathrm{Ch}(F)(I_{A}^{\bullet})) \to H^{n}(\mathrm{Ch}(G)(I_{A}^{\bullet}))$$

For every n, prove that $A \mapsto R^n \alpha(A)$ defines a natural transformation

$$R^n \alpha : R^n F \Rightarrow R^n G.$$

Moreover, prove that this natural transformation is a morphism of δ -functors, i.e., for every short exact sequence,

 $\Sigma: 0 \longrightarrow K \xrightarrow{q} A \xrightarrow{p} Q \longrightarrow 0,$

for every integer n, the following diagram commutes,

$$\begin{array}{cccc}
R^{n}F(Q) & \xrightarrow{\delta_{R}^{n}\bullet_{F,\Sigma}} & R^{n+1}F(K) \\
R^{n}\alpha(Q) \downarrow & & & \downarrow \\
R^{n}G(Q) & \xrightarrow{\delta_{R}^{n}\bullet_{G,\Sigma}} & R^{n+1}G(K)
\end{array}$$

(b) Prove that the morphisms $F(\epsilon_A)$ form a natural transformation, $\rho_F: F \to R^0 F$.

(c) Prove that R^0F is a left-exact functor. Assuming that F is left-exact, prove that ρ_F is a natural equivalence of funcors. In particular, conclude that $\rho_{R^0F} : R^0F \to R^0(R^0F)$ is a natural equivalence of functors.

(d) For every half-exact functor,

$$G: \mathcal{A} \to \mathcal{B},$$

and for every natural transformation,

$$\gamma: F \Rightarrow G,$$

prove that the two natural transformations,

$$R^0 \gamma \circ \rho_F, \rho_G \circ \gamma : F \Rightarrow R^0 G,$$

are equal. In particular, if G is left-exact, so that ρ_G is a natural equivalence, conclude that there exists a unique natural transformation,

$$\widetilde{\gamma}: R^0 F \Rightarrow G,$$

such that γ equals $\widetilde{\gamma} \circ \rho_F$.

(e) Now assume that \mathcal{A} and \mathcal{B} are small Abelian categories. Thus, functors from \mathcal{A} to \mathcal{B} are welldefined in the usual axiomatization of set theory. Let Fun $(\mathcal{A}, \mathcal{B})$ be the category whose objects are functors from \mathcal{A} to \mathcal{B} and whose morphisms are natural transformations of functors. Let AddFun $(\mathcal{A}, \mathcal{B})$ be the full subcategory of additive functors. Let

 $e: \text{LExactFun}(\mathcal{A}, \mathcal{B}) \to \text{AddFun}(\mathcal{A}, \mathcal{B}),$

be the full subcategory whose objects are left-exact additive functors from \mathcal{A} to \mathcal{B} . Prove that the rule associating to F the left-exact functor R^0F and associating to every natural transformation $\alpha: F \Rightarrow G$ the natural transformation $R^0\alpha: R^0F \Rightarrow R^0G$ is a left adjoint to e.

(f) With the same hypotheses as above, denote by $\operatorname{Fun}_{\delta}^{\geq 0}(\mathcal{A}, \mathcal{B})$ the category whose objects are cohomological δ -functors from \mathcal{A} to \mathcal{B} concentrated in degrees ≥ 0 ,

$$T^{\bullet} = ((T^n : \mathcal{A} \to \mathcal{B})_{n \in \mathbb{Z}}, (\delta^n_T)_{n \in \mathbb{Z}}),$$

and whose morphisms are natural transformations of δ -functors,

$$\alpha^{\bullet}: S^{\bullet} \to T^{\bullet}, \ (\alpha^n: S^n \Rightarrow T^n)_{n \in \mathbb{Z}}.$$

Denote by

$$(-)^0: \operatorname{Fun}_{\delta}^{\geq 0}(\mathcal{A}, \mathcal{B}) \to \operatorname{LExactFun}(\mathcal{A}, \mathcal{B}),$$

the functor that associates to every cohomological δ -functor, T^{\bullet} , the functor, T^{0} , and that associates to every natural transformation of cohomological δ -functors, $u^{\bullet} : S^{\bullet} \to T^{\bullet}$, the natural transformation $u^{0} : S^{0} \to T^{0}$. Denote by

$$R: LExactFun(\mathcal{A}, \mathcal{B}) \to Fun_{\delta}^{\geq 0}(\mathcal{A}, \mathcal{B}),$$

the functor that associates to every left-exact functor, F, the cohomological δ -functor, $R^{\bullet}F$, and that associates to the natural transformation, $\alpha : F \Rightarrow G$, the natural transformation of cohomological δ -functors, $R^{\bullet}\alpha : R^{\bullet}F \Rightarrow R^{\bullet}G$. Prove that R is left adjoint to $(-)^{0}$.

(g) In particular, for n > 0, prove that $R^0(R^n F)$ is the zero functor. Thus, for every $m \ge n$, $R^m(R^n F)$ is the zero functor.

Problem 3. (Enough Projective and Injective Objects) Recall that for a category \mathcal{C} , for every object X of \mathcal{C} , there is a covariant Yoneda functor,

$$h^X : \mathcal{C} \to \mathbf{Sets}, \quad B \mapsto \operatorname{Hom}_{\mathcal{C}}(X, B),$$

and for every object Y of \mathcal{C} , there is a contravariant Yoneda functor,

 $h_Y: \mathcal{C}^{\mathrm{opp}} \to \mathbf{Sets}, A \mapsto \mathrm{Hom}_{\mathcal{C}}(A, Y).$

An object X of \mathcal{C} is **projective** if the Yoneda functor h^X sends epimorphisms to epimorphisms. An object Y of \mathcal{C} is **injective** if the Yoneda functor h_Y sends monomorphisms to epimorphisms. The category has **enough projectives** if for every object B there exists a projective object X and an epimorphism $X \to B$. The category has **enough injectives** if for every object A there exists an injective object Y and a monomorphism from A to Y.

(a) Check that this notion agrees with the usual definition of projective and injective for objects in an Abelian category.

(b) For the category **Sets**, assuming the Axioms of Choice, prove that every object is both projective and injective. Deduce the same for the opposite category, **Sets**^{opp}.

(c) Let \mathcal{C} and \mathcal{D} be categories. Let (L, R, θ, η) be an adjoint pair of covariant functors,

$$L: \mathcal{C} \to \mathcal{D}, \quad R: \mathcal{D} \to \mathcal{C}.$$

For every object d of \mathcal{D} , prove that

$$\eta(d): L(R(d)) \to d,$$

is an epimorphism. For every object c ov C, prove that

$$\theta: c \to R(L(c)),$$

is a monomorphism. Thus, if every L(R(d)) is a projective object, then C has enough projective objects. Similarly, if every R(L(c)) is an injective object, then C has enough injective objects.

(d) Assuming that R sends epimorphisms to epimorphisms, prove that L sends projective objects of \mathcal{C} to projective objects of \mathcal{D} . Thus, if every object of \mathcal{C} is projective, conclude that \mathcal{D} has enough projective objects. More generally, assume further that R is **faithful**, i.e., R sends distinct morphisms to distinct morphisms. Then conclude for every epimorphism $X \to R(D)$ in \mathcal{C} , the associated morphism $L(X) \to D$ in \mathcal{D} is an epimorphism. Thus, if \mathcal{C} has enough projective objects, also \mathcal{D} has enough projective objects.

Similarly, assuming that L sends monomorphisms to monomorphisms, prove that R sends injective objects of \mathcal{D} to injective objects of \mathcal{C} . Thus, if every object of \mathcal{D} is injective, conclude that there are enough injective objects of \mathcal{C} . More generally, assume further that L is faithful. Then

conclude for every monomorphism $L(C) \to Y$ in \mathcal{D} , the associated morphism $C \to R(Y)$ in \mathcal{C} is a monomorphism. Thus, if \mathcal{D} has enough injective objects, also \mathcal{C} has enough injective objects.

(e) Let S and T be associative, unital algebras. Let C be the category **Sets**. Let D be the category S - T - mod of S - T-bimodules. Let

 $R: S - T - \text{mod} \to \mathbf{Sets}$

be the forgetful functor that sends every S - T-bimodule to the underlying set of elements of the bimodule. Prove that R sends epimorphisms to epimorphisms and R is faithful. Prove that there exists a left adjoint functor,

$$L: \mathbf{Sets} \to S - T - \mathrm{mod},$$

that sends every set Σ to the corresponding S - T-bimodule, $L(\Sigma)$ of functions $f : \Sigma \to S \otimes_{\mathbb{Z}} T$ that are zero except on finitely many elements of Σ . Since **Sets** has enough projective objects (in fact every object is projective), conclude that S - T – mod has enough projective objects.

(e) Let S, T and U be associative, unital rings. Let B be a T - U-bimodule. Let C be the Abelian category of S - T-bimodules, let D be the Abelian category of S - U-bimodules, let L be the exact, additive functor,

 $L: S - T - \text{mod} \to S - U - \text{mod}, \quad L(A) = A \otimes_T B,$

and let R be the right adjoint functor,

$$R: S - U - \text{mod} \rightarrow S - T - \text{mod}, \quad R(C) = \text{Hom}_{\text{mod}-U}(B, C).$$

Prove that if B is a flat (left) T-module, resp. a faithfully flat (left) T-module, then L sends monomorphisms to monomorphisms, resp. L sends monomorphism to monomorphisms and is faithful. Conclude, then, that R sends injective objects of S - U - mod to injective objects of S - T - mod, resp. if S - U - mod has enough injective objects then also S - T - mod has enough injective objects.

(f) Continuing as above, for every ring homomorphism $U \to T$, prove that the induced T - Umodule structure on T is faithfully flat as a left T-module. Thus, given rings Λ and Π , define $S = \Lambda$, define $T = \Pi$, and define U to be \mathbb{Z} with its unique ring homomorphism to T. Conclude that if there exist enough injective objects in $\Lambda - \mod$, then there exist enough injective objects in $\Lambda - \mod$.

(g) For the next step, define T and U to be Λ , define B to be Λ as a left-right T-module, and define S to be \mathbb{Z} . Conclude that if there are enough injective \mathbb{Z} -modules, then there are enough injective Λ -modules, and hence there are enough injective Λ – Π -bimodules. Thus, to prove that there are enough Λ – Π -bimodules, it is enough to prove that there are enough \mathbb{Z} -modules.

Problem 4.(Enough Abelian Groups.) Let \mathcal{A} be an Abelian category that has all small products. An object Y of \mathcal{A} is an **injective cogenerator** if Y is injective and for every pair of distinct morphisms,

$$u, v: A' \to A,$$

in \mathcal{A} , there exists a morphism $w: \mathcal{A} \to Y$ such that $w \circ u$ and $w \circ v$ are also distinct.

(a) Let \mathcal{C} be the category **Sets**^{opp}. For an object Y of \mathcal{A} , define L to be the Yoneda functor

$$h_Y: \mathcal{A} \to \mathbf{Sets}^{\mathrm{opp}}, \ h_Y(A) = \mathrm{Hom}_{\mathcal{A}}(A, Y).$$

Similarly, define the functor,

$$R: \mathbf{Sets}^{\mathrm{opp}} \to \mathcal{A}, \ L(\Sigma) = "\mathrm{Hom}_{\mathbf{Sets}}(\Sigma, Y)",$$

that sends every set Σ to the object $R(\Sigma)$ in \mathcal{A} that is the direct product of copies of Y indexed by elements of Σ . Prove that L and R are an adjoint pair of functors.

(b) Assuming that \mathcal{A} has an injective cogenerator Y, prove that L sends monomorphisms to monomorphisms, and prove that L is faithful. Conclude that \mathcal{A} has enough injective objects.

(c) Now let S be an associative, unital ring (it suffices to consider the special case that S is \mathbb{Z}). Let \mathcal{A} be mod -S. Use the Axiom of Choice to prove Baer's criterion: a right S-module Y is injective if and only if for every right ideal J of S, the induced set map

$$\operatorname{Hom}_{\operatorname{mod}-S}(S,Y) \to \operatorname{Hom}_{\operatorname{mod}-S}(J,Y)$$

is surjective. In particular, if S is a principal ideal domain, conclude that Y is injective if and only if Y is divisible.

(d) Finally, defining S to be Z, conclude that $Y = \mathbb{Q}/\mathbb{Z}$ is injective, since it is divisible. Finally, for every Abelian group A and for every nonzero element a of A, conclude that there is a nonzero Z-module homomorphism $\mathbb{Z} \cdot a \to \mathbb{Q}/\mathbb{Z}$. Thus, for every pair of elements $a', a'' \in A$ such that a = a' - a'' is nonzero, conclude that there exists a Z-module homomorphisms $w : A \to \mathbb{Q}/\mathbb{Z}$ such that w(a') - w(a'') is nonzero. Conclude that \mathbb{Q}/\mathbb{Z} is an injective cogenerator of Z. Thus mod $-\mathbb{Z}$ has enough injective objects. Thus, for every pair of associative, unital rings Λ , Π , the Abelian category $\Lambda - \Pi$ – mod has enough injective objects.

Problem 5. Let S be an associative, unital ring. Prove that $\operatorname{Ch}^{\geq 0}(S)$ has enough injective objects, and prove that $\operatorname{Ch}^{\leq 0}(S)$ has enough projective objects.

Problem 6. Let R be an associative, unital ring, and let $J \subset R$ be a right ideal. For every left R-module M, prove that there is a natural isomorphism,

$$\operatorname{Tor}_{1}^{R}(R/J, M) \cong \operatorname{Ker}(J \otimes_{R} M \to M),$$

and for every q > 0, there are isomorphisms,

$$\operatorname{Tor}_{q}^{R}(J, M) \cong \operatorname{Tor}_{q+1}^{R}(R/J, M).$$

In particular, if J is a principal ideal generated by a nonzerodivisor, say J = sR for some nonzerodivisor s of R, conclude that

$$\operatorname{Tor}_{1}^{R}(R/sR, M) \cong \{m \in M : sm = 0\},\$$

and $\operatorname{Tor}_{q+1}(R/sR, M)$ is zero for all q > 0. In every case, conclude that for every left ideal I of R, $\operatorname{Tor}_{1}^{R}(R/J, R/I)$ is the same whether R/I is held fixed or whether R/J is held fixed.

Problem 7. Let R be a commutative, unital ring that is a principal ideal domain. Review the structure theorem of finitely generated modules over a principal ideal domain. Prove that for all finitely generated R-modules M and N, $\operatorname{Tor}_q^R(M, N)$ is zero for all $q \geq 2$. By realizing every R-module as a colimit of finitely generated R-modules, conclude that for every pair M, N of R-modules (whether or not finitely generated), $\operatorname{Tor}_q^R(M, N)$ is zero for all $q \geq 2$. Finally, for every pair s, t of nonzerodivisors in R, compute that $\operatorname{Tor}_1^R(R/sR, R/tR)$ is R/uR, where sR + tR equals uR as a principal ideal in R.

Problem 8. Let R and T be commutative, unital rings. Let $f : R \to T$ be a ring homomorphism such that T is flat as an R-module. Prove that for every R-module M and for every T-module N, there are natural isomorphisms,

$$\operatorname{Tor}_{a}^{R}(M, N) \otimes_{R} T \to \operatorname{Tor}_{a}^{T}(M \otimes_{R} T, N).$$

In particular, if T is the ring of fractions $T = S^{-1}R$ for a multiplicatively closed subset S of R, prove that for every pair of R-modules M and N, the induced $S^{-1}R$ -module homomorphism,

$$S^{-1}\operatorname{Tor}_{q}^{R}(M,N) \to \operatorname{Tor}_{q}^{T}(S^{-1}M,S^{-1}N),$$

is an isomorphism.

Problem 9. Let R and T be commutative, unital rings. Let $f : R \to T$ be a ring homomorphism. For every R-module M and for every T-module N, there is a binatural isomorphism,

$$\operatorname{Hom}_{R-\operatorname{mod}}(M,N) \cong \operatorname{Hom}_{T-\operatorname{mod}}(M \otimes_R T,N).$$

If M is a finitely presented R-module, conclude that also $M \otimes_R T$ is a finitely presented T-module. If also T is a flat R-module, conclude that for every R-module L,

$$\operatorname{Hom}_{R-\operatorname{mod}}(M,L)\otimes_R T \to \operatorname{Hom}_{R-\operatorname{mod}}(M,L\otimes_R T),$$

is an isomorphism. Finally, conclude that the natural map

$$\operatorname{Hom}_{R-\operatorname{mod}}(M,L) \otimes_R T \to \operatorname{Hom}_{T-\operatorname{mod}}(M \otimes_R T, L \otimes_R T)$$

is an isomorphism. Give a counterexamples when M is not finitely presented.

Problem 10. Continuing the previous problem, if M is a finitely presented R-module and if T is R-flat, prove that for every $q \ge 0$, the natural map

$$\operatorname{Ext}_{R}^{q}(M,L) \otimes_{R} T \to \operatorname{Ext}_{T}^{q}(M \otimes_{R} T, L \otimes_{R} T)$$

is an isomorphism.