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MAT 536 Problem Set 10

Homework Policy. Please read through all the problems. Please solve 5 of the problems. I will
be happy to discuss the solutions during office hours.

Problems.

Problem 1.(The Mapping Cone is a Homotopy Limit and a Homotopy Colimit) Let A4 be an
Abelian category. Let A* and B*® be objects in Ch®*(A). Let f*: A* - B* be a morphism in
Ch*(A). For every object T of Ch*(A), a left homotopy annihilator to T* is a pair (Q*,0°) of a
morphism @* : B* - T* in Ch*(A) and a nullhomotopy (0" : A" - T" 1),z of Q*o f*, i.e., for
every n € Z,
Q"o fr=di oo™ +o™ o dy.

For every object S*® of Ch®*(.A), a right homotopy annihilator from S*® is a pair (A®,7*) of a morphism
A*:S* > A*[+1] and a nullhomotopy (77 : S™ - B[+1]" = B"),ez of f*[+1] o A°, i.e., for every
n €7,

frlo An = d%_[}rl] o+ 7" o dl = ~dbor" + 7" o dy.
Denote by LHA+(T*) the set of left homotopy annihilators to T, and denote by RH Af.(S*) the
set of right homotopy annihilators from S*.

(a)(Homotopy Annihilators are Additive Functors) Prove that (0,0) is a left homotopy annihilator
to T*. For left homotopy annihilators (Q*,0®) and (Q*,5*) to T*, prove that (Q* - Q*,0°-7*)
is also a left homotopy annihilator to 7. Conclude that LH As.(7*) is an Abelian group, and the
set map,

e - LHAG(T*) = Homene o (BT, (@57 = Q"

is a homomorphism of Abelian groups. For every morphism ¢*:7* - T* in Ch*(A), for every left
homotopy annihilator (Q*,0*) to T, prove that (g°oQ*,g*00*) is a left homotopy annihilator to
T*. Denote the associated set map by

LHA;(g%) : LHA(T*) » LHA(T®), (Q%,0%) = (9° 0 Q*, 9" 0 o).
Prove that LHA.(g*) is a morphism of Abelian groups, and the following diagram commutes,

LHAe(g") ~
LHA;(T*) LHA; (T

nT.l ln

WB(T*)  ———  BBY(T*)

hB* (g*)
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Prove that LHAg.(Ids+) is the identity map on LHA(T*). Also prove that LHA (G © g°)
equals LHA(G*) o LHAf(g°). Conclude that these rules define a functor,

LHAy. : Ch*(A) - Z - mod,
together with a natural transformation of functors,

n:LHA. = KB

In a similar way, extend RH Ay to a contravariant functor
RHAy. : Ch*(A)°PPtoZ — mod,
together with homomorphisms of Abelian groups,
> RHAp(S*) = hasp1)(S°),
that forms a natural transformation of (contravariant) functors.
(b)(The Universal Homotopy Annihilators) As usual, define the mapping cone C'(f*) to be
C(f*) =B o A",

with differential

d&f):C(f‘)"*C(f’)””’l bn]Hldg(bn) ' “"”(anﬂ)].

An+1 _dgfl(an+1)

Prove that this defines an object of Ch®(A). For every n € Z, define
n n o\n n bn
Qf° :B" — Cj(j)) ) Qf’(bn) = [ 0 ]'
Prove that this is a morphism in Ch*(A). For every n € Z, define

+ n+ e\n n+ 0
sptc A S O(f*)", sf.l(aml):[ ]

Qp+1

Prove that (s%.)sez is a nullhomotopy of g, o f*. Thus, (q}.,s}.) is an element of LH A (C(f*)).

In a similar way, for every n € Z, define

bn,
Ofe : C(f)" - A[+1]" = A™, [ ] > Upat-

A+l

Prove that this is a morphism 6%, : C(f*) - A[+1] in Ch*(A). For every n € Z, define

. C(f*)" - B+1]™ = B, [ bn ] > by

Ap+1

2
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Prove that (¢}.)nez is a nullhomotopy of f*[+1]od%.. Thus (6%.,1%.) is an element of RH Ay (C(f*)).

(c)(Mapping Cones Represent the Homotopy Annihilator Functors) Prove that the element (g% for S f.) €
LHA;(C(f*)) represents the functor LHA(C(f*)), i.e., for every object T of Ch*(A) and for
every element (Q°®,0°) € LHA(T*), there exists a unique morphism g*: C'(f*) — T such that
LHA(g°) maps (g, ss) to (Q,0).

Use this to reprove the following result (actually, this is essentially the same as the original proof).
For the short exact sequence in Ch*(A),

Cy 0 B Y. o(f) 2 A[+1] —— 0

splittings of the exact sequence (if any exist) are equivalent to nullhomotopies of f. In particular,
conclude that there exist splittings of the following two short exact sequences,

day Sy
Cy; 0 —— C(f) —— C(qy) —— B[+1] —— 0

o 0 A 45 [-1] o 96 1[-1] .
P (0[-1]) —— C(f) — 0

!
Finally, for every object D* of Ch*(A), for the zero morphism Op : 0 - D¢, conclude that g, :
D* - C(0p)*® is a natural isomorphism. Similarly, for the zero morphism 0P : D* - 0, conclude
that &y, : C(0P)* - D[+1]* is a natural isomorphism.

(d)(Compatibility with Homotopy Commutative Diagrams) A homotopy commutative diagram e
in Ch*(A) is a pair of a diagram in Ch*(A) (not strictly commutative),

fo: Ao f. 5 Bo

|l

]T' . Ae — B*

7o
and a nullhomotopy e = (e? : A" —» Br- D), of f oeb —ey o fo. For every homotopy commutative
diagram e, for every object T and for every left homotopy annihilator (Q G°) to T* relative to
f prove that (Q oey, 0% o€ ~Qoe *) is a left homotopy annihilator relative to f Denote the
associated set map by

LHAq(T*): LHA7(T*) > LHAp(T®), (Q*,5%) > (Q%0ey, 5% 0el - Q oc?).

Prove that LHA,. is a natural transformation of functors. In particular, associated to the left
homotopy annihilator (g7 o ep,sf © €4 = g7 © €5), conclude that there is a unique morphism in
Ch*(A), ~
Ce*):C(f*) = C(f*),
such that
(qpoep spoea—qpoes)=(C(e)oqp, C(e") 0 sye).

3
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On the level of elements, this is
b e (by) — et (ans1)
C ). n B n
(e ) [ An41 ]H |: n+1(an+1)

In particular, prove that this induces a morphism of short exact sequences in Ch*(A),

Cp: 0 B —Y o(f) =2 A[+1] —— 0
ceJ eBJ lme) lm
Cr: 0 B2 o) L A[+1] —— 0

For every object S* and for every right homotopy annihilator (A®,7*) from S* relative to f°,
prove that (es[+1]* o A® ep[+1]®* o 7* + e5[+1]® 0 A®) is a right homotopy annihilator relative to
fe. (Please recall, for a nullhomotopy s* = (s* : C™ — D" 1), of a morphism g* : C* - D*, the
sequence s[+1]* = (=s™*!: C™*! —» Dn), is a nullhomotopy of g[+1]*: C[+1]* - D[+1]*.) Denote
the associated set map by

RHA(S") : RHA;(S*) » RHAR(S®).

Prove that RHA.. is a natural transformation of functors. In particular, associated to the right
homotopy annihilator (ea[+1] o dse,ep[+1] o tpe + es[+1] 0 df)), conclude that there is a unique
morphism in Ch*(A), B
C(e*):C(f*)~C(f),
such that
(ea[+1]° 0 dpe,ep[+1]" otpe +es[+1]00f) = (07 0 C(e®), 7 0 C(e*)).
Prove that this is the same morphism as above.

(e)(Decomposition of the Diagonal of the Mapping Cone) In particular, associated to the homotopy
commutative diagram,

fioA-1. B
b )
Ocry: O - c(f)

with nullhomotopy —s¢, prove that the associated morphism of cones is

a8} ()" > U
Similarly, associated to the homotopy commutative diagram,

e o L g

5fl l‘sf lOB[H]

fl+1]: A[+1] m B[+1]
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with nullhomotopy ¢;, prove that the associated morphism of cones is

qf oty C(f)" = C(f)"
Prove that these morphisms give morphisms of short exact sequences,

a5

Cr: 0 B O(f) =2 A[+1] —— 0

Sfodfl OJ leO(Sf lIdA[H] ;

Cp: 0 B Y o(f) s A[+1] —— 0
Cp: 0 B " o(f) —2 A[+1] —— 0

qfOtfl IdBl qu"tf lo

5
Cp: 0 B -1 C(f) —L A[+1] — 0
Using Baer sum, prove that sy od; +qy oty equals Idg(yy.

(f)(Mapping Cone and the Total Complex of a Double Complex) Interpret every morphism f* :
A* - B* in Ch*(A) as an object of Ch[™"%/(Ch*(A)), or, equivalently, as a double complex. Prove
that the mapping cone is an additive functor,

C': ChlTN(Che(A)) - Ch*(A),
that is the same as the functor,
Tot : Ch**(A) - Ch*(A),
sending a double complex to the associated total complex.

For every homotopy commutative diagram e in Ch*(A),

fo: Ao f. s Bo

|l

Foo Ao — B
f.
and a nullhomotopy e = (e : A" - Bn-1), of f*o et — ey o f*, prove that there is a corresponding
morphism B
Cle): C(f) = C(f),
and prove that this is functorial in homotopy commutative diagrams in a suitable sense. This
suggests an enrichment of the categories of cochain complexes to properly capture this functoriality.

(g)(Cones Commute with Limits and Colimits) Use the universal property of C' with respect to
right homotopy annihilators to prove that C' commutes with the limit for every functor from a

5
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small category to ChI™Y(Ch®*(A4)) for which the limit of the functor exists in ChI™/(Ch*(A)).
Formulate and prove a version when the “functor” only preserves composition up to (specified)
homotopies, as in the previous part. Similarly, use the universal property of C' with respect to left
homotopy annihilators to prove that C' commutes with colimits of functors, resp. “functors up to
specified homotopies”, such that the colimit exists in Chl™"Y(Ch®(A4)).

Problem 2.(The DG Category of Complexes) Let A be an Abelian category. Let A* and B* be
objects in Ch®*(A). For every integer n, a degree n graded morphism, f*: A* - B*® is a sequence
(fm: Am - B™m), of morphisms f™ in A. Define dfy _(f*) to be the degree n + 1 graded
morphism

(5™ o ™4 (<1)™1 7 o ) .

(a)(The Hom Complex) For every integer n, prove that the zero morphisms 0: A™ - B™" define
a degree m graded morphism from A® to B*. Prove that the identity morphisms Id gm : A™ — A™
define a degree 0 graded morphism Id4. : A* - A*. For two degree m graded morphisms from A®
to B*, f* = (f™)mez and (g™ )mez, define f*—g® to be (f™=g™)mez. Prove that f*-g* is a degree
m graded morphism. With these operations, prove that the set of degree m graded morphisms
from A* to B* forms an Abelian group. This group is denoted

Homgye(4)(A%, B*).

Prove that d%

fom(A®, B*) is a degree n+1 graded morphism from A® to B*. Prove that the induced
set map,

dﬁom . Homgh.(A) (A.’ B.) — Homgﬁi(A)(A.7 B.),

is a homomorphism of Abelian groups. Prove that dif'l ody  is the zero homomorphism. Use
this to interpret the data

((Homgye 4y (A*, B*))n, (dizom)n)

as an element of Ch*(Z - mod). This datum is often called a differential graded Z-module, or a dg
module for short.

(b)(The Symmetric Monoidal Category of DG Modules) For associative, unital rings R, S, and
T, for every object K* = ((K"),,(d%),) in Ch*(R - S - Bimod), and for every object L*® =
((L™)y, (d?)y) in Ch*(S -T - Bimod), define K*®g L* to be the direct sum total complex of the
double complex

K* ®g L= ((Km ®g Ln)(m’n), (d% ® IdLn)(m’n), (Ide ® dZ)(m,n))-

In other words,
(K ®g L)é = 69(m,n),m+nz€[(m ®s Ln7

with the family of summands ¢y, ,, : K™ ®g L" - (K ®g L)*. Also, the differential is

dZ °lmmn = lm+1,n © (d% ® IdLn) + (—1)mbm,n+1 o (IdK'm ® d%)
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Since the double complex K* ®g L* is bifunctorial in K* and L*, prove that also K* ®g L* is
bifunctorial in K* and L®. Since the double complex is biadditive, prove that also K*® ®g L* is
biadditive. For the complex S[0] of S—S-bimodules with S[0]° = S and all other S[0]" zero, prove
that the usual natural isomorphisms K ®¢S[0] 2 K and S[0]®g L = L induce natural isomorphisms
in Ch*(R - S -Bimod), resp. in Ch*(S -7 - Bimod),

pre K* ®5 S[0] = K*,

and 3
AKce : S[O] ®g K* — K°.
For an associative, unital ring U, for an object M* of Ch*(T - U — Bimod), prove that the tri-

natural isomorphisms (K™ ®g L") @ NP 2 K™ ®g (L" ®7 NP) induce a tri-natural isomorphism of
dg R - T-bimodules,

aK’,L‘,M’ . (K. ®S L.) ®T N. = K. ®S (L. ®T N.)

Read the definition of monoidal category. For every commutative, unital ring k, prove that these
operations make Ch*®(k - mod) into a monoidal category. For objects K* and L*, prove that the
binatural isomorphisms K™ ®, L™ ~ L™ ®;, K™ induce a binatural isomorphism of dg k-modules,

SKe.L* " K*®,L*—> L*®, K°.

Read the definition of symmetric monoidal category. Prove that the binatural isomorphism sg- 1.
makes the monoidal category Ch®*(k-mod) into a symmetric monoidal category. In particular, for
k =7, prove that the Hom dg modules in the previous part are objects in the symmetric monoidal
category of dg Z-modules.

(c)(The DG Category of Complexes) For objects A®, B* and C* of Ch*(A), for a degree m graded
morphism f*: A* - B* and for a degree n graded morphism ¢* : B* - C*, prove that (¢**™ o f¢:
Al > O,z s a degree m + n graded morphism A® — C®. Denote the corresponding set map
by

o't Homgye 4)(B*,C%) x Homgye (1) (A*, B*) — Homgy{ 4 (A%, C*).

Prove that this is biadditive, and hence defines a homomorphism
o 'p o s Homeye (1) (B, C%) @z Homfi 4y (A, B*) - Hom{jei 4 (A*, C°).
Prove that these homomorphisms define a morphism of dg modules,
OA,B,C : Homéh-(A)(B., C.) ®Z Homéh-(A)(A', B.) - Homéh-(A)(A., C.)

Read the definition of a category enriched over a monoidal category. Prove that these compositions,
together with the identity morphisms Id 4., make Ch*(.A) into a category enriched over dg modules.
Such a category is a dg category.
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(d)(Cycles and Homology of the Hom Complex) Prove that a degree 0 graded morphism f* €
Hom%h.( 4)(A®, B*) is a morphism of cochain complexes if and only if d; . (f*) is the zero morphism,
ie.,

Homeye 4y (A%, B*) = Z°(Homgye 4 (A°, B*)).

-1
Hom

Similarly, prove that every s°® € Homal.( (A%, B*) with dy  (s*) = f* is a nullhomotopy of f*.

Conclude that there is a binatural isomorphism,
HO(Homah.(A)(A‘, B*®)) = Homg4)(A®, B*),

where, as usual, K(A) denotes the homotopy category of Ch*(.A).

(e)(Composition in the Homotopy Category) Use the abutment morphisms of the spectral sequence
of a double complex to prove the existence of a binatural, biadditive homomorphism,

HO(Homéh.(A)(B°, C.)) ®Z HO(HomE}hO(A)(A.,B.)) —> HO(Homéh-(A)(A.,C°)),

that is associative and that respects identities on both the left and the right. Use this to give a
second proof that the composition in K(A) is well-defined, associative, biadditive, and respects
identities, i.e., K(A) is an additive category.

(f)(Compatibility with Translation; Yoneda Functors) Prove that the dg category structure is
compatible with translation in the sense that for every integer n, there are binatural isomorphisms
of dg modules,

Homgye 4y (A%, B[+n]*) = Homgye 4 (A*, B®*)[+n] 2 Homgy,e 4, (A[-n]%, B®).
In particular, prove that there are binatural, biadditive isomorphisms compatible with identities,
Homepe () (A%, B[+n]*) = Z" (Homgy,e 4y (A*, B®)) 2 Homepe 4y (A[-1]*, B°),
and similar isomorphisms
Homye(a)(A*, B[+n]*) 2 H"(Homgye 4y (A*, B*)) 2 Homye( ) (A[-n]*, B*).
In particular, for objects A* and B*® of Ch*(A), the Yoneda functors are enriched to functors,
hP(-)*: Ch*(A) = Ch*(Z - mod), T* = Hom¢y. 4 (B*,T*),

ha(-)®: Ch*(A)°P? - Ch*(Z - mod), S* = Homgye4)(S5*, A%).

Prove that these are additive functors that are compatible with translation functors. Moreover,
prove that the associativity of the composition dg module homomorphisms enrich these to functors
of dg categories, i.e.,

hB(_) : Hom.Ch‘(A)(T.’T.) - HOIn.Ch'(Z—mod)(hB(T.)? hB(T'))
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ha(=) s Homye 4)(5*,5°) > Homeye (z_moay (7 (5*), ha(S*)).
Such an enriched functor hB, resp. ha, is a left dg module, resp. right dg module, on Ch®(A).

(g)(Cones of Yoneda Functors are Yoneda Functors of Cones) For every f* € Homepe(a)(A®, B*),
for every objects S® of Ch®*(A), prove that the composition morphism,

W) = P (),

respectively

hyhp(=) = ha(-),
is a morphism of left dg modules, resp. right dg modules, on Ch®*(A). As above, interpret the
morphism A/ of left dg modules as a functor from Ch®(A) to Chl™**)(Ch*(Z-mod)) considered as

a double complex of Abelian groups. Prove that the total complex of this double complex defines
a left dg module on Ch*(A),

C(h'): Ch*(A) - Ch*(Z - mod).

Similarly, interpret the morphism hy of right dg modules as a contravariant functor from Ch*(.A)
to Chl™Y(Ch*(Z-mod)) considered as a double complex of Abelian groups. Prove that the total
complex of this double complex defines a right dg module on Ch®(.A),

C(hys) : Ch*(A)°PP > Ch*(Z - mod).

Rework Problem 1 to prove that both of these dg modules over Ch*(A) are representable by the
mapping cone,

C(h!) =h“D C(hy) = hegy.

(h)(Adjointness of Tensor and Hom) Let R, S and T be unital, associative rings. For every element
K* of Ch*(R - S - Bimod), for every element L* of Ch*(S - T - Bimod), and for every element
M* of Ch*(R-T - Bimod), formulate and prove a dg enhanced version of adjointness of tensor
product and Hom,

Hom.Ch'(R—T—Bimod) (K*®s L, M*) = Homéh'(R—S—Bimod) (K*, Homah'(Mod—T) (L*,M*)).

In particular, setting R, S and T all equal to Z, setting K* equal to Homah.(A)(B‘, C*), setting
L* equal to Homéh.(A)(A',B‘), and setting M* equal to Homéh.(A)(A',C‘), associated to the
composition,

oapc: K*®z L — M°,

there is an adjoint morphism of dg modules,
hA(Ba C) : Hom.Ch'(A)(B.7 C.) - Hom.Ch'(meod)(h‘A(B)v hA(C))

Prove that this gives another approach (perhaps the same approach, actually) to the dg enhance-
ment of the covariant Yoneda functor 4. Formulate and prove an analogue for the dg enhancement
of the contravariant Yoneda functor h 4.
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(i) Read more about dg categories, e.g., in the lecture notes of Bernhard Keller or Bertrand Téen.
Read about the homotopy category of a dg category, and then read about the “derived category”,
i.e., the homotopy category of the associated dg category of dg modules over the original dg category.
Read the definition of a triangulated dg category, i.e., a dg category T such that for the derived
category of the opposite category of T, every compact object is quasi-representable; an object F
is compact if the covariant Yoneda functor h¥'(-) commutes with small direct sums, and a dg
module F' on a dg category T is quasi-representable if F' is isomorphic in the derived category
(homotopy category of the dg category of dg modules on 7) to the covariant Yoneda functor h4
of an object A in the homotopy category of 7. Read about the functorial construction of cones in
every triangulated dge category. (This is one of many reasons that many modern authors choose
to work with triangulated dg categories rather than arbitrary triangulated categories.)

Problem 3.(K(A) is a Triangulated Category)

(a)(TR1) For every object A* of Ch*(A), since the identity morphism on C(Id4) equals g, ©
tia, + S1a, © O1a,, prove that (s ot} : C(Ida)" — C(Ida)"" is a nullhomotopy of the identity
morphism. Conclude that C'(Id4) is homotopy equivalent to the zero object. Also, prove that this
nullhomotopy and homotopy equivalence with zero is functorial in A®.

(b)(TR2) Let f*: A* - B*® be a morphism in Ch*(A). Since éf o g5 is the zero morphism, in
particular d; is a left homotopy annihilator of ¢¢ via the zero homotopy. Therefore there exists a
unique morphism

A C%(qp) = A[+1]°,

such that Ay o ¢, equals d; and such that Ay o s, equals 0. Similarly, the morphism —f[+1]* :
A[+1]* - BJ[+1]* together with the homotopy —sf[+1]* is a right homotopy annihilator of ¢
(recall that s;[+1]" = —s}“l, which is the source of the negative sign). Therefore there exists a
unique morphism
oy AL+ > C*(ap)

such that d,, o py equals —f[+1] and such that t,, o py equals —s;[+1]. Prove that A\; o p; equals
the identity morphism on A[+1]. (It is probably easiest to check this via the embedding theorem
and chasing elements; this also explains the sign on —f[+1] above.) For every integer n, define
5% :C(qp)" = C(gr)"" as the composition

n t:;f n t}l n ng n—1
Clgp)" — C(f)" = B" — C(qp)"-

Prove that (5%), is a homotopy from py o A; to Idc(y,). Conclude that py and Ay are homotopy
inverses. Thus, conclude that the translate of the strict triangle C'y is homotopy equivalent to the
strict triangle Cy,. Combined with the fact that Cyp,1y equals Cf[+1], conclude that K'(A) satisfies
Axiom (TR2).

(c)(TR3) Use Problem 1(d) to prove that K (.A) satisfies Axiom (TR3). Axiom (TR4) was verified
in lecture. Conclude that K (A) is a triangulated category.

10
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Problem 4.(Distinguished Triangles are Unique up to Non-unique Isomorphism) Let 7 be an
additive category, let —=[+1]: T — T be an additive equivalence of T, and let A be a collection of
triangles.

(a)(Translation Invariance of Distinguished Triangles) Assuming Axioms (TR1) and (TR2), prove
that for every triangle X,

f 5

YA B 1.,

A[+1]7
Y is a distinguished triangle if and only if the triangle ¥[+1] is distinguished,

s[+1]: A[+1] 22 pre) 2 opy 22

Use induction to prove that for every integer n, ¥ is a distinguished triangle if and only if the
triangle X[+n] is distinguished,

A[+2]

S[n]: Al+n] 2 Blen] L o] 2L Afen s 1)

(b)(Distinguished Triangles are “Complexes”) Assuming Axioms (TR1) and (TR3), for every dis-
tinguished triangle 32, consider the commutative diagram,

Oar+
dy: A 29 4 20, g 2200 ap]
fl lIdA lf lIdAHl]
Y: A B C A[+1]
f q 5

Prove that there exists a morphism r : 0 — C such that go f =r 0 04. Conclude that qo f equals
0. Assuming Axiom (TR2) as well, also prove that § o ¢ and f[+1] o d equal 0.

(c)(Yoneda Functors are Cohomological Functors) Assuming Axioms (TR1), (TR2) and (TR3), for
every distinguished triangle 3,

/ s

YA B 2.,

A[+1]7
for every object S of T, for the additive Yoneda functor hg : T - Z-mod, prove that the sequence

) hs(f[+n]) hs(a[+n]) hs(8[+n])

e > hS(A[+n hs(B[+TL])

forms a complex of Abelian groups. Let s:S — A[+n + 1] be a morphism such that f[+n+1]os
equals 0. Consider the following commutative diagram,

hs(C[+n])

hs(A[+n+1]) —> ...

05011 Og Idg

Idg: S[-1] — 0 — § =, g

N

Y[+nl: Al+n] —— B[+n| —— C[+n| —— Al+n+1
[nls ALen] —— Blrn] — Cln] — Alwn+1]

11
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Prove that there exists a morphism s’ : S - C[+n] such that s equals d[+n] o s’. Conclude
that the complex above is everywhere acyclic, i.e., it is a long exact sequence. Prove that every
commutative diagram of distinguished triangles gives rise to a commutative diagram of long exact
sequences. Conclude that hg is a cohomological functor.

For every object T' of T, repeat this argument (or use opposite categories) to conclude that the
following sequence is a long exact sequence,

hT (8[+n]) hT (q[+n]) hT(fl+n
— — —

s BT (A[n +1]) KT (Cl+n]) BT (B[+n]) D W (ALn]) > .

In particular, for every morphism ¢ : B[+n] — T such that ¢ o f[+n] equals 0, prove that there
exists a morphism t' : C[+n] — T such that t equals ¢’ o g[+n].

(d)(Automorphisms of a Distinguished Triangle) Assuming Axioms (TR1), (TR2), and (TR3), for
every commutative diagram of distinguished triangle,

S: A B 1 0 2 A[+1]
’uj( lIdA lIdB lu lIdA,[Jrl]
S: A s B 1 0 2 A[+1]

use the associated commutative diagram of long exact sequences of the Yoneda functor h¢ to prove
that there exists s: C' - B such that Idg = u + gos. Defining v =Idg + ¢ o s = 2Id¢ — u, prove that

uov=u+uo(gqos)=u+(uog)os=u+qos=Idec.
Thus v is a right inverse of u. Moreover, prove that d ov =¢ and
voq=(2lde —u)oq=2¢—-(uoq)=2q-q=q.
Thus, by the same argument with v in place of u, prove that there exists w: C' - C such that vow

equals Idg. Prove that w equals u. Conclude that v is an inverse of u. Thus u is an isomorphism.

Prove that for every morphism s: A[+1] - B, the morphism u = Ids + g o s 0 § makes the diagram
above commute, and it has inverse v = Idg — go so0d. For K(A) with its standard triangulated
structure, prove that every morphism u : C'(f) - C(f) as above is of the form Id¢ + gosod for a
morphism s: A[+1] - B.

(e)(Characterization of Direct Sums via Distinguished Triangles) Assuming Axioms (TR1), (TR2)
and (TR3), for every distinguished triangle with one term 0,

f 0B Oar+1)

S A B 0 A[+1];

prove that there exists a morphism s : B - A such that f os equals Idg, and prove that there
exists t : B - A such that t o f equals Id4. Finally, prove that ¢ equals s. Conclude that f is an
isomorphism.

12
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(f) (Characterization of Isomorphisms via Distinguished Triangles) Assuming Axioms (TR1), (TR2)
and (TR3), for every distinguished triangle extending a zero morphism,

S A2 B -1 0 s A[+1]

prove that there exists a morphism s : A[+1] - C such that ¢ o s equals Idaf,q}, and prove that
there exists ¢ : C' = B such that toq equals Idg. Use the long exact sequence to prove that the pair
(¢q: B—C,s: A[+1] - C) satisfies the universal property of a direct sum. Thus the distinguished
triangle above is isomorphic to the following triangle (which, therefore, is a distinguished triangle),

TA[+1]

A>0>>B —2 Be A[+1] —= A[+1].

(g)(Split Distinguished Triangles are Direct Sums) Assuming Axioms (TR1), (TR2) and (TR3),
for every distinguished triangle,

f )

S A B —- C A[+1]:

if there exists a morphism s : A[+1] - C such that 0 o s equals Id a1}, then prove that f[+1] is
0. Conclude that f is 0, and C' is a direct sum B @ A[+1] as above. Similarly, if there exists a
morphism 7 : C' - B such that r o ¢ equals Idg, again prove that f is 0.

(h)(Distinguished Triangles are Unique up to Isomorphism) Now, in addition to (TR1), (TR2),
and (TR3), also assume the Octahedral Axiom (TR4): for every triple of distinguished triangles
(X, Y, 27" f,q,8), (Y,Z, X' g,r,7), and (X,Z,Y" go [f,s,0), there exists a distinguished triangle
(Z',Y',Z" h,t,q[+1] o y) such that t o s equals r, such that § o h equals /3, such that f od equals
~vot, and such that h o g equals so g. For every pair of distinguished triangles,

S: A1 B4, 0 2 Al+1]
lIdA lIdB ,
RN R R SN Y

associated to the triple of distinguished triangles (A, B, C, f,q,9), (B, B,0,1dg,0,0), (A, B,C", f,q¢',¢"),
prove that there exists a distinguished triangle (C,C",0,u,0,0) such that ¢’ equals u o ¢, and such
that ¢’ o u equals 0. Conclude that v is an isomorphism such that there is an isomorphism of
distinguished triangles,

S04 LB s 0 2 A[+1]
ul lIdA lIdB Ju JIdA.[+1]
S . B2 o 2 Al+1]

13
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(1)(Nonuniqueness of the Isomorphism) As above, assume (TR1), (TR2), (TR3) and (TR4). By
combining (d) and (i), for every commutative diagram of distinguished triangles,

S A B s 0 2 A[+1]
lIdA lIdB J/U JIdA{Jrl]
wioA Lo CL o T AL

prove that u is an isomorphism. As in (d), conclude that the isomorphism « may be nonunique.

Although the morphism may be nonunique, there are some constraints. For instance, for every
commutative diagram of distinguished triangles,

S A 1 B -1, 0 -2 A[+1]
luA luB lIdc lUA[,‘"l]
weoa L Lo U A

if uc : C'— C is any other morphism that makes the diagram commute, then prove that ¢’ o uc =
ua[+1]od = ¢ and ucoq = ¢'oup = q. Conclude that there is a commutative diagram of distinguished
triangles,

S:A B 1, 0 2 A[+1]
111114 lldg luc lIdM+1]
S:A B 0 2 A[+1]

Now use (d) to prove that uc is an isomorphism.
Problem 5.(Verdier’s Nine Diagram) Let (7, -[+1],A) be a triangulated category. Let

f// qII 6//

U AR ; VA G o (A /P
i us wal+1]
A Lo L o A
" - ral+1]
A B A[+1]

YA B ya[+1]

1] 28 oy S8 ooy 2B g

be a commutative diagram of morphisms in 7" whose rows and columns are distinguished. Denote
by f: A” — B’ the common composition, up o f” = f’ous. Denote by §: B — C"[+1] the
composition ¢”"[+1] o vp, and denote by ¢ : C" - A[+1] the composition r4[+1] o d".

14
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(a) Use Axiom (TR2) to prove that there exists a distinguished triangle,

Aar L p T, p A1)

Associated to the triple of distinguished triangles, (A", B",C", f",q",0"), (B",B', B,ug,rB,VB)

and (A", B'. D, [,,0), by Axiom (TR4), _prove that there exists a distinguished tr1angle (C".D,B,3, 7,9
such that 009 equals §”, such that vz o f equals fr'[+1]0 5, such that 8 o ¢” equals Foug, and such

that f oq equals rp.

(b) Associated to the triple of distinguished triangles, (A”, A", A,ua,74,74), (A, B",C", f',q',6")

and (A", B', D, f,,9), by Axiom (TR4), prove that there exists a distinguished triangle (A, D, " ,£,3,0)
such that goq equals ¢’, such that go f" equals Fora, such that 6’ oG equals us[+1] 08, and such

that 4 o f equals 5.

(c) Define f: A - B to be Fo f, and define uc : C" - C" to be §oo. Prove that vz o f equals
f"[+1] oy4. Prove that for, equals rgo f’. Prove that 6’ o uc equals ua[+1] o 6”. Prove that
uc o q" equals ¢’ ocup.

(d) Use Axiom (TR2) to prove that there exists a distinguished triangle,

/ s

A B —-> A[+1]:

Associated to the triple of distinguished triangles, (A, D,C", f,q,9), (D,B,C”[+1],ﬁ@—g[+1])
and (A, B,C, f,q,9), by Axiom (TR4), prove that there exists a distinguished triangle

(Cla C? C,,[+1]7T07 Yo, _UC[+1])7

such that y¢ o ¢ equals 7, i.e. , ¢"[+1] o v, such that § o ¢ equals 0, i.e., r4[+1] 0§, and such that
F[+1] 06 equals —3[+1] o ¢ Conclude that

—_

Ya[+1] 08 =d[+1] o f[+1] 06 = =[+1] 0 [+1] 0 ye = —0"[+1] 0 yc.

Conclude that the commutative diagram extends to a diagram

A// S B// g C" " A// [+ 1]

ug up uc ua[+1]
A T N LN A'[+1]
TA TB e] ra[+1]
A L B LN C —6> A[+1]
YA B ale] yal[+1]
A1) 5 B S O] S A)

15


http://www.math.stonybrook.edu/~jstarr/M536f15/index.html
mailto:jstarr@math.stonybrook.edu

MAT 536 Algebra 111 Jason Starr
Stony Brook University Fall 2015
Problem Set 10

such that every row and every column is a distinguished triangle, and such that every small square
commutes except in the bottom right, which anticommutes.

(e) As a special case, let

A Lo L o L an)
ua up wa[+1]
o Lo L o L a
rA 5 ral+1]
A B Al+1]
va B ya[+1]

A1) 28 prpyqy L cepg) 2B Ay

be a commutative diagram of morphisms in 7 whose rows and columns are distinguished. Assume,
moreover, that there exists an isomorphism v : C" — C" completing the first two rows to a commu-
tative diagram, i.e., voq” equals ¢’ oup and uu[+1] 0 §” equals ¢’ o v. Use Problem 4(i) to prove
that in the nine diagram above,

A// f” B// q” C" " A// [+ 1]

UA UB uc ual[+1]
/ ! / 7 / 5 /

A L p L, o 2 A4
TA TB kel ra[+1]

A —— B 25 C —5 A[+1]

YA B ale] yal[+1]

Arf1] 28 grpqy L cep gy 2B gy

the morphism u¢ is an isomorphism. Use this to prove that also f is an isomorphism.

Problem 6.(Cohomological Functors, Full Triangulated Subcategories, and Multiplicative Sys-
tems) Let (7,-[+1],A) be a triangulated category. A full triangulated subcategory is a full subcat-
egory T’ of T that is an additive subcategory, that is mapped to itself by —[+n] for every integer
n, and such that for every distinguished triangle of T, if two of the objects are in 7, then also the
third object is in 7’. Let A be an Abelian category. Let H : T - A be a cohomological functor,
i.e., an additive functor such that for every distinguished triangle X2,

f )

Y A B 2> C A[+1];

16
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the following sequence is a long exact sequence,

H(f[+n

BUED 1 (Blan])

H(q[+n]) H(5[+n])

= H(A[+n))

H(C[+n])

H(A[+n+1]) > ...

Define Ty to be the full subcategory of T consisting of those objects A such that for every integer n,
H(A[+n]) is a zero object. A collection ¥ of morphisms of a category C is a (left-right) multiplicative
system if all of the following hold.

(F1) Every identity morphism is in X.
(F2) The composition of every pair of (composable) morphisms in 3 is a morphism in X.

(F3L) For every morphism ¢ : B - C' in ¥ and for every morphism vp : B - B”, there exists a
morphism ¢” : B” - C" in ¥ and a morphism ¢ : C' - C" such that y¢ o ¢ equals ¢” o vp.

(F3R) For every morphism ¢ : B - C in ¥ and for every morphism r¢ : C7 - C| there exists a
morphism ¢': B’ - C' in ¥ and a morphism rg : B’ - B such that gorg equals rc o ¢'.

(F4L) For every pair of morphisms f,g:S - B and for every morphism ¢: B - C in ¥ with go f
equal to g o g, there exists a morphism r: R — S in ¥ such that for equals gor,

(F4R) For every pair of morphisms f,g:S - B and for every morphism r: R - S in 3 with for
equal to g or, there exists a morphism ¢: B — C' in X such that go f equals go g.

(a)(The Kernel of a Cohomological Functor is a Full Triangulated Subcategory) Prove that every
object of T that is isomorphic to an object of Ty is an object of Ty. Prove that Ty is mapped
to itself by —[+n] for every integer n. For every distinguished triangle ¥, if two of (A, B,C') are
objects of Ty, prove that the remaining object is an object of Ty. Conclude that Ty is a full
triangulated subcategory of T.

(b)(Full Triangulated Subcategories are Triangulated Subcategories) For every full triangulated
subcategory 7' of T, prove that an object of T is an object of 7" if and only if it is isomorphic to
an object of 7'. Also prove that there is a unique functor —[+n]: 7" - 7" and a unique family of
triangles A’ on T’ such that the full embedding 7’ — 7 commutes with —[+n] and sends A’ to A.
In particular, conclude that (77, -[+1],A’) is a triangulated category.

(d)(Examples of Full Triangulated Subcategories) For every Abelian category A, prove that
K*(A), K~(A) and K*(A) are full triangulated subcategories of K (A). For every Abelian category
A and for every full Abelian subcategory B c A such that the full embedding is exact, prove that
K(B) is a full triangulated subcategory of K(.A).

(e)(Sorites of Full Triangulated Subcategories) If 77 is a full triangulated subcategory of 7, and
if 7" is a full triangulated subcategory of T, then 7" is a full triangulated subcategory of 7. For
every collection (7;);e; of full triangulated subcategories of 7, prove that the full subcategory 7’
of T of those objects contained in every 7. is a full triangulated subcategory of 7.

17


http://www.math.stonybrook.edu/~jstarr/M536f15/index.html
mailto:jstarr@math.stonybrook.edu

MAT 536 Algebra 111 Jason Starr
Stony Brook University Fall 2015
Problem Set 10

(f)(Orthogonals) For a class C of objects of T, the left orthogonal to C is the full subcategory of
T of all objects X such that for every object Y of C and for every integer n, hY (X[+n]) is a zero
object. Prove that the left orthogonal is a full triangulated subcategory of 7. Similarly, the right
orthogonal to C is the full subcategory of T of all objects X such that for every object Y of C
and for every integer n, hy(X[+n]) is a zero object. Prove that the right orthogonal is a full
triangulated subcategory of 7. The left-right orthogonal is the full subcategory of objects X such
that both AY (X [+n]) and hy (X [+n]) are zero objects for every object X of C and for every integer
n. Prove that the left-right orthogonal is a full triangulated subcategory of 7.

(g)(The Multiplicative System of a Full Triangulated Subcategory) For every full triangulated
subcategory 7' of T, define ¥ = Y7+ to be the collection of all morphisms of 7, ¢ : B - C, such
that there exists a distinguished triangle,

f )

A B > C A[+1]

with A and object of 7. Using Axioms (TR1) and (TR2), prove that identity morphism is in
Y. Using Axiom (TR4) particularly, prove that if ¢: B - C and r : C - D are in X, then also
roq: B — D isin X. For every morphism ¢ : B — C' in X and for every morphism ~5 : B - B”|
use Axioms (TR1) and (TR3) to prove that there exists a morphism ¢” : B” - C” in ¥ and a
morphism ¢ : C' - C” such that ¢” o yg equals y¢ o ¢. Similarly, for every morphism r¢ : C' - C|
prove that there exists a morphism ¢’ : B’ - C” in ¥ and a morphism rg : B’ - B such that qgorpg
equals r¢ o ¢'. Finally, for every morphism ¢ : B - C and for every morphism A : S — B such that
g o h equals 0, prove that there exists a morphism 7 :S — A such that h equals forn. Use Axioms
(TR1) and (TR2) to prove that there exists a distinguished triangle

Y

A[-1] R——s 8§ 15 A

Conclude that r is a morphism in > such that hor equals 0. Conversely, for every morphism
r: R — S in ¥ and for every morphism h:S — B such that hor equals 0, prove that there exists
a morphism ¢ : B - C in X such that g o h equals 0. Finally, conclude that ¥ is a (left-right)
multiplicative system of morphisms in 7.

Moreover, prove the following additional properties. Using Axioms (TR1), (TR2) and (TR3) and
Problem 4(f), prove that X is isomorphism closed, i.e., all isomorphisms in 7 are in X. Use Axiom
(TR2) to prove that ¥ is translation invariant, i.e., a morphism ¢ : B - C is in ¥ if and only if
q[+1]: B[+1] » C[+1] is in ¥. Finally, use Axiom (TR4) to prove that ¥ is left cancellative, resp.
right cancellative, i.e., for morphisms q: B - C and r: C' - D if ¢ and r o ¢ are in X, resp. if r and
roq are in X, then also r is in X, resp. also ¢ is in 3. Finally, use Axiom (TR4) and Problem 5(e)
to prove the following distinguished property. For every commutative diagram with distinguished
rows,
B 2, B 2, D 2, B[+1]

lqn J(q lIdD Jq//[_"’l]

cr = ¢ 5 p & C[+1]
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q"” is in ¥ if and only if ¢ is in 3.

(h)(The Full Triangulated Subcategory of a Multiplicative System) Let ¥ be a (left-right) mul-
tiplicative system that is invertible saturated, that is translation invariant, and that is left-right
cancellative. Define 7' = T\ to be the full subcategory of all objects A of 7 such that there exists

a distinguished triangle

f ]

A B —-C A[+1]
with ¢ in . Prove that every zero object is in T’. Prove that every object isomorphic to an object
of 7" is in T'. Prove that an object is in 7" if and only if its translates are in 7’. Finally, use
Axiom (TR4) together with (F2) and left-right cancellativity to prove that 7 is a full triangulated
subcategory.

(i) For every full triangulated subcategory 77, for the associated multiplicative system Y7, prove
that 74 equals 7’. Conversely, let ¥ be a multiplicative system that satisfies the distinguished
property. Let T4 be the associated full triangulated subcategory. For every distinguished triangle

LAy Y S LNy Y

A

with ¢ in X, for every distinguished triangle,

AL g Lo XA,

use Axiom (TR1) to find a distinguished diagram,

A pregp T, o 0 Al

Then use Axiom (TR3) to find a commutative diagram of distinguished triangles,

AL g Lo AL

IdAl qu" l?‘c lIdA[u]

AV prgp L o 2 AL,

Use the distinguished property to prove that ¢ is in 3. Next, use Axiom (TR3) once more to find
a commutative diagram of distinguished triangles,

AL g Lo T A

IdAl JQB' luc lIdA[u]

AT pigp L o 2 AL,

Use the distinguished property once more to prove that ¢’ is in . Conclude that the multiplicative
system Y7 equals X.

19


http://www.math.stonybrook.edu/~jstarr/M536f15/index.html
mailto:jstarr@math.stonybrook.edu

