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MAT 322 Problem Set 7

Homework Policy. Please read through all the problems. Please write up solutions of the
required problems. Please also read and attempt the extra problems, but please do not write up
those solutions for grading. I will be happy to discuss the extra problems during office hours.

Each student is encouraged to work on problem sets with other students, but each submitted
problem set must be in the student’s own words and based on the student’s own understanding. It
is against university policy to copy answers from other students or from any other resource (such
as a webpage).

Required Problems.

The following exercises investigate various aspects of the connected components of the groups
GLn(R) ⊂ Matn×n(R) and On(R), i.e., the set of all n × n matrices A = [v1| . . . |vn] such that
B = (v1, . . . ,vn) is an ordered basis, resp. an orthonormal ordered basis. Recall, that GLn(R)
is an open subset of Matn×n(R) and it has a connected component GLn(R)+ consisting of all
matrices with positive determinant. Similarly, On(R) contains a subset SOn(R) consisting of
matrices with determinant equal to +1. The Gram-Schmidt Theorem associates to every A ∈
GLn(R) a unique orthogonal matrix Q ∈ On(R) and a unique upper triangular matrix U with
positive entries on the diagonal such that A = QU . The rule A 7→ Q is a continuous function
GLn(R)→ On(R) ⊂ GLn(R) that restricts as the identity on the subset On(R) ⊂ GLn(R). Since
det(A) equals det(Q)det(U), and since det(U) is positive, GLn(R)+ maps surjectively onto SOn(R).
Thus, also SOn(R) is path connected.

Problem 1.(p. 177, Problem 5). (a) Find formulas qi,j = ai,j cos(θ) + bi,j sin(θ) for 1 ≤ i, j ≤ 2
and some choice of real numbers ai,j, bi,j such that the 2× 2 matrix Q(θ) = (qi,j)1≤i,j≤2 is a special
orthogonal matrix, and every special orthogonal 2× 2 matrix occurs for some choice of θ.

(b) Find a similar formula for all orthogonal 2× 2 matrices that are not special orthogonal.

(c) Check directly in terms of your formula that the product of any two special orthogonal 2 × 2
matrices is special orthogonal, and the inverse of every special orthogonal 2 × 2 matrix is special
orthogonal.

(d) Similarly, check directly that the product of any two orthogonal non-special 2× 2 matrices is
special orthogonal, the product of a special orthogonal and an orthogonal non-special 2× 2 matrix
is an orthogonal non-special 2 × 2 matrix, and the inverse of every orthogonal non-special 2 × 2
matrix is orthogonal non-special.
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Problem 2. (a) For every integer n ≥ 1, for every pair A, B of invertible n × n matrices with
det(A) < 0 and det(B) < 0, prove that there exists a unique invertible n × n matrix C with
det(C) > 0 such that B = CA. Conclude that the continuous function TA : GLn(R)+ → GLn(R)−

by TA(C) = C · A is one-to-one and onto. Thus, if GLn(R)+ is connected, then also GLn(R)− is
connected.

(b) For every integer n ≥ 1, for every pair Q, R of orthogonal n × n matrices with det(Q) =
det(R) = −1, prove that there exists a unique special orthogonal matrix S with R = S · Q.
Conclude that the continuous function TQ : SOn(R) → (On(R) \ SOn(R)) by TQ(S) = S · Q is
one-to-one and onto. Thus, if SOn(R) is connected, then also On(R) \ SOn(R) is connected.

Problem 3. Let V be an R-vector space of finite dimension n ≥ 1. For every ordered m-tuple
B = (v1, . . . ,vm) of elements of V , denote by jB the following R-linear transformation,

jB : Rm → V, jB(x1e1 + · · ·+ xmem) = x1v1 + · · ·+ xmvm.

Similarly, for every R-linear transformation j : Rm → V , denote by Bj the following ordered m-tuple
of elements of V ,

Bj = (j(e1), . . . , j(em)).

(a) Prove that these two operations define a bijection between the set V m = V × · · · × V of
ordered m-tuples B of elements of V and the set HomR(Rm, V ) of R-linear transformations from
Rm to V . Giving V m the R-vector space in which addition and scalar multiplication are defined
componentwise, prove that this bijection is an R-linear isomorphism.

(b) Prove that j is an isomorphism if and only if B is an ordered basis for V .

(c) Prove that for every pair j : Rn → V and j′ : Rn → V of R-linear isomorphisms, there exists a
unique R-linear isomorphism T : Rn → Rn such that j′ equals j ◦ T . Denoting by IsomR(Rn, V ) ⊂
HomR(Rn, V ) the open subset of R-linear isomorphisms, conclude that the following map is a
(linear) diffeomorphism of open subsets of finite dimensional vector spaces,

Lj : GLn(R)→ IsomR(Rn, V ), Lj(T ) = j ◦ T.

(d) In particular, since GLn(R) has two connected components, GLn(R)+ and GLn(R)\GLn(R)+,
prove that also IsomR(Rn, V ) has two connected components. Prove that precomposition with
an element in GLn(R)+ maps each connected component (diffeomorphically) back to itself, but
precomposition by an element in GLn(R) \GLn(R)+ permutes the two connected components.

Problem 4 This problem continues the previous problem. In this problem, you may assume all of
the results from the previous problem. Define an orientation of V to be a surjective, continuous
function,

α : IsomR(Rn, V )→ {−1,+1},
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which is necessarily constant on each connected component. For a given orientation α, j ∈
IsomR(Rn, V ) is called α-orientation preserving if α(j) equals +1, and j is α-orientation re-
versing if α(j) equals −1. For V = Rn, the standard orientation is

a : GLn(R)→ {−1,+1}, a(T ) :=
det(T )

|det(T )|
.

A pair (V, α) of a vector space V of finite dimension n ≥ 1 and an orientation α of V is called a
oriented vector space (this notion does not make sense for the zero vector space, and we will
not need this notion for infinite dimensional vector spaces).

(a) Prove that for every orientation α, also −α is an orientation, and the set of all orientations of
V is {α,−α}, i.e., there are precisely two orientations of every n-dimensional vector space, n ≥ 1.

(b) For R-vector spaces V and W of dimension n, for every R-linear isomorphism k : V → W ,
prove that the following map is a (linear) diffeomorphism of open subsets of finite dimensional
R-vector spaces,

Rk : IsomR(Rn, V )→ IsomR(Rn,W ), Rk(j) = k ◦ j.
In particular, prove that for every orientation β of W , also β ◦ Rk is an orientation of V . For
oriented vector spaces (V, α) and (W,β), for every R-linear isomorphism k ∈ IsomR(V,W ), the
(α, β)-orientation of k equals (β ◦Rk)/α ∈ {−1,+1}, i.e., k is (α, β)-orientation preserving if
β ◦ Rk equals +α, and it is (α, β)-orientation reversing if β ◦ Rk equals −α. This is consistent
with the previous use of “orientation preserving” and “orientation reversing” where we give Rn

the standard orientation. Prove that IsomR(V,W ) has two connected components, each (linearly)
diffeomorphic to GLn(R) given by the subset of (α, β)-orientation preserving isomorphisms and
the subset of (α, β)-orientation reversing isomorphisms.

(c) For oriented vector spaces (U, α), (V, β), and (W, γ), for R-linear isomorphisms S : U → V and
T : V → W , prove that the (α, γ)-orientation of T ◦ S equals the product of the (α, β)-orientation
of S and the (β, γ)-orientation of T .

(d) For every R-linear isomorphism k : V → W , prove that the (α, β)-orientation of k equals the
(−α,−β)-orientation of k. In particular, k : V → V is (α, α)-orientation preserving if and only if k
is (−α,−α)-orientation preserving, i.e., for an R-linear isomorphism of a vector space V back to the
same vector space V , the notion that V is (α, α)-orientation preserving is independent of the choice
of orientation α of V . For this reason, there is a well-defined subset IsomR(V, V )+ ⊂ IsomR(V, V )
of orientation-preserving R-linear isomorphisms. This is the unique connected component that
contains IdV .

(e) Prove that standard orientation a is the unique orientation α of Rn having either of the following
properties: (i) α(IdRn) equals +1, (ii) α(T ◦S) = α(T )·α(S) for every S, T ∈ GLn(R). In particular,
this means that a : GLn(R)→ {−1,+1} is a group homomorphism whose kernel equals GLn(R)+.

Problem 5. Let V be an R-vector space of finite dimension n ≥ 1. Denote by V ∨ the n-dimensional
vector space HomR(V,R) of R-linear transformations φ : V → R; such R-linear transformations are
usually called linear functionals.

3

http://www.math.stonybrook.edu/~jstarr/M322s16/index.html
mailto:jstarr@math.stonybrook.edu


MAT 322 Analysis in Several Dimensions
Stony Brook University
Problem Set 6, Due Thursday 3/31/2016

Jason Starr
Spring 2016

(a) For every ordered basis B = (v1, . . . ,vn) of V , prove that there exists a unique ordered basis
B∨ = (χ1, . . . , χn) of V ∨ such that

χi(vj) =

{
1, i = j,
0, i 6= j

The ordered basis B∨ is called the dual ordered basis of V ∨ associated with B.

(b) For every v ∈ V , define
ev : V ∨ → R, ev(φ) := φ(v).

Prove that ev is R-linear. Thus there is an induced set map,

e : V → (V ∨)∨, v 7→ ev.

Prove that ev is R-linear.

(c) For every nonzero v ∈ V , recall that there exists a basis B = (v1, . . . ,vn) of V with v1 = v. For
the dual ordered basis B∨ = (χ1, . . . , χn), check that ev1(χ1) equals 1. Thus, ev = ev1 is nonzero.
Conclude that e is an injective R-linear transformation. Since all three of V , V ∨, and (V ∨)∨ have
dimension n, use the Rank-Nullity Theorem to prove that e is an R-linear isomorphism.

(c) Let C = (χ1, . . . , χn) be an ordered basis for V ∨. Let C∨ be the dual ordered basis for (V ∨)∨

associated with C. Since e is an R-linear isomorphism, there exists a unique ordered basis B =
(v1, . . . ,vn) for V such that C∨ equals (ev1 , . . . , evn). Check that φi(vj) equals 1 if i = j, and
otherwise equals 0. Conclude that C equals B∨. Finally, conclude that the rule B 7→ B∨ defines a
bijection

•∨ : IsomR(Rn, V )→ IsomR(Rn, V ∨), jB 7→ jB∨ .

(d) For j ∈ IsomR(Rn, V ) and for j∨ ∈ IsomR(Rn, V ∨), for x,y ∈ Rn, for v = j(x) and φ = j(y),
prove that φ(v), i.e., j∨(y)(j(x)), equals 〈x,y〉Eucl. Hint. Since both sides of j∨(y)(j(x)) and 〈x,y〉
are R-bilinear in x and y, reduce to checking the identity for x and y in the standard ordered basis
(e1, . . . , en) for Rn.

(e) Using the previous result, for every invertible matrix A ∈ GLn(R), prove that (j ◦ A−1)∨
equals j∨ ◦ A†. If A is in GLn(R)+, then both A−1 and A† are also in GLn(R)+. Conclude that
for every pair of elements j and k of IsomR(Rn, V ) that are in the same connected component,
then also j∨ and k∨ are in the same connected component of IsomR(Rn, V ∨). Conclude that for
every orientation α of V , there is a unique orientation α∨ of V ∨ such that for every α-orientation
preserving j, also j∨ is α∨-orientation preserving.

Problem 6. This problem extends the notion of cross product or vector product to every vector
space of dimension n ≥ 1 that has a specified orientation and a specified inner product. This
operation is usually called the Hodge dual or Hodge star.

Let V be an R-vector space of finite dimension n ≥ 1, and let 〈•, •〉 : V × V → R be an inner
product on V . Denote by ‖ • ‖ the associated norm, i.e., ‖v‖2 = 〈v,v〉.
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(a) Prove that an ordered basis B of V is an orthonormal basis with respect to 〈•, •〉 if and only if the
induced R-linear isomorphism jB : Rn → V is orthogonal in the sense that 〈jB(x), jB(y)〉 = 〈x,y〉Eucl
for every x,y ∈ Rn.

(b) For every pair of ordered orthonormal bases B and B′ of V , prove that the composite j−1B ◦ jB′ :
Rn → R is an orthogonal transformation Q of (Rn, 〈•, •〉Eucl). In particular, det(Q) equals +1 or
−1. If both j and j′ are α-orientation preserving for an orientation α of V , prove that det(Q)
equals +1.

(c) For every w ∈ V , define
iw : V → R, iw(v) = 〈v,w〉.

Prove that iw is an R-linear transformation. Also prove that the induced set map

i = i〈•,•〉 : V → V ∨, w 7→ iw,

is an R-linear transformation. Finally, prove that i is symmetric, i.e., (i(w)(v) equals (i(v))(w) for
every v,w ∈ V .

(d) Since iw(w) = ‖w‖2, prove that iw equals 0 if and only if w equals 0. Conclude that i : V → V ∨

is an injective linear transformation. Since both V and V ∨ are isomorphic to Rn, use the Rank-
Nullity Theorem to prove that i is an isomorphism of R-vector spaces, i.e., i is also a surjective
linear transformation.

(e) Prove that an ordered basis B of V is orthonormal if and only if the dual ordered basis B∨ of
V ∨ equals i(B). In particular, since one orthonormal basis exists (by the Gram-Schmidt Theorem),
prove that for every orientation α of V , for the dual orientation α∨ of V , the R-linear isomorphism
i is (α, α∨)-orientation preserving.

(f) Fix an orientation α of V . Let j : Rn → V be an R-linear isomorphism that is both orthogonal
and orientation preserving. Denote by k : V → Rn the inverse of j; again this is orthogonal and
orientation preserving. For every ordered (n− 1)-tuple of vectors A = (v1, . . . ,vn−1) of V , define

φj,A : V → R, w 7→ det(k(v1), . . . , k(vn−1), k(w)).

Since the determinant is n-multilinear, φA is an R-linear transformation, i.e., an element of V ∨.
Check that for every special orthogonal matrix Q ∈ SOn(R), (j ◦Q)−1 = Q† ◦ k, so that

φj◦Q,A(w) = det(Q†)φj,A(w) = +1 · φj,A(w).

Conclude that, for a fixed inner product 〈•, •〉 and orientation α on V , φj,A does not depend on
the choice of the orthogonal, orientation preserving isomorphism j.

(g) Since φA is an element of R∨, and since i is an R-linear isomorphism, conclude that there
exists a unique element ∗A ∈ V such that i∗A = φA, i.e., 〈∗A,w〉 equals det(k(A), k(w)) for every
orthogonal, orientation preserving isomorphism k : V → Rn. Check that reversing the orientation
of V multiplies ∗A by −1.
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Problem 7 This problem computes the relation between the Hodge star operator from the last
problem and the volume in Rn of an (n − 1)-dimensional parallelepiped. As above, let V be an
R-vector space of finite dimension n ≥ 1. Let 〈•, •〉 be an inner product on V . Let α be an
orientation of V .

(a) By the Cauchy-Schwarz inequality, |iw(v)| ≤ ‖v‖ · ‖w‖. Thus, if v ∈ B
‖•‖
1 (0) ⊂ V , i.e., if

‖v‖ < 1, then |iw(v)| < ‖w‖. Prove that ‖w‖ equals sup{|iw(v)| : v ∈ B‖•‖1 (0)}.
(b) For every ordered (n− 1)-tuple A = (v1, . . . ,vn−1) of elements of V , prove that

‖ ∗ A‖ = sup{|det(k(v1), . . . , k(vn−1), k(w))| : w ∈ B‖•‖1 (0)}.

(c) For the standard Euclidean inner product on Rn, for a linearly independent set (v1, . . . ,vn−1)
of elements of Rn, check that

|vRn,n−1(v1, . . . ,vn−1)| = sup{|det(v1, . . . ,vn−1,w)| : w ∈ B‖•‖1 (0)}

(d) For the standard Euclidean inner product and the standard orientation on Rn, for vi =
x1,ie1 + · · · + xn,ien, prove that the j-coordinate of ∗A equals det(v1, . . . ,vn−1, ej), which is
(−1)n+1−jdet(Aj), where Aj is the (n − 1) × (n − 1)-matrix obtained from [v1| . . . |vn−1] by re-
moving the jth row. In particular, for n = 2, check that

∗
[
x
y

]
=

[
−y
x

]
,

the vector obtained from v1 by rotation by π/2 in the counterclockwise direction. Similarly, for
n = 3, check that the Hodge star operator is the usual cross product / vector product,

∗

 x1 y1
x2 y2
x3 y3

 = (x2y3 − x3y2)e1 + (x3y1 − x1y3)e2 + (x1y2 − x2y1)e3 = det

 x1 y1 e1
x2 y2 e2
x3 y3 e3

 ,
where the last determinant is just formal.

Problem 8. This final problem confirms an unproved assertion announced in lecture: for every pair
of integers (n, k) with 1 ≤ k < n, every R-linear isomorphism T : Rn → Rn that preserves volumes
of k-dimensional parallelepipeds is orthogonal. As above, let V be a vector space of dimension n ≥ 1
with a specified inner product 〈•, •〉 and a specified orientation α. Fix an orthogonal, orientation
preserving R-linear isomorphism j : Rn → V and its inverse k : V → Rb.

(a) For every unit vector w in V , use the Gram-Schmidt Theorem to prove that there exists an
orthonormal basis (v1, . . . ,vn−1,w). For A = (v1, . . . ,vn−1), prove that ∗A equals +w or −w (the
sign depends on the orientation on V ). In particular, up to replacing v1 by λv1 for a nonzero scalar
λ, prove that every vector w in V (whether or not it is a unit vector) is of the form ∗A for some
choice of A.
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(b) Let T : V → V be an R-linear isomorphism. For every ordered (n−1)-tuple A = (v1, . . . ,vn−1)
and for every w ∈ V , check the equality of the following n× n-matrices,

[k(T (v1))| . . . |k(T (vn−1))|k(T (w))] = (k ◦ T ◦ k−1) · [k(v1)| . . . |k(vn−1)|k(w)].

Conclude that φTA(T (w)) equals det(T )φA(w).

(c) Use (b) to prove that T †(∗(TA)) equals det(T )·∗A as elements in V . In particular, ‖T †(∗(TA))‖
equals |det(T )|‖ ∗ A‖.

(d) Let r 6= 0 be a real number. Assume that for every A, |vRn,n−1(TA)| equals |r||vRn,n−1(A)|.
Conclude that ‖T †(∗(TA))‖ equals (|det(T )|/|r|)‖ ∗ (TA)‖. For every ordered (n − 1)-tuple C =
(w1, . . . ,wn−1), setting A = T−1C so that TA = C, conclude that ‖T †(∗C)‖ equals (|det(T )|/|r|)‖∗
C‖. For the operator Q = (|r|/|det(T )|) · T † conclude that ‖Q(∗C)‖ equals ‖ ∗ C‖ for every C.
Finally, combine this with (a) to conclude that Q is orthogonal.

(e) From the previous part, conclude that T † = (|det(T )|/|r|) · Q, so that T equals (T †)† =
(|det(T )|/|r|) ·Q†. Since Q is orthogonal, Q† is also orthogonal. Thus, T equals s ·Q† for a nonzero
real scalar s and an orthogonal transformation Q†. Finally, since Q† also preserves vRn,n−1, conclude
that |s| equals 1. Therefore T is itself orthogonal.

(f) Now let k and n be integers such that 1 ≤ k < n. Let T : V → V be an R-linear isomorphism
that preserves k-volumes. Since n > k ≥ 1, for every vector v ∈ V , there exists a (k+1)-dimensional
subspace U ⊂ V that contains v. Choose an orthogonal R-linear isomorphism j : Rk+1 ◦ U , and
choose an orthogonal R-linear isomorphism j′ : T (U) → Rk+1. Conclude that the composition
j′ ◦ T |U ◦ j : Rk+1 → Rk+1 is an R-linear isomorphism that preserves all k-volumes. From (e),
conclude that j′◦T |U ◦j is orthogonal. Since j and j′ are orthogonal, conclude that T |U : U → T (U)
is orthogonal. In particular ‖T (v)‖ equals ‖v‖. Since this holds for every v ∈ V , T is orthogonal.
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