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Chapter 1

Introduction

To put it in a nutshell, Morse and Conley theory connect the areas of analysis
and topology through the theory of dynamical systems. Morse theory lives in
the well known realm of hyperbolic dynamics and can be viewed as a special
case of Conley theory.

⋃

Hyperbolic dynamics

Conley theory

Morse theory

Topology

Analysis

∫∞
0

∑
n

lims→∞

rkH∗(Σ)

χ(Σ)

Dynamical Systems

Figure 1.1: Morse and Conley theory connect analysis and topology

Morse theory

The early days 1920s-40s – Topology of sublevel sets

Consider a smooth manifold M . In the 20s of the last century it was the insight
of Marston Morse [Mor34] that the topology of M is related to non-degenerate
critical points of smooth functions f : M → R. By definition a critical point
p of f satisfies the identity dfp = 0, that is it is an extremum of f . By Crit
we denote the set of critical points of f . A critical point p is called non-
degenerate if, given a local coordinate system φ = (x1, . . . , xn) : M ⊃ U → Rn
around p, the (symmetric) Hessian matrix

Hpf :=

[
∂2f

∂xi∂xj
(p)

]
i,j=1,...,n

(1.0.1)

1
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Figure 1.2: Height function f and attaching of disks Dk where k = ind(pj)

of f at p is non-singular, that is invertible or, equivalently, zero is not an
eigenvalue of Hpf . Hence critical points are isolated by the inverse function
theorem 2.3.1. The number ind(x) of negative eigenvalues of Hpf , counted with
multiplicities, is called the Morse index of a non-degenerate critical point.
The key idea to relate topology and analysis is to study the family of sublevel
sets, also called half-spaces, which are the closed subsets of M defined by

Ma := {f ≤ a} := {q ∈M | f(q) ≤ a} , a ∈ R. (1.0.2)

A regular value of f is a constant b such that its pre-image f−1(b) = {f = b}
contains no critical point. All other constants are called critical values. Note
that according to this definition any constant whose pre-image is empty, that is
which lies outside the range of f , is a regular value. The geometric significance
of regular values lies in the fact that by the regular value theorem 2.4.1 their pre-
images under f are hypersurfaces in M , that is codimension-1 submanifolds.
Consequently, if a is a regular value, then Ma is a codimension-0 submanifold
of M whose boundary is the hypersurface f−1(a).

Main results of the epoch are the following; cf. the beautyful survey [Bot88].
For compact M the first theorem tells that the submanifolds Ma vary smoothly
as long as a does not cross a critical value. The second theorem asserts that the
topological change which occurs when a crosses a simple critical level c, that is
f−1(c) contains precisely one critical point p and p is non-degenerate, amounts
to attaching a disk whose dimension k is the Morse index of p; see Figure 1.2.

Theorem 1.0.1 (Regular interval theorem). Assume f : M → R is of class
C2 and the pre-image f−1[a, b] is compact1 and contains no critical points of f .

1 Compactness is necessary: In the situation of Theorem 1.0.1 fix q ∈ f−1(b), restrict f to
the manifold N := M \ {q}. Then Na = Ma ∼= Mb = Nb ∪ {q} 6∼= Nb. Removing points from
the interior f−1(a, b) quickly leads to examples where Nb cannot deformation retract to Na.
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Then M b and Ma are diffeomorphic, that is M b ∼= Ma. Furthermore, the
sublevel set Ma is a strong deformation retract of M b.

The regular interval theorem not only predicts existence of critical points
whenever two sublevel sets are of different homotopy type, the technique of
proof immediately establishes a version of Birkhoff’s famous minimax princi-
ple [BH35a,BH35b]; see Theorem 3.2.3.
In 1956 John Milnor [Mil56] constructed the first example of two manifolds
which are homeomorphic, but not diffeomorphic. This was very much unex-
pected. Milnor was awarded the Fields medal in 1962 [Whi62]. Existence of
a homeomorphism he obtained from a consequence of Theorem 1.0.1 known as
the Reeb sphere theorem; see Theorem 3.2.6.

By a k-cell ek in M we mean the homeomorphic image of the open unit
k-disk in M . Its topological boundary ėk is given by cl ek \ ek.

Theorem 1.0.2 (Attaching a cell). Assume f : M → R is of class C2 and
a, b ∈ R are regular values of f such that the pre-image f−1[a, b] is compact
and contains precisely one critical point x of f . If x is non-degenerate and k
denotes its Morse index, then there exists a k-cell ek in f−1(a, b) whose boundary
ėk sits in f−1(a) and such that M b deformation retracts onto Ma with a k-cell
attached, that is onto Ma ∪ ek. So both spaces are of the same homotopy type:

M b ∼Ma ∪ ek.

In view of these results it seems a promising idea that if we wish to control
the topology of the whole manifold M we should, first of all, require that all
critical points of f be non-degenerate. A function f is called a Morse function
if it is of class C2 and all critical points are non-degenerate. For such functions
Marston Morse proved his famous inequalities [Mor34, VI Thm. 1.1] relating
analysis and topology. For instance, the weak Morse inequalities assert that

ck ≥ bk := rankHk(M ;F),

n∑
j=0

(−1)jcj =

n∑
j=0

(−1)jbj ,

for k = 0, . . . , n = dimM < ∞ where ck = ck(M,f) is the number of critical
points of Morse index k and F is any field. The rank bk = bk(M ;Q) of singular
homology with rational coefficients, that is the number of elements of a basis of
this vector space, is called the k-th Betti number of M . For instance, for the
example in Figure 1.2 we get that

ck(M,f) =


2 , k = 2,

1 , k = 1,

1 , k = 0,

bk(M) =


1 , k = 2,

0 , k = 1,

1 , k = 0.

1950s/60s – Dynamical systems and critical manifolds

Dynamical systems entered the stage inconspicuously in 1949 through René
Thom’s note [Tho49]. Given any smooth function f : M → R, pick a Rieman-
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nian metric g on M and consider the corresponding downward gradient vec-
tor field −∇f on M determined by the identity of 1-forms df = g(∇f, ·) since
g is non-degenerate. The downward gradient flow associated to (M,f, g) is
the 1-parameter group {ϕt}t∈R of diffeomorphisms of M defined by ϕtq := γq(t)
where γq denotes the unique solution of the initial value problem

γ̇(t) = − (∇f) ◦ γ(t), γ(0) = q, (1.0.3)

for smooth curves γ : R→M . Obviously critical points of f are fixed points of
the flow. The stable manifold of a critical point x of f consists of all points
q ∈M which under the flow asymptotically approach x in infinite forward time:

W s(x) = W s(x;−∇f) :=
{
q ∈M

∣∣ lim
t→∞

ϕtq exists and is equal to x
}
.

(1.0.4)
The unstable manifold of x is defined correspondingly by taking the limit
over infinite backward time t → −∞. For non-degenerate x the (un)stable
manifold theorem asserts that Wu(x) is an embedded open disk of dimension
k = ind(x) and W s(x) is an embedded open disk of complementary dimension.
Thom observed that in case of a Morse function the unstable manifolds decom-
pose M = ∪x∈CritW

u(x) into open disjoint disks, one for each critical point x,
where the dimension of each disk is given by the corresponding Morse index. Of
course, the stable manifolds decompose M as well.
Thom was awarded the Fields medal in 1958 [Hop58] for his cobordism theory
which opened the field of differential topology.

The yet hidden enormous power of dynamical systems methods was only
discovered, not to say unleashed, about 10 years later by Stephen Smale.
In [Sma60] he proved strong Morse inequalities for dynamical systems more
general than gradient flows based on the insight that it is the intersections of
unstable and stable manifolds that encode the topology of M . He introduced the
– ever since ubiquitous – Morse-Smale (MS) condition which asks that all
unstable and stable manifolds have transverse intersection, in symbols

Wu(x) tW s(y), ∀x, y ∈ Crit.

By definition two submanifolds of M intersect transversely if at each
point of their intersection the two tangent spaces together span the whole tan-
gent space to M , that is

TqW
u(x) + TqW

s(y) = TqM, ∀q ∈Wu(x) ∩W s(y).

In this case it is common to say that the intersection is cut out transversely
and differential topology, see e.g. [GP74, Hir76], asserts that it is a smooth
manifold whose codimension is the sum of the two codimensions. Thus

dimMxy = ind(x)− ind(y), Mxy := Wu(x) tW s(y), (1.0.5)

and Mxy is called the connecting manifold of x and y. We will see below
that these ideas lead to a description (known as the Morse-Witten complex) of
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singular homology of M in terms of the 1-dimensional connecting manifolds.
On the other hand, Smale extended Theorem 1.0.1 to the smooth category,
namely, he proved that in fact M b is diffeomorphic to Ma with a so-called
thickened handle Dk × Dn−k attached where k = ind(x) and n = dimM .
This brought him to his handlebody theory and led to proofs of the h-
cobordism theorem and the generalized Poincaré conjecture in dimensions ≥ 5,
see [Sma61a,Sma62,Sma67], earning him the Fields medal in 1966 [Tho66].

Critical manifolds – Morse-Bott theory

The other, again very influential, strang in these years was Raoul Bott’s
idea [Bot54] to replace the concept of non-degenerate critical point by non-
degenerate critical manifold and extend Morse theory to the more general sit-
uation; for applications see the survey [Bot82]. A critical manifold is a con-
nected component of the set Crit of critical points of a function f : M → R
which carries the structure of a submanifold of M . It is called non-degenerate
if at each point of the critical manifold the part of the Hessian matrix in the
normal direction is non-singular. Motivation for and applications of these ideas
came from the study of the length and energy functionals on the space of closed
loops in a Riemannian manifold (M, g). Critical points are closed geodesics,
that is 1-periodic curves γ : R → M satisfying an ODE of second order which
does not depend on time. Thus once you have one closed geodesic γ, shifting
the initial time, say γτ (·) := γ(τ+ ·), gives you a whole circle worth of geodesics.
Actually this problem involves another, quite serious, generalization of Morse
theory, namely, the transition from finite dimensional manifolds M to infinite
dimensional ones such as the free loop space of M . Among others it was Richard
Palais [Pal63] who paved the road in this respect, for instance, by generalizing
the Morse-Lemma [Pal69a].

1980s/90s – Connecting trajectories

Remark 1.0.3. Assume M is a compact manifold equipped with a Morse func-
tion f . It is an exercise in algebra to see that the strong Morse inequalities (3.4.9)
are equivalent to existence of a chain complex2 C = (Ck, ∂k)k∈Z such that, firstly,
each chain group Ck is the free abelian group generated by the set Critk of
critical points of f of Morse index k and, secondly, the Betti numbers bk(C)
of the corresponding homology groups H∗C coincide with the Betti numbers
bk(M) := rankH∗(M ;Z) of singular integral homology of M .

While in the early 1980s Remark 1.0.3 was well known in mathematics and
at least a topological model for such a chain complex was known, see [Mil65a,
Thm. 7.4], it was a physicist, Edward Witten [Wit82], to discover a geometric
model. He received the Fields medal in 1990 [Ati90], the only physicist so far,
for a multitude of achievements one of which is the discovery of the geometric
chain complex.

2 The ∂k : Ck → Ck−1 are group homomorphisms such that ∂k−1 ◦ ∂k = 0 for all k.
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Witten considered a supersymmetric quantum mechanical system which in-
volves a deformed Hodge differential ds := e−sfdesf depending on a real pa-
rameter s and where d is the usual exterior derivative acting on differential
forms on M . He observed that for large parameter values the states of the sys-
tem concentrate near the critical points of the Morse function f and that there
are “tunneling” effects, called instantons, among these ground states. For very
large s these instantons localize very close to downward gradient flow trajec-
tories (1.0.3) which connect critical points of Morse index difference one. The
mathematical rigorous construction of Witten’s Hodge theory approach is due
to Bernard Helffer and Johannes Sjöstrand [HS85].

Physics therefore suggests the following geometric construction assuming
(MS). A downward gradient flow trajectory which connects two critical points
whose Morse indices differ by one is called an isolated flow line. Counting
these appropriately defines the boundary operator of the sought for geometric
chain complex. Its chain groups are generated by the critical points of the
Morse function f : M → R. This chain complex, graded by the Morse index,
is called the (geometric) Morse-Witten complex and denoted by CM =
(CMk, ∂k)k∈Z. The resulting homology theory is called Morse homology.

Consider again the example in Figure 1.2. For simplicity we count modulo
two using Z2-coefficients. Observe that there are precisely four isolated flow
lines, one from each local maximum to the saddle point s := p2 and two from
s to the minimum p1. Thus Morse homology of M with Z2-coefficients is given
by HM2(M ;Z2) = Z2, generated by the cycle p3 + p4, and HM0(M ;Z2) = Z2

is generated by p1. Note that the saddle s = p2 is a cycle since ∂1s = 2p1 = 0,
but s is also a boundary, namely of either of the two local maxima. Thus
HM0(M ;Z2) = 0. Obviously M is homeomorphic to the 2-sphere and we have
just calculated H∗(S2;Z2).

The mathematical rigorous construction of the geometric Morse-Witten com-
plex has been established by Matthias Schwarz [Sch93], who used an infinite
dimensional functional analytic framework in the spirit of Floer theory, and the
present author [Web93], who notized that the key tools in finite dimensional
hyperbolic dynamics – the λ-Lemma of Jacob Palis [Pal69b] and the Grobman-
Hartman theorem [Gro59,Har60] – serve to show that counting isolated flow lines
indeed satisfies ∂2 = 0, that is ∂ is a boundary operator. Marzin Poźniak [Poź91]
contributed an elegant method to show that Morse-Witten homology does not
depend on the choice of the Morse function f and the Riemannian metric g. An-
dreas Floer [Flo89b] and Dietmar Salamon [Sal90] utilized Conley index theory
to show that Morse homology is isomorphic to singular homology of M .

2000s – Infinite dimensions and semi-flows

In a series of papers Alberto Abbondandolo and Pietro Majer, see e.g. [AM06],
generalized the construction of the Morse-Witten complex from finite dimen-
sional manifolds M to Banach manifolds equipped with a gradient-like vector
field which generates a genuine flow. Recently, the present author [Web13]
generalized the theory from flows towards semi -flows, more precisely, towards
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the forward semi-flow known as the heat flow on the Hilbert manifold given
by the free loop space ΛM of M . In the course of calculating heat flow ho-
mology [Web17] the need for a backward λ-lemma for the heat flow emerged.
Rather surprisingly – given that the heat flow does not admit a backward flow
– a backward λ-lemma for the forward heat flow was indeed discovered re-
cently [Web14b]. A rich source of semi-flows appears in the mathematical field
of geometric analysis. It is yet to be explored if semi-flow Morse homology
can be established in interesting cases and if it can answer some open problems.

Of course, many more people contributed to the many facets of
Morse theory. Needless to say that the above historical account exclusively
reflects experience and knowledge of the author.

Conley theory

Comments and outline of these notes
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Exercises

Morse theory

Exercise 1.0.4. Show that the definition of a non-degenerate critical point
using as criterium non-singularity of the Hessian matrix (1.0.1) does not depend
on the choice of coordinates (see [GP74] if you get stuck), neither does ind(p).

Exercise 1.0.5. Show that the non-degeneracy condition (1.0.1) implies that
a non-degenerate critical point is isolated or, in other words, discrete. This
means that there is a neighborhood which contains no other critical points.
[Hint: Transversality theory.]

Exercise 1.0.6. Assume f : M → R is a smooth function on a manifold M .

(i) dimM = 1: Give an example of an isolated degenerate critical point.
Give an example of a non-isolated, thus by Exercise 1.0.5 degenerate,
critical point such that f is not constant near the critical point.

(ii) dimM = 2: Give an example of a degenerate critical point x for each of
the three cases:

a) Crit = {x};
b) Crit is a 1-dimensional submanifold of M ;

c) Crit is not a submanifold of M .

Exercise 1.0.7. Give two proofs, one of analytic and one of algebraic nature,
that the time-0-map ϕ0 determined by (1.0.3) is the identity map on M .

Exercise 1.0.8. Show the dimension formula (1.0.5).

Exercise 1.0.9. If you are familiar with CW-complexes, construct a CW-
complex X homotopy equivalent to the surface M in Figure 1.2. Calculate
the CW-homology of X.

Exercise 1.0.10. Prove the asserted equivalence in Remark 1.0.3; see [Web95,
Thm. 2.4] in case you get stuck.

Conley theory



Chapter 2

Preliminaries

In this short chapter we collect a number of basic definitions and results in
topology, algebra, analysis, and geometry. We also fix some notation.

2.1 Topology

We follow a common convention in topology, namely that a map between topo-
logical spaces is automatically understood continuous. The symbol ‘∼=’ denotes
isomorphism. Hence, for instance, in the smooth category ‘∼=’ means diffeomor-
phism. It is an exception that in the topological category we denote isomor-
phisms, that is homeomorphisms, by the “weaker” symbol ‘'’. The “weakest”
symbol ‘∼’ denotes homotopy when applied to maps and homotopy equivalence
when applied to topological spaces.

Definition 2.1.1. A topological space or simply a space is a pair (X,O)
where X is a set and O is a topology on X, that is a collection {Oλ}λ∈Λ

of subsets Oλ ⊂ X, called the open sets of the topology, which satisfy the
following three axioms.

(TOP-1) Arbitrary unions of open sets are open.

(TOP-2) Finite intersections of open sets are open.

(TOP-4) The two natural subsets ∅, X ⊂ X are open.

Complements of open sets are called closed sets and a set which is both open
and closed is called clopen. For simplicity we usually denote (X,O) by X.
A subspace of a topological space X consists of a subset A ⊂ X equipped
with the subspace topology OA = {A ∩ Oλ}λ∈Λ.

Definition 2.1.2. Suppose X is a topological space. The topological bound-
ary of a subset A ⊂ X is the set Ȧ obtained by taking the closure of A, denoted

by Ā or clA, and then removing the interior of A, denoted by
◦
A or intA.

9
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Definition 2.1.3. A neighborhood of a point q of a topological space X
is a subset A ⊂ X which contains an open subset U ⊂ X that contains q.
Any subset A ⊂ X which is a neighborhood of some point, that is which has
non-empty interior intA, is called a neighborhood.

Definition 2.1.4. Given topological spaces X and Y , then calling f : X →
Y a map implicitely means that f is also continous. If f happens not to
be continuous we call it application or function. In general, if the domain
A or the target B of g : A → B is not a topological space to start with,
then we call g likewise map, application, or function. In this case there is
no continuity involved, of course. Two maps f, g : X → Y between topological
spaces are called homotopic, in symbols f ∼ g, if there is a homotopy between
them, that is a map

h : I ×X → Y, I := [0, 1],

such that h0 := h(0, ·) = f and h1 := h(1, ·) = g.

Definition 2.1.5. A topological space X is called a contractible space if the
identity map id : X → X is homotopic to a constant map, that is to a map of
the form ιx0

: X → X, x 7→ x0, for some x0 ∈ X.

Definition 2.1.6. Two topological spaces X and Y are called homotopy
equivalent, in symbols X ∼ Y , if there exist reciprocal homotopy inverses,
that is maps α : X → Y and β : Y → X such that β ◦α ∼ idX and α ◦β ∼ idY .
We say that two homotopy equivalent spaces are of the same homotopy type.

Definition 2.1.7. Assume X is a topological space and A is a subspace. By
ι : A ↪→ X we denote the inclusion.

(i) A retraction is a map r : X → A such that r ◦ ι = idA, that is r(a) = a
for every a ∈ A.

(ii) A deformation retraction of X onto A is a homotopy h : I ×X → X
between the identity map h0 = idX on X and a retraction h1 = r : X → A.
In this case we say that A is a deformation retract of X.

(iii) A deformation retract is called a strong deformation retract if, in
addition, the points of A stay fixed throughout the homotopy, that is
ht(a) = a for all t ∈ I and a ∈ A.

Definition 2.1.8.

(i) A pair of topological spaces (X,A) consists of a topological space X
and a subspace A. The cartesian product of pairs is defined by

(X,A)× (Y,B) := (X × Y,A× Y ∪X ×B).

(ii) A map of pairs
f : (X,A)→ (Y,B)

is a (continuous) map f : X → Y which maps A into B, that is f(A) ⊂ B.
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(iii) A homotopy between maps of pairs f, g : (X,A) → (Y,B) is a map
of pairs

h : (I ×X, I ×A)→ (Y,B)

such that h0 = f and h1 = g. Consequently ht(A) ⊂ B for every t ∈ I.

2.2 Algebra

Definition 2.2.1. (i) A group (G, ∗) is a set G together with a binary
operation, that is a map1 ∗ : G×G→ G such that the following axioms hold:

(associativity) For all a, b, c ∈ G one has a ∗ (b ∗ c) = (a ∗ b) ∗ c;

(neutral element) There is an element e ∈ G such that e ∗ a = a = a ∗ e for every a ∈ G;

(inverses) For every a ∈ G there is an element a′ in G with a ∗ a′ = e = a′ ∗ a.

Additive notation: If the group operation is denoted by +, then one denotes
the neutral element e by 0, inverses by −a, and k times combining the same
element a by ka.
Multiplicative notation: If the group operation is denoted by ·, then one
denotes the neutral element e by 1 called unit or identity, inverses by a−1, and
k times combining the same element a by ak.

(ii) It is common to denote a group (G, ∗) simply by the underlying set G.
If G is a finite set, the group is called a finite group.

(iii) A subset H of a group G is called a subgroup of G, in symbols H ≤ G,
if H also forms a group under the binary operation of G. This is the case if and
only if H is non-empty and preserved under the binary operation and under
taking inverses.

(iv) A subgroup H ≤ G is called a normal subgroup, in symbols H E G,
if H is invariant under conjugation by the elements of G, that is gHg−1 = H for
each g ∈ G. Precisely the class of normal subgroups can be used to construct
quotient groups G/N from a given group.

Definition 2.2.2. A group G is called abelian if combining elements does not
depend on the order, that is if

(commutativity) a ∗ b = b ∗ a for all a, b ∈ G.

An abelian group that admits a basis – a generating and linearly independent
set – is called a free abelian group. It is called a finitely generated free
abelian group, if it admits a finite basis. Any two bases of a free abelian group
have the same cardinality called the rank of the free abelian group. Any

1 A binary operation is often formulated as an operation which not only combines any
two elements a, b ∈ G to form an element a ∗ b, but which is closed in the sense that a ∗ b
always lies in G. A binary operation is a special case of a binary function, that is a map
A×B → C where A,B,C are sets. Binary refers to the fact that the domain is the cartesian
product of two sets.
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two maximal linearly independent subsets of an abelian group have the same
cardinality called the rank, or torsion-free rank, of the abelian group; cf.
Remark B.3.75.

Remark 2.2.3. [Abelian groups] (i) Every subgroup F of an abelian group G
is normal (which is precisely what is needed to form a quotient group).

(ii) The rank of an abelian group G coincides with the dimension of the
Z-module tensor product G⊗Z Q viewed as Q-vector space; cf. Exercise 2.2.26.

(iii) Theorem of Dedekind : Every subgroup of a free abelian group G is itself
a free abelian group. If G is not finitely generated, the proof uses the axiom of
choice in the form of Zorn’s Lemma; see [Lan93a, Thm. I.7.3 p.41, pf. p.880].2

Definition 2.2.4. A commutative ring R consists of a set R equipped with
two maps +, · : R×R→ R, addition and multiplication, such that

− under addition R is an abelian group with neutral element 0;

− multiplication is associative, commutative, and has a unit element 1;

− both operations are compatible in the sense that

(α+ β)γ = αγ + βγ, α(β + γ) = αβ + βγ, α, β, γ ∈ R,

which is called distributivity and where αβ := α·β.

The integers Z carry naturally the structure of a ring. Every ring contains
the two neutral elements 0 and 1, but they are not necessarily different. The
smallest ring, the zero ring R = {0} has one element, the neutral element of ad-
dition. In this case the neutral element of multiplication, the unit 1, necessarily
coincides with 0.

Definition 2.2.5. An integral domain is a non-zero commutative ring R
which admits no zero divisors, that is the product of any two non-zero elements
is non-zero. A principal ideal domain or PID is an integral domain in which
every ideal is principal, that is can be generated by a single element.

With respect to divisilibity PID’s behave similar like the archetype PID Z
in the sense that one has unique decomposition into prime elements and any
two elements have a greatest common divisor.

Definition 2.2.6. A field is a ring (F,+, ·) such that

• under multiplication F∗ := F \ {0} is an abelian group with neutral ele-
ment 1, called unit.

In other words, a field is a commutative ring in which every non-zero element
admits a multiplicative inverse. Thus Z is not a field, but for example Q, R, C,
and Zp with p prime are. Every field contains the two neutral elements 0 and 1
and they are necessarily different. The smallest field is Z2 = {0, 1}.

2 In fact, the proof is given for a free R-module over a PID (principal ideal domain) R.
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Definition 2.2.7. An R-module M , more precisely, a module (M,+, ·) over
a ring (R,+, ·) consists of

• an abelian group (M,+) with neutral element 0 and

• a map called scalar multiplication3

R×M →M, (α,m) 7→ α ·m,

which satisfies 1·m = m and is compatibel with the other three operations
in the sense that

(α+β) ·m = α ·m+ β ·m, α · (m+ n) = α ·m+ α · n,

and
(α·β) ·m = α · (β ·m)

for all elements of R and M .

The additive group ({0},+) is a module over any ring. Any ring R is a
module over itself. Any abelian group is a Z-module (and trivially vice versa).

Theorem 2.2.8. Every submodule of a free R-module over a PID R is free.

Proof. [Lan93a, p.880]. See also Remark 2.2.3 (iii).

Definition 2.2.9. A module over a field is called a vector space.

Definition 2.2.10. Let R be a commutative ring. An R-algebra consists of

• an R-module (A,+, ·) and

• an R-bilinear map ◦ : A×A → A.

We require also that the product ◦ is associative and admits a unit element 1l.

Remark 2.2.11. a) What we callR-module is strictly speaking a leftR-module.
b) Associativity and unit are usually not part of the algebra definition. We
include them for simplicity of presentation.
c) If one drops from an R-algebra A (as defined above) the coefficient ring R,
including scalar multiplication, and replaces bilinearity by distributivity, then
A becomes precisely a ring. So the notion of algebra generalizes the one of ring.

Categories and Functors

Following [Dol95, Ch. I §1] we recollect categories and functors.

Definition 2.2.12 (Category). A category C consists of

(i) a collection of objects, denoted by Ob(C), and

3 In this context the elements of R are called scalars.
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(ii) for every pair X,Y of objects, a set of morphisms from X to Y , denoted
by C(X,Y ) or [X,Y ],4 and

(iii) for every ordered triple of objects X,Y, Z an application

◦ : C(X,Y )× C(Y, Z)→ C(X,Z)

called composition. One abbreviates intuitively g ◦ f := ◦(f, g).5

Objects, morphisms, and composition maps have to satisfy two axioms:

(Associativity) For all triples of composable morphisms it holds that

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

(Identities) Every object X admits a morphism idX : X → X with

f ◦ idX = f, idY ◦ f = f,

for every morphism f : X → Y .

Example 2.2.13. The following are categories:

Set Category of sets: Objects are arbitrary sets, the set of morphisms [X,Y ]
consists of all maps from X to Y , and g ◦ f has the usual meaning of
composition of maps.

AG Category of abelian groups: Objects are arbitrary abelian groups, the set
of morphisms [X,Y ] = Hom(X,Y ) consists of all homomorphisms from
X to Y , and g ◦ f has the usual meaning.

Top Category of topological spaces: Objects are arbitrary topological spaces,
the set of morphisms [X,Y ] = C0(X,Y ) consists of all (continuous) maps
from X to Y , and g ◦ f has the usual meaning.

Top(2) Category of pairs of topological spaces: Objects are arbitrary pairs of
spaces, the set of morphisms [(X,A), (Y,B)] consists of all maps of pairs
from (X,A) to (Y,B), and g ◦ f has the usual meaning.

Cop Dual or opposite category : Suppose C is a category. Set Ob(Cop) := Ob(C)
and Cop(X,Y ) := C(Y,X). Composition ∗ in Cop is defined by

g ∗ f := f ◦ g, X
f−→op Y

g−→op Z.

R-Mod Category of R-modules: Objects are arbitrary R-modules, the set of mor-
phisms [M,N ] = Hom(M,N) consists of all homomorphisms from M to
N , and g ◦ f has the usual meaning of composition of maps.

4 A morphism f from X to Y is also denoted by f : X → Y or X
f−→ Y .

5 However, observe that the composition map is not in every category – although in many –
given by composition of maps; see [Dol95, Ch. I Ex. 1.2 (iv)] where morphisms are not maps.
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Definition 2.2.14 (Functor). Given categories C and D, a functor T from C
to D, in symbols T : C → D, consists of

(i) an application T : Ob(C)→ Ob(D), and

(ii) applications T = TXY : C(X,Y )→ D(TX, TY ), whenever X,Y ∈ Ob(C),
which preserve composition and identities, namely

(iii) T (g ◦ f) = (Tg) ◦ (Tf) for all morphisms X
f−→ Y

g−→ Z in C,

(iv) T (idX) = idTX for every X ∈ Ob(C).

Definition 2.2.15 (Cofunctor). A cofunctor from C to D is, by definition, a
functor from C to the dual category Dop or, equivalently, a functor Cop → D.6

Direct and inverse limits

We follow the concise presentation in [BPS03, §4.6]; for further details see
e.g. [Rot09, §5.2] or [GM03, §II.3.15].

Suppose (I,�) is a partially ordered set (poset). It is useful to view this
poset as a category whose objects are the elements of I and where there is
precisely one morphism from i to j whenever i � i.

Suppose R is a commutative ring. A partially ordered system (posyst)
of R-modules over I is a functor (I,�) → R-Mod written as a pair (M,ψ)
where M assigns to each i ∈ I an R-module Mi and ψ assigns to each related
pair i � j of I a homomorphism ψji : Mi →Mj such that

ψkjψji = ψki, ψ`` = idM`
,

whenever i � j � k and for every ` ∈ I.

Definition 2.2.16 (Direct limit). A poset (I,�) is upward directed if every
pair of elements i, j ∈ I admits a common upper bound, that is there is an
` ∈ I such that i � ` and j � `. In this case the posyst (M,ψ) above is called
a direct system of R-modules. Its direct limit of such a direct system is
defined as the quotient

lim−→M := lim−→
i∈I

Mi := {(i, x) | i ∈ I, x ∈Mi} / ∼

where (i, x) ∼ (j, y) if and only if i and j admit a common upper bound ` such
that ψ`ix = ψ`jy, that is x and y get mapped into a common R-module M`.
Since I is upward directed this is an equivalence relation.

The direct limit is an R-module itself under the operations

[i, x] + [j, y] = [`, ψ`ix+ ψ`jy], r[i, x] = [i, rx],

6 In Definition 2.2.14 one only needs to replace (ii) by T =: C(X,Y ) → D(TY, TX) and
(iii) by T (g ◦ f) = (Tf) ◦ (Tg).
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where ` ∈ I is any common upper bound for i, j and r ∈ R is any ring element.
Furthermore, for each i ∈ I there is an insertion homomorphism

ιi : Mi → lim−→M, x 7→ [i, x],

which satisfies ιi = ιjψji whenever i � j. However, the homomorphism ιi is not
necessarily injective which is why it is called insertion and not injection.

Remark 2.2.17 (Universal property of direct limit). Up to isomorphism the
direct limit is characterized by the following universal property. Suppose N is
any R-module and (τi : Mi → N)i∈I is a family of homomorphisms such that
τi = τjψji whenever i � j. Then there is a unique homomorphism τ : lim−→M →
N such that τi = τιi for every i ∈ I; indeed τ is given by [i, x] 7→ τi(x)

Definition 2.2.18 (Inverse limit). A poset (I,�) is called downward di-
rected if every pair of elements i, j ∈ I admits a common lower bound,
that is there is an h ∈ I such that h � i and h � j. In this case a posyst
(M,ψ) : (I,�) → R-Mod is called an inverse system of R-modules. The
inverse limit of such an inverse system is the submodule7 of

∏
Mi defined by

lim←−M := lim←−
i∈I

Mi :=

{
(xi)i∈I ∈

∏
i∈I

Mi

∣∣∣∣ i � j ⇒ ψjixi = xj

}
.

For each j ∈ I there is an obvious projection homomorphism

πj : lim←−M →Mj , (xi)i∈I 7→ xj ,

to the jth component. These projections satisfy πj = ψjiπi whenever i � j, but
it is not necessarily surjective.

Remark 2.2.19 (Universal property of inverse limit). Up to isomorphism the
inverse limit is characterized by the following universal property. Suppose N is
any R-module and (τj : N → Mj)j∈I is a family of homomorphisms such that
τj = ψjiτi whenever i � j. Then there is a unique homomorphism τ : N →
lim←−M such that τj = πjτ for every j ∈ I; indeed τ is given by y 7→ (τi(y))i∈I .

Definition 2.2.20. A poset (I,�) is called bidirected if it is both up- and
downward directed. In this case the posyst functor (M,ψ) is called a bidirected
system of R-modules.

Remark 2.2.21 (Existence).

Exhausting sequences

Computation of direct and inverse limits is greatly facilitated by the notion of
exhausting sequences.

7 An element (xi) ∈
∏
Mi such that ψjixi = xj whenever i � j is called a thread. Note

that the set L of all threads is a submodule of
∏
Mi.
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Definition 2.2.22. Suppose (M,ψ) is a posyst of R-modules over (I,�). De-
note Z+ := N := {1, 2, 3, . . . } and Z− := {. . . ,−3,−2,−1}.
(i) A sequence (iν)ν∈Z+ is called upward exhausting for (M,ψ) if and only if

• for every ν ∈ Z+ one has iν � iν+1 and ψiν+1iν : Miν → Miν+1
is an

isomorphism. Moreover, it is required that

• every i ∈ I is dominated by some iν , that is i � iν for some ν ∈ Z+.

(ii) A sequence (iν)ν∈Z− is downward exhausting for (M,ψ) if and only if

• for every ν ∈ Z− one has iν−1 � iν and ψiν iν−1 : Miν−1 → Miν is an
isomorphism. Moreover, it is required that

• every i ∈ I dominates some iν , that is iν � i for some ν ∈ Z−.

Lemma 2.2.23. Suppose (M,ψ) is a posyst of R-modules over (I,�).

(i) If (iν)ν∈Z+ is an upward exhausting sequence for (M,ψ), then (I,�) is
upward directed and the insertion homomorphism ιiν : Miν → lim−→M is an

isomorphism for every ν ∈ Z+.

(ii) If (iν)ν∈Z− is a downward exhausting sequence for (M,ψ), then (I,�) is
downward directed and the projection homomorphism πiν : lim←−M → Miν

is an isomorphism for every ν ∈ Z−.

Exercises

Exercise 2.2.24. Show that if A is a deformation retract of X, then A ∼ X.

Exercise 2.2.25. Show that abelian groups and Z-modules are the same.

Exercise 2.2.26. Show the assertion of Remark 2.2.3 (ii): For any abelian
group G it holds that rankG := |B| = dimQ(G ⊗Z Q) where B ⊂ G is any
maximal linearly independent subset and the Z-module tensor product G⊗Z Q
is viewed as a Q-vector space with scalar multiplication (r′, g ⊗ r) 7→ g ⊗ rr′.
[Hint: Show that {b⊗ 1 | b ∈ B} is a basis of the Q-vector space.]

Exercise 2.2.27 (Direct limit is generalized union).

Exercise 2.2.28 (Inverse limit is generalized intersection).

Exercise 2.2.29 (Exhausting sequences). Prove Lemma 2.2.23.

2.3 Analysis

Theorem 2.3.1 (Inverse Function Theorem). Suppose f : E ⊃ U → F is a Cr

map between Banach spaces for some r ≥ 1 and defined on an open set U . Let
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x0 ∈ U and assume that the derivative f ′(x0) = dfx0 : E → F is a toplinear
isomorphism8. Then f is a local diffeomorphism9 at x0 of class Cr.

Proof. See e.g. [Lan93b, XIV §1].

2.4 Manifolds and transversality

Whenever the term manifold is used a smooth or at least Cr differentiable
manifold10 M of finite dimension, say n, is meant and the degree r ≥ 1 of
differentiability should be taken from the context. Excellent introductions to
manifolds and transversality theory are the elementary texts [Jän01] and [GP74]
and the slightly more advanced classics [Mil65b] and [Hir76].

Suppose f : M → N is a C1 map between manifolds. A point x ∈ M at
which the linearization dfx : TxM → Tf(x)N is not surjective is called a critical
point, otherwise, it is a regular point. A point y ∈ N is called a critical
value of f if it is of the form y = f(x) for some critical point x. Otherwise, in
particular if y /∈ f(M), it is called a regular value. If y ∈ f(M) is a regular
value, then its pre-image f−1(y) is called a regular level set.

Theorem 2.4.1 (Regular Value Theorem). Suppose f : M → N is a Cr map
with r ≥ 1. If y ∈ f(M) is a regular value, then f−1(y) is a Cr submanifold
of M . Its dimension is the difference dimM − dimN .

Proof. Inverse Function Theorem 2.3.1; see e.g. [Hir76, Ch. 1 Thm. 3.2].

For us the case N = R, that is f : M → R, will be most important.
In this case a regular level set is a submanifold of codimension 1, called a
hypersurface. Since regular values give rise to submanifolds one would wish
for a result asserting that the set of regular values is large or, equivalently, that
its complement the set of critical values is small. For a proof of the following
theorem in the smooth case we refer to [Hir76, Ch. 3 Thm. 1.3] where also the
necessity of the differentiability requirement is discussed.

Theorem 2.4.2 (Sard’s theorem). Suppose f : M → N is a Cr map with
r ≥ 1. If in addition r > dimM − dimN , then the set of critical values of f
has measure zero in N . The set of regular values of f is dense in M .

Substituting the regular value y in Theorem 2.4.1 by a whole family A one
obtains a rather general and powerful tool called transversality.

Theorem 2.4.3 (Transversality). Suppose a Cr map f : M → N with r ≥ 1 is
transverse to a submanifold A ⊂ N of class Cr (in symbols f t A), that is

dfx(TxM) + Tf(x)A = Tf(x)N

8 that is it admits an inverse (which is automatically linear) and this inverse is continuous.
9 that is there are open neighborhoods U0 of x0 and V0 of f(x0) such that f restricts to a

bijection f : U0 → V0 and the inverse of this bijection is of class Cr.
10 that is a second countable Hausdorff space which is locally homeomorphic to euclidean

space Rn such that all transition maps are Cr diffeomorphisms.
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whenever f(x) ∈ A. Then the pre-image f−1(A) is a Cr submanifold of M . Its
codimension is the codimension of A in N .

Proof. See e.g. [Hir76, Ch. 1 Thm. 3.3].

Remark 2.4.4. We say that two submanifolds A,B ↪→ N have transverse
intersection, in symbols A t B, if

TyB + TyA = TyN, ∀y ∈ A ∩B,

that is together the two tangent subspaces span the whole ambient tangent
space or, equivalenty, the inclusion ι : B ↪→ N is transverse to A. Thus by
Theorem 2.4.3 the intersection A∩B is a submanifold of N whose codimension
is the sum of the codimensions of A and B. In this case one also says that the
intersection A ∩B is cut out transversely.

Manifolds-with-boundary

If in the above definition of manifold one generalizes to “...locally homeomorphic
to euclidean space Rn or euclidean half-space [0,∞) × Rn−1 such that...” one
obtains what is called a (Cr differentiable) manifold-with-boundary M . By
definition a point x ∈ M belongs to the boundary ∂M of M if it is identified
by some, hence every11, coordinate chart with an element of the boundary
{0} × Rn−1 of euclidean half-space. The boundary ∂M of a Cr manifold-with-
boundary M of dimension n is itself a Cr manifold of dimension n− 1.

Analogues of the Regular Value Theorem 2.4.1 and the Transversality The-
orem 2.4.3 hold true for manifolds-with-boundary; see [Hir76, Ch. 1 §4].

Remark 2.4.5. Obviously a manifold M is a manifold-with-boundary whose
boundary is the empty set. The latter is also called a manifold-without-
boundary. In other words, manifold and manifold-without-boundary are equiv-
alent notions. A compact manifold-without-boundary is called a closed man-
ifold. On the other hand, to emphasize non-triviality of the boundary a
manifold-with-boundary M with ∂M 6= ∅ is called a ∂-manifold.

2.5 Group actions

We briefly introduce basic notions of group actions. For further redaing we
recommend the textbooks [tD87,DK00].

Definition 2.5.1. A (left) group action of a group G on a set X is a map

φ : G×X → X, (g, x) 7→ φ(g, x) =: gx,

that satisfies the following two axioms:

11 In other words, a coordinate change (also called a transition map) cannot map a boundary
point of half-space to an interior point. If r ≥ 1 this follows from the Inverse Function
Theorem 2.3.1 and for r = 0 from a highly non-trivial result in topology called invariance of
domain; see [Hir76, Ch. 1 §4].
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(identity) The neutral element e of the group G acts as the identity on X, that is
φ(e, ·) = idX or equivalently ex = x, ∀x ∈ X;

(compatibility) The action and the group operation are compatible in the sense that
(gh)x = g(hx) for all g, h ∈ G and x ∈ X.

Note that the two axioms imply that for g ∈ G the maps φg : X → X are
bijections, the inverse being φg−1 , whose compositions satisfy φgφh = φgh.

Definition 2.5.2. A group action of G on X is called

− transitive if X is non-empty and if for each pair x, y in X there is a group
element g such that gx = y;

− faithful, or effective, if different group elements g 6= h provide different
bijections φg 6= φg : X → X.

− free, or fixed point free, if none of the maps

φ(g, ·) : X → X, g ∈ G \ {e},

admits fixed points. (Equivalently, if gx = x has no solution unless g = e.)

Remark 2.5.3 (Orbits). Consider a group action of a group G on a set X.
Given a point x ∈ X, then all points y ∈ X to which x can be moved by the
elements of G is called the orbit of x and denoted by

Gx := {gx | g ∈ G}.

Orbits are the equivalence classes of the equivalence relation on X defined by
x ∼ y if and only if gx = y for some g ∈ G. Consequently X is partitioned by
the orbits. Observe that the action is transitive if and only if it admits only one
orbit, namely M . In this case M is called a homogeneous space. In general,
the set of all orbits is called the orbit space and denoted X/G or XG.

Definition 2.5.4 (G-manifold). Consider a group action φ of G on M where
G is a Lie group and M is a Ck manifold, k ≥ 1, and such that map (g, p) 7→
φ(g, p) =: gp is of class Ck. Such group action is called a Lie group action or
a smooth group action of class Ck on the manifold M . A manifold equipped
with a Lie group action is called aG-manifold. A function f : M → R invariant
under the action of G is called an equivariant function.

While in general (the quotient topology on) the orbit space M/G may not
be Hausdorff, it is Hausdorff whenever G is compact. If G is compact and
acts freely, then M/G is a manifold. This is a consequence of Koszul’s tube
theorem [Kos53] also called slice theorem or equivariant tubular neighborhood
theorem; see also [Mos57,Pal61].

Theorem 2.5.5. Suppose G is a compact Lie group which acts freely and of
class Ck, k ≥ 1, on a manifold M . Then the quotient space M/G has a unique
structure of a Ck manifold of dimension dimM − dimG.

Proof. [tD87, Prop. 5.2] or [DK00, Thm. 1.11.4] or [GGK02, App. B].
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2.6 Local and global dynamics

For an overview, respectively the details, of the dynamics generated by vector
fields on euclidean space and on finite dimensional manifolds we recommend
the books by Hirsch [Hir76, Ch. 6 §2] and Zehnder [Zeh10, §IV.1], respectively
Amann [Ama90, CH. 2] and Teschl [Tes12, Ch. 2 and §6.2]. The case of Banach
spaces and Banach manifolds is treated in the book by Lang [Lan01, Ch. IV].

Flows

Following [Ama90, §10] suppose S is a metric space. For each x ∈ S let
Jx = (T−x , T

+
x ) be an open interval about 0 ∈ R and consider the set

Ω :=
⋃
x∈S

Jx × {x}.

Definition 2.6.1. A (local) flow or a dynamical system on S is a map

ϕ : Ω→ S, (t, x) 7→ ϕ(t, x) =: ϕt(x) =: ϕtx,

with the following properties:

(i) the subset Ω ⊂ R× S is open;

(ii) the map ϕ : Ω→ S is continuous;

(iii) ϕ0 = idM ;

(iv) for all x ∈ S, t ∈ Jx, and s ∈ Jϕtx it holds that

s+ t ∈ Jx, ϕsϕtx = ϕt+sx.

If Ω = R × S, that is Jx = R for every point x of S, then ϕ is called a global
flow or a global dynamical system. For each x ∈ S, the curve

ux : Jx =
(
T−x , T

+
x

)
→ S, t 7→ ϕtx,

is called the flow line or trajectory through x and the constants T−x =
T−(x) and T+

x = T+(x) are called the negative and positive life time of x,
respectively. The images

O−(x) := ϕ(T−
x ,0]x, O+(x) := ϕ[0,T+

x )x, O(x) := ϕJxx

are called the negative semi-orbit, the positive semi-orbit, and the orbit
through x, respectively, and S is called the phase space of the flow.

Remark 2.6.2.

a) If S is a Cr-manifold where r ≥ 1 and if (ii) above is replaced by

(ii’) ϕ ∈ Cr(Ω, S)
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one obtains a Cr-flow.

b) Each orbit O(x) comes with its flow orientation, that is the direction
in which the flow line ux runs through the orbit.

c) The orbits partition the phase space, that is S = ∪x∈SO(x) and two orbits
are either equal or disjoint.

Definition 2.6.3. Suppose Λ is a topological space and consider a function
f : Λ → [−∞,∞] =: R̄. Then f is called lower semi-continuous at λ∗
if for every a < f(λ∗) there is a neighborhood Ua of λ∗ such that f(λ) > a
for every λ ∈ Ua. A function is upper semi-continuous if it is upper semi-
continuous at every point. A function f is upper semi-continuous if −f is
lower semi-continuous.

Lemma 2.6.4. Suppose ϕ is a flow on S. Then

(i) the backward and forward life times T−, T+ : S → (0,∞] are upper and
lower semi-continuous, respectively;

(ii) for every (t, x) ∈ Ω it holds that Jϕtx = Jx − t.

Proof. [Ama90, Lemma 10.5].

Flows generated by vector fields

Suppose U ⊂ Rn with n ≥ 1 is an open subset and F : U → Rn is a map of
class Cr with r ≥ 1.12 Then the Cauchy or initial value problem

u̇ = F (u), u(0) = x, (2.6.1)

admits a unique solution

ux : Jx → U, Jx =
(
T−x , T

+
x

)
,

which is of class Cr+1 and where Jx 3 0 is the maximal interval of existence;
see e.g. [Ama90, Thm 7.6]. Moreover, if the solution ux remains in a compact
subset Q of U , that is ux(t) ∈ Q for every t ∈ Jx, then Jx = R. Now consider
the map defined by

ϕ(t, x) := ϕtx := ux(t)

on the set
ΩF := {(t, x) ∈ R× U | t ∈ Jx, x ∈ U}

which is in fact an open subset of R× U by the following result.

Theorem 2.6.5. If F ∈ Cr(U,Rn) with r ≥ 1, then the solution

ϕ = ϕF : ΩF → U

of the Cauchy problem (2.6.1) is a Cr-flow on U , the flow generated by F .

12 (Local) Lipschitz continuity is sufficient to obtain a Lipschitz flow; see e.g. [Ama90, §10].
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Proof. [Ama90, Thm 10.3].

These results remain valid if Rn is replaced by an arbitrary Banach space;
see e.g. [Lan01, IV Thm. 1.16].

Manifolds and Banach manifolds

Using local coordinate charts one can lift the former results from Rn to differ-
entiable manifolds of dimension n, see e.g. [Hir76, Ch. 6 §2], and from Banach
spaces to Banach manifolds, see e.g. [Lan01, IV §2].

Hyperbolic gradient dynamics

Morse theory embeds naturally, upon choosing a Riemannian metric, into the
well known field of hyperbolic dynamical systems, more precisely, into the sub-
field of hyperbolic gradient dynamics. For convenience of the reader and also to
present and mirror some possibly less known results and techniques we shall pro-
vide all relevant results with proofs. To avoid conflict with the title of the present
text this material is put in the appendix, given the large number of pages. We
recommend consulting the overview given in the beginning of Appendix A and
then to proceed with Chapter 3. The recent developments presented in Chap-
ter 4 are based on large parts of Appendix A.5 though.
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greater than four. Ann. of Math. (2), 74:391–406, 1961.

[Sma61b] Stephen Smale. On gradient dynamical systems. Ann. of Math. (2),
74:199–206, 1961.

[Sma62] Stephen Smale. On the structure of manifolds. Amer. J. Math.,
84:387–399, 1962.

[Sma67] Stephen Smale. Differentiable dynamical systems. Bull. Amer. Math.
Soc., 73:747–817, 1967.

https://www.math.wisc.edu/~robbin/catastrophe/catastrophe_talk.pdf


370 BIBLIOGRAPHY

[Spa81] Edwin H. Spanier. Algebraic topology. Springer-Verlag, New York,
1981. Corrected reprint.

[Ste40] N. E. Steenrod. Regular cycles of compact metric spaces. Ann. of
Math. (2), 41:833–851, 1940.

[SW06] Dietmar Salamon and Joa Weber. Floer homology and the heat flow.
Geom. Funct. Anal., 16(5):1050–1138, 2006.

[tD87] Tammo tom Dieck. Transformation groups, volume 8 of de Gruyter
Studies in Mathematics. Walter de Gruyter & Co., Berlin, 1987.

[tD08] Tammo tom Dieck. Algebraic topology. EMS Textbooks in Mathemat-
ics. European Mathematical Society (EMS), Zürich, 2008.
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bidirected system, 16
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operation, 11
Birkhoff minimax principle, 33
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boundary operator

simplicial, 286
singular, 297
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subset definition, 285

singular –
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direct sum –, 278
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map of –, 279
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coboundaries, 267
coboundary operator

simplicial, 287
singular, 297
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singular –
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dual, 268
simplicial, 287
singular, 297

cochain homotopy, 267
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cohomologous, 267
cohomology

of chain complex, 268
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relative –, 267
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relative –, 277
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conjecture
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conventions, 262
cover
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critical manifold
completable, 53
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completable, 48
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oriented, 99

cross product
bundle –, 329
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homology bundle –, 329
relative bundle –, 336
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singular, 306
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cup-square-map, 310
cuplength, 68
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de Rham model, 68
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strong, 10

deformation Theorem, 72
degree

of element of graded vector space,
262

diagonal approximation, 311
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local –, 18
dimension

CW-complex, 323
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262
dimension axiom, 260
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direct system, 15
disk bundle pair, 337
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downward directed, 16
downward gradient equation, 100
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operator, 268
vector space, 268

duality isomorphisms, 347
dynamical Morse triad, 106
dynamical system, 21
dynamically compact, 106

effective group action, 20
Eilenberg-Steenrod axioms, 259

(Sum) simplicial, 289
Eilenberg-Zilber maps, 310
empty set

generates {0}, 115
energy functional, 54
equivariant function, 20
equivariant homology, 57
equivariant Morse-Bott function, 58
equivariant Morse-Bott polynomial, 58
equivariant Poincaré polynomial, 57
equivariantly perfect, 59
Euler characteristic

of a manifold, 40, 347
of chain complex, 280

Euler class, 338
and Poincaré dual, 352
of a submanifold, 351
of closed manifold, 357
of cohomology sphere bundle, 342
of vector bundle, 344
via two transverse sections, 355
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cohomology –, 273
homology –, 272

exactness axiom, 260
excision

propety
strong, 44

excision axiom, 260
excisive, 308
excisive couple

of pairs, 308
of subsets, 308

exhausting sequences, 16
exhaustive functions, 139
exhaustive Morse-Smale pairs, 141
exit set, 171
extension

by zero, 299
linear, 296

face
simplicial, 282

faithful group action, 20
fiber bundle

G-principal, 57
fiber inclusion, 327
field, 12
finite cohomology type, 315
finite group, 11
finite homology type, 315
finite type

chain complex of –, 280
finitely generated

free group, 11
fixed point free group action, 20
flow, 21

-orientation, 22
line, 21
local –, 21
phase space of, 21

formal dual basis, 150
formal sums, 151
free abelian group, 11
free group action, 20
free loop space, 54
free module, 328

functor, 15
fundamental class, 290, 347

generalized cohomology theory, 323
gluing

of isolated flow lines, 109
of orientations, 111

gluing map, 109
good pair, 315
graded R-module, 318
graded vector space, 262
gradient

equation, 100
flow, 100

group, 11
abelian, 11

free, 11
rank of –, 12

additive/multiplicative notation,
11

finite, 11
free abelian

rank of –, 11
sub–, 11

group action, 19
Gysin exact sequence, 338
Gysin homomorphism, 354

Hawaiian earring, 68
homogeneous space, 20
homologous, 265
homology

equivariant, 57
mod two, 261
of chain complex, 265
relative –, 266
Steenrod, 44
strong, 44
with coefficients, 260

homology classes
subordinated –, 70

homology bundle cross product, 329
homology classes

subordinated –
pair of –, 70

homology cross product, 322
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of pairs, 276
of triples, 276

homology theory, 259
homotopy, 10, 116, 118

between functions, 117
between metrics, 118
equivalent, 10
inverse, 10
monotone, 118
monotone –, 118
pair, 116
type, 10

homotopy axiom, 260
homotopy of homotopies, 125
homotopy quotient, 57
homotopy admissible, 118
Hopf bundle, 328
hypersurface, 18, 159

induced bundle, 339
induced homomorphisms, 298
integral domain, 12
intersection

transverse –, 19
intersection form, 348
intersection product, 348
invariant set, 168

trivial –, 168
inverse limit, 16
inverse system, 16
isolated flow lines, 101
isolated invariant set (IIS), 168
isolated orbits, 116
isolating neighborhood

of IIS, 168
isolating neighborhood (IN), 168
isomorphism

toplinear –, 18

Künneth Theorem, 320
Kronecker

homomorphism, 269
cohomology –, 270

simplicial –, 286
singular –, 296

pairing, 269
simplicial, 286
singular, 296

Kronecker duality, 270
simplicial –, 288

Kronecker pairing
singular

relative, 301
Kronecker triple, 269

canonical –, 269
Kronecker triples

canonical morphism of –, 271
morphism of –, 270

Lefschetz duality, 347
level set

regular –, 18
Lie group, 30
Lie group action, 20
life time, 21
linear combination, 151
locally trivial fiber bundle, 326
loop space

free, 54
lower bound, 16
Lusternik-Schnirelmann category, 62

ambient, 63

manifold, 18
G-, 20
∂- –, 19
closed, 19, 27
differentiable, 18

manifold triad, 104
manifold-with-boundary, 19
manifold-with-corners, 113
map, 9
map of pairs, 10

homotopy between –, 11
mapping cylinder, 341
mapping cylinder bundle pair, 341
maximal invariant subset, 168
Mayer-Vietoris

cohomology sequence, 279
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connecting homomorphism, 278,
279

sequence, 278
minimax principle, 33

Birkhoff, 33
module, 13

basis of –, 328
free –, 328
rank of free –, 328

monotone homotopy, 118
monotone pair of homotopies, 118
Morse boundary operator, 142
Morse chain group, 99

for closed manifold, 100
Morse chain groups, 142
Morse coboundary operators, 149
Morse cochain groups, 149
Morse cohomology

for Morse-Smale pairs, 149
of a manifold, 150

Morse complex
of exhaustive MS-pairs, 142

Morse homology, 142
of a manifold, 140
of closed manifold, 103
of exhaustive MS-pairs, 142
relative –, 158

Morse homology of the manifold triad,
131

Morse stratification, 49
Morse-Bott

series, 54
Morse-Bott function, 52

equivariant, 58
equivariantly perfect, 59

Morse-Bott index, 51
Morse-Bott Lemma, 52
Morse-Bott polynomial, 52
Morse-Smale condition, 115
Morse-Smale condition (MS), 49, 100
Morse-Smale pair, 141

on closed manifold, 100
on manifold triad, 115
relative –, 156

Morse-Smale transversality, 100
Morse-Smale triad, 106

Morse-Witten boundary operator
on closed manifold, 102

Morse-Witten complex, 142
for closed manifolds, 103
for manifold triads, 115
relative –, 158

multiplicative, 305, 307

neighborhood, 10
non-degenerate critical orbit, 58
normal bundle, 351, 355

negative/positive part, 52
normal subgroup, 11
normalized triad functions, 120
notation, 262
nullhomotopic, 62

ambient –, 63
nullity, 51

open map, 143
operation

binary, 11
closed, 11

opposite partial order, 150
orbit, 21
orbit space, 20
orientation

flow –, 22
oriented critical point, 99
orthogonal group, 59
orthogonal matrizes, 60

pair of
subordinated homology classes, 70

pair of homotopies
monotone –, 118

pair of homotopies, 116
pair(s) of spaces

cartesian product of –, 10
map of –, 10

Palais-Smale condition, 62
partially ordered system, 15
partition, 49
partner pairs, 101
PID, 12
Poźniak cone, 120
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Poźniak double cone, 125
Poźniak’s cone construction, 116
Poincaré

series, 54
Poincaré dual, 348

and Euler class, 352
functoriality, 353
localization principle, 349
of a submanifold, 348, 351
of diagonal, 349

Poincaré duality, 347
Morse homology, 154

Poincaré duality map
chain level, 154

Poincaré duality operators, 347
Poincaré polynomial, 52

equivariant, 57
of chain complex, 280

Poincaré series, 280
polytope, 283
poset, 15
positively invariant, 171
posyst, 15
power set, 282
principal bundle, 57
principal ideal domain, 12
product bundle, 345
pseudo-manifold, 284
pull-back bundle, 339
pure tensor, 316
push-forward orientation, 102

quotient complex, 266, 267

rank
of abelian group, 12
of free abelian group, 11
of free module, 328

regular
level set, 18
point, 18
value, 18

relative bundle cross product, 336
relative homeomorphism, 44
relative homology bundle cross prod-

uct, 336

relative Morse homology, 158
relative Morse homology of manifold

pair, 158
relative Morse-Witten complex, 158
restriction bundle, 327
retraction, 10
ring, 12
round sphere, 54

scalar multiplication, 13, 311
scalars, 13
semi-continuous

lower/upper, 22
semi-direct product, 60
set

clopen, 9
closed, 9
open, 9

short exact sequence, 271
shriek homomorphism, 354

and Thom isomorphism, 354
simplex, 282

i-th face inclusion, 295
back of –, 304
front of –, 304
standard euclidean, 295

simplicial
boundary operator, 286
coboundary operator, 287
map, 283
order, 284

simplicial (co)homology groups, 288
simplicial chain

coloring definition, 285
subset definition, 285

simplicial chain complex, 286
simplicial chain group

basis definition, 286
simplicial cochain

coloring definition, 285
subset definition, 285

simplicial cochain complex, 287
simplicial cochain group, 285
simplicial complex, 282

connected, 283
euclidean realization, 283
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finite, 282
geometric realization, 283
locally finite, 283
polytope, 283
skeleton of –, 282
total space, 283

singular
boundary operator, 297
coboundary operator, 297

singular chain
coloring definition, 296
subset definition, 295

singular chain complex, 297
canonical basis, 295
relative, 299

singular chain group
basis definition, 296

singular cochain
coloring definition, 296
subset definition, 295

singular cochain complex, 297
relative, 300

singular cochain group, 295
singular simplex

back face, 306
front face, 306

skeleton
of simplicial complex, 282

slice inclusions, 325
smooth group action, 20
space, 9
space of connecting orbits, 100, 101

on triads, 105
space of solution curves, 101
special orthogonal group, 60
sphere bundle, 341
stabilizer, 58
Steenrod homology, 43
Steenrod square, 310
strong excision property, 44
strong homology, 43
subcomplex, 266, 267

simplicial, 282
subgroup, 11

normal –, 11
subordinated homology classes, 70

subordinated relative homology
classes, 70

subordination number, 70
subspace, 9
sum axiom, 260
surface, 290

v/e/f , 291
(co)homology of –, 291

tautological bundle, 345
tensor product, 316

of graded algebras, 318
of graded modules, 318
universal property of –, 317

Theorem
Künneth –, 320

theorem
deformation–, 72
inverse function –, 17
of Dedekind, 12
of Sard, 18
regular interval –, 2
regular value –, 18
transversality –, 18

thickening of unstable manifolds, 64
Thom isomorphism, 337
Thom class, 337

of cohomology sphere bundle, 342
of vector bundle, 344

Thom isomorphism
Homology –, 338
and shriek homomorphism, 354

Thom’s gradient conjecture, 113
topological space

contractible, 10
subspace of –, 9

topological space(s), 9
pair of –, 10

topology, 9
subspace –, 9

total dimension, 280
trajectory, 21
transfer homomorphism, 354
transitive group action, 20
transpose, 268
transversality, 19
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triad
function, 104
manifold –, 104
Morse function, 104
Morse-Smale pair, 105, 115
of topological spaces, 308

triad function
normalized, 120

triad homotopy, 116
triangulable, 284
triangulation, 284
trivial invariant sets, 168
tubular neighborhood, 351

Umkehr homomorphism, 354
uniqueness

of a homology theory, 259
unit, 12
unit cochain

simplicial, 289
singular, 297

unit disk bundle, 344
unit sphere bundle, 344
universal property

of direct limit, 16
of inverse limit, 16

unstable manifold
thickening of –, 64

upper bound, 15
upward directed, 15

vector bundle, 343
zero section, 344

vector space, 13
graded, 262

vertex, 282

Whitney sum, 346

zero divisors, 12
zero section, 344, 351



382 INDEX



List of Symbols

(D0,S−1) ({0}, ∅) 37
(Dr,Sr−1) unit disk, unit sphere in Rr

(M ; ∂−M,∂+M) manifold triad 104
(N,L) Conley pair 171,173

(X,A)× (Y,B) is defined by (X × Y,A× Y ∪X ×B) 10
|C| =

∑
i dim Ci total dimension of chain complex C 280
ᾱ linear extension of function on basis 296

B#
f = Crit#f = (ηx)x formal dual basis of Bf = Critf 150(

H∗(X)⊗H∗(Y ),+, •
)

tensor product algebra 318

Ȧ = Ā \
◦
A topological boundary of a set A

∩ cap product H∗ ×H∗ → H∗ 311,314
cat(X) Lusternik-Schnirelmann category 62
χ Euler characteristic 280

clA = Ā closure of a set A
Critkf set of critical points of Morse index k 100
∪ cup product on singular cochains 306
∪≤ cup product on simplicial cochains 304

cup(X) cuplength of X 68
cupF(X) F-cuplength of X 68

D0 = {pt}, S−1 = ∅ 0-disk and (−1)-sphere 37
∆ diagonal map ∆ : X → X × X, x 7→

(x, x)
diagonal set ∆ = {(x, x) | x ∈ X}

345

δk : CMk → CMk+1 coboundary operator given by ∂#
k+1 149

∆m standard euclidean m-simplex 295
ηx : CMk → Z2 Dirac functional of x ∈ Critkf 150

α̂ zero extension from A ⊂ D to D 299
û(+∞) asymptotic limit vector of orbit u 113

HM∗(M ; ∂−M,∂+M) Morse homology of manifold triad 131
I = [0, 1] unit interval

intA =
◦
A interior of a set A
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◦
X interior of topological space X

KC =
(
C,C#, 〈·, ·〉ev

)
canonical Kronecker triple 269

〈α, c〉ev evaluation pairing α(c) 269
〈∅〉 = {0} empty set generates trivial group 99,115,296

mbs = mb[a,b]
s (f ;F) Morse-Bott polynomial 52

mbGs = mbG;[a,b]
s (f ;F) equivariant Morse-Bott polynomial 58

pGs = pGs (M ;F) equivariant Poincaré polynomial 57
ps(C;F) Poincaré polynomial of chain complex C 280
∪̇λXλ disjoint union: λ 6= β ⇒ Xλ ∩Xβ = ∅ 260,283
v/e/f vertices/edges/faces 291

max ∅ := −∞ min ∅ :=∞
KHC = (H∗(C),H∗(C), 〈·, ·〉) canonical Kronecker homology triple 270
MS(M) 3 h = (f, g) positive exhaustive Morse-Smale pairs 141

MS(M,A) relative Morse-Smale pairs 156
νQ = νMQ normal bundle of Q in M 351

O(2) orthogonal group SO(2) o Z2 59
∂# dual operator or transpose 268

∂k = ∂M
k Morse-Witten boundary operator 103

PD : Hn−` → H` Poincaré duality operators 347
pσ simplicial/singular front face 304,306

Ψβα
∗ := [ψβα∗ (hαβ)] continuation isomorphism 117
R+ = (0,∞)

SB(X,A) :=
∑
k bk = dim H∗(X,A;Q) sum of Betti numbers 40
σ# gluing map for orientations 111
σq simplicial/singular back face 304,306

SPmm(K) simplicial cochain group 2
Sm(K)
fin 285

SX singular chain complex 297
S#X singular cochain complex 297

Smm(X) singular cochain group 2
Sm(X)
fin 295

Sm(X) canonical basis of singular group Sm(X) 296∑′
formal sum 151

θtrel : H∗(F, F ′)→ H∗(E,E′) CEF: cohomology extension of the fiber
associated to Thom class t ∈ Hr(E,E′)

268

Thom : Hm(B)→ Hm+r(E,E′) Thom isomorphism β 7→ p∗β ∪� t 337
× (co)homology cross product 321
×θ bundle cross product 329
×θrel relative bundle cross product 336

Thom : Hm(E,E′)→ Hm−r(B) homology Thom isom. c 7→ p∗(t �∩ c) 337
× homology cross product 322
×θ homology bundle cross product 329

ϕ(f,g) = ϕ = {ϕt} downward gradient flow (of −∇gf) 100
A⊗R B tensor product of R-modules 316
AC complement X \A of subset A 297

A∗ ⊗R B∗ tensor product of graded R-modules 318
ek k-cell 36



List of Symbols 385

G = N oH semi-direct product of N E G and H ≤
G

59

H E G H is a normal subgroup of G 11
H ≤ G H is a subgroup of G 11
Ma sublevel set, half-space 2

MG := (EG×M))/G homotopy quotient by Lie group G 57
mxy := Mxy ∩ f−1(r) space of connecting orbits between x, y 100
Mxy := Wu(x) ∩W s(x) connecting manifold of x, y ∈ Critf 100

mq
xy, Mq

xy connected component containing q 100
pk −→ (u1, . . . , u`) convergence to broken orbit 106
S1 = [−1, 1]/{±1} 1-sphere as [−1, 1] modulo boundary 116

s0 : B → E, ps0 = idB zero section of bundle p : E → B 351
SMαβ =

(
S1 ×M,−∇GF

)
Poźniak cone of homotopy hαβ 120

SSMγδ
αβ Poźniak double cone 125

u#ρv gluing map 109
u∗〈x〉 push-forward orientation of 〈x〉 along u 102
V # dual vector space: Hom(V,F) 268

X/G or XG orbit space of action of G on X 20
X ∪ ek space X with k-cell attached 37
LHS left hand side
RHS right hand side
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