Lecture Notes on Morse and Conley Theory

– MANUSCRIPT IN PROGRESS –

Joa Weber UNICAMP

January 31, 2018

ii

Contents

1	Intr	oduction	1
2	Pre	liminaries	9
	2.1	Topology	9
	2.2	Algebra	11
	2.3	Analysis	17
	2.4	Manifolds and transversality	18
	2.5	Group actions	19
	2.6	Local and global dynamics	21
Ι	M	orse theory	25
3	Clas	ssical Morse theory	27
	3.1	Morse functions	27
	3.2	Regular intervals	31
		3.2.1 Application: Critical point theory	33
		3.2.2 Application: Topology	34
	3.3	Attaching cells	36
	3.4	Morse inequalities	39
	3.5	Generalizations	51
		3.5.1 Morse-Bott theory \ldots	51
		3.5.2 Equivariant Morse-Bott theory	55
		3.5.3 Lusternik-Schnirelmann theory	61
4	Clas	ssical Morse theory revisited	75
	4.1	Backward λ -Lemma and homotopy type $\ldots \ldots \ldots \ldots$	75
5	Mo	rse homology of manifold triads	99
	5.1	$Introduction-closed\ manifolds\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .$	99
	5.2	The Morse-Witten complex	104
		5.2.1 Triad Morse functions	104
		5.2.2 Transversality and triad Morse-Smale pairs	105
		5.2.3 Dynamical compactness	106

CONTENTS

ð	Intr 8 1	Basic	on	167
II	C	onley	theory 1	.63
TT	\sim	,		0.2
	7.4	Morse	field theory	161
	_	7.3.2	Umkehr map	161
		7.3.1	Thom isomorphism and Euler class	161
	7.3	Produ	cts in Morse (co)homology	161
		7.2.3	Composition	160
		7.2.2	Homotopy	160
		7.2.1	Induced chain maps $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	160
	7.2	Functo	oriality	160
		7.1.5	Lefschetz duality \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	159
		7.1.4	Relative (co)homology	156
		7.1.3	Poincaré duality	154
		7.1.2	Cohomology	149
		7.1.1	Homology	141
•	7.1	Morse	(co)homology of a manifold	139
7	Moo	d two I	Morse homology theory	139
	6.6	Contin	nuation of isolated invariant sets	138
	6.5 C.C	Isomo	rpnism to relative singular homology	138
	0 5	6.4.1	Continuation – changing the triple	138
	6.4	Morse	homology of an isolating Morse-Smale triple	138
	6.3	Morse	complex for isolated invariant sets	135
	6.2	Morse-	Smale flows and isolating homotopies	134
	6.1	Local	Morse functions and gradient flows	133
6	Loca	al Mor	se homology	133
		-r r 110		
	5.8	Applic	ations	132
	5.0 5.7	Variat	ions and generalizations	132
	$5.0 \\ 5.6$	Morse	homology of manifold triads	131
	55	J.4.J Isomor	radiation of the molecular homology	$120 \\ 197$
		5.4.2	Homotopies of homotopies	125
		54.1 549	Homotopies	117 190
	3.4	Contin	Manatana and admissible hematanias	110
	5.3	Morse	homology of triad Morse-Smale pairs	115
	۲۹	5.2.5 Manua	Orientation transport and partner pairs	112
		5.2.4	Glung	109
		594	Cluing	100

iv

CONTENTS

9	Classical Conley theory 171								
	9.1	Conley	γ pairs						. 171
		9.1.1	Gradient flows						. 171
10	Con	ley ho	mology						177
	10.1	Lyapu	nov functions and isolating blocks		•				. 177
	10.2	Gradie	ent flows						. 186
	10.3	Morse	homology of an isolating Morse-Smale triple .						. 187
		10.3.1	Continuation – changing the triple						. 187
	10.4	Isomor	phism to relative singular homology						. 187
	10.5	Conley	homology of an isolated invariant set						. 187
		v							
11	Clas	ssical (Conley theory revisited						189
	11.1	Contin	uation		•				. 189
		11.1.1	Applications						. 190
	11.2	Morse	decompositions and connection matrices						. 190
		11.2.1	Morse-Conley inequalities						. 190
II	I A	Appen	ndices						191
Α	Hyp	erboli	c gradient dynamics						193
	A.1	Vector	fields and limit sets	• •	•	·	·	•	. 194
	A.2	Analyt	tic setup near hyperbolic singularities		•	·	·	•	. 198
	A.3	Invaria	ant manifolds		•	·	•	•	. 206
		A.3.1	Unstable manifold theorem		•	·	•	•	. 208
		A.3.2	Stable manifold theorem		•	•	•	•	. 211
		A.3.3	Convenient coordinates		•	•	•	•	. 214
	A.4	The in	clination or λ -Lemma		••			•	. 217
		A.4.1	Forward λ -Lemma		•				. 219
		A.4.2	Backward λ -Lemma		•				. 219
	A.5	Invaria	ant foliations and induced flows		•				. 236
		A.5.1	Invariant unstable foliations and induced flow		•				. 236
		A.5.2	Invariant stable foliations and induced flow .		•				. 236
	A.6	Grobm	an-Hartman Theorem						. 242
		A.6.1	Perturbing hyperbolic linear vector fields						. 244
		A.6.2	Perturbing hyperbolic linear isomorphisms						. 250
		A.6.3	Grobman-Hartman via λ -Lemma						. 251
		A.6.4	Appendix on general hyperbolicity						. 254
в	(Co)homo	logy theory						259
		B.0.5	$Outline \ of \ contents \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $		•		•		. 261
		B.0.6	List of symbols, conventions, notation		•				. 262
	B.1	(Co)ho	omology of chain complexes						. 264
		B.1.1	(Co)chain complexes						. 265
		B.1.2	Kronecker pairing						. 269

v

CONTENTS

	B.1.3	Exact sequences	. 271		
	B.1.4	Relative (co)homology	. 275		
	B.1.5	Mayer-Vietoris sequences	. 277		
	B.1.6	Poincaré polynomial and Euler characteristic	. 280		
	B.1.7	Universal and local coefficients	. 281		
B.2	Mod t	wo (co)homology groups	. 282		
	B.2.1	Simplicial (co)homology	. 282		
	B.2.2	Singular (co)homology	. 294		
	B.2.3	Cellular (co)homology	. 303		
	B.2.4	Čech versus Steenrod (co)homology	. 303		
B.3 Mod two (co)homology products			. 304		
	B.3.1	Cup product	. 304		
	B.3.2	Cap product	. 311		
	B.3.3	Tensor product of modules and algebras	. 316		
	B.3.4	Cross product and Künneth Theorem	. 319		
	B.3.5	Leray-Hirsch Theorem	. 326		
	B.3.6	Thom isomorphism and Euler class	. 336		
	B.3.7	Poincaré duality	. 346		
	B.3.8	Submanifolds and Poincaré duality	. 348		
C Transversality theory 359					
Bibliography			361		
Index			373		
List of Symbols					

Chapter 1

Introduction

To put it in a nutshell, Morse and Conley theory connect the areas of analysis and topology through the theory of dynamical systems. Morse theory lives in the well known realm of hyperbolic dynamics and can be viewed as a special case of Conley theory.

Figure 1.1: Morse and Conley theory connect analysis and topology

Morse theory

The early days 1920s-40s - Topology of sublevel sets

Consider a smooth manifold M. In the 20s of the last century it was the insight of Marston Morse [Mor34] that the topology of M is related to non-degenerate critical points of smooth functions $f: M \to \mathbb{R}$. By definition a **critical point** p of f satisfies the identity $df_p = 0$, that is it is an extremum of f. By Crit we denote the **set of critical points** of f. A critical point p is called **nondegenerate** if, given a local coordinate system $\phi = (x^1, \ldots, x^n) : M \supset U \to \mathbb{R}^n$ around p, the (symmetric) **Hessian matrix**

$$\mathbf{H}_{p}f := \left[\frac{\partial^{2}f}{\partial x^{i}\partial x^{j}}(p)\right]_{i,j=1,\dots,n}$$
(1.0.1)

Figure 1.2: Height function f and attaching of disks \mathbb{D}^k where $k = \operatorname{ind}(p_i)$

of f at p is **non-singular**, that is invertible or, equivalently, zero is not an eigenvalue of $H_p f$. Hence critical points are isolated by the inverse function theorem 2.3.1. The number ind(x) of negative eigenvalues of $H_p f$, counted with multiplicities, is called the **Morse index** of a non-degenerate critical point. The key idea to relate topology and analysis is to study the family of **sublevel sets**, also called **half-spaces**, which are the closed subsets of M defined by

$$M^{a} := \{ f \le a \} := \{ q \in M \mid f(q) \le a \}, \quad a \in \mathbb{R}.$$
(1.0.2)

A regular value of f is a constant b such that its pre-image $f^{-1}(b) = \{f = b\}$ contains no critical point. All other constants are called **critical values**. Note that according to this definition any constant whose pre-image is empty, that is which lies outside the range of f, is a regular value. The geometric significance of regular values lies in the fact that by the regular value theorem 2.4.1 their pre-images under f are **hypersurfaces** in M, that is codimension-1 submanifolds. Consequently, if a is a regular value, then M^a is a codimension-0 submanifold of M whose boundary is the hypersurface $f^{-1}(a)$.

Main results of the epoch are the following; cf. the beautyful survey [Bot88]. For compact M the first theorem tells that the submanifolds M^a vary smoothly as long as a does not cross a critical value. The second theorem asserts that the topological change which occurs when a crosses a simple critical level c, that is $f^{-1}(c)$ contains precisely one critical point p and p is non-degenerate, amounts to attaching a disk whose dimension k is the Morse index of p; see Figure 1.2.

Theorem 1.0.1 (Regular interval theorem). Assume $f : M \to \mathbb{R}$ is of class C^2 and the pre-image $f^{-1}[a, b]$ is compact¹ and contains no critical points of f.

¹ Compactness is necessary: In the situation of Theorem 1.0.1 fix $q \in f^{-1}(b)$, restrict f to the manifold $N := M \setminus \{q\}$. Then $N^a = M^a \cong M^b = N^b \cup \{q\} \not\cong N^b$. Removing points from the interior $f^{-1}(a, b)$ quickly leads to examples where N^b cannot deformation retract to N^a .

Then M^b and M^a are diffeomorphic, that is $M^b \cong M^a$. Furthermore, the sublevel set M^a is a strong deformation retract of M^b .

The regular interval theorem not only predicts existence of critical points whenever two sublevel sets are of different homotopy type, the technique of proof immediately establishes a version of Birkhoff's famous minimax principle [BH35a, BH35b]; see Theorem 3.2.3.

In 1956 John Milnor [Mil56] constructed the first example of two manifolds which are homeomorphic, but not diffeomorphic. This was very much unexpected. Milnor was awarded the Fields medal in 1962 [Whi62]. Existence of a homeomorphism he obtained from a consequence of Theorem 1.0.1 known as the Reeb sphere theorem; see Theorem 3.2.6.

By a *k***-cell** e^k in M we mean the homeomorphic image of the open unit k-disk in M. Its topological boundary \dot{e}^k is given by $\operatorname{cl} e^k \setminus e^k$.

Theorem 1.0.2 (Attaching a cell). Assume $f: M \to \mathbb{R}$ is of class C^2 and $a, b \in \mathbb{R}$ are regular values of f such that the pre-image $f^{-1}[a, b]$ is compact and contains precisely one critical point x of f. If x is non-degenerate and k denotes its Morse index, then there exists a k-cell e^k in $f^{-1}(a, b)$ whose boundary \dot{e}^k sits in $f^{-1}(a)$ and such that M^b deformation retracts onto M^a with a k-cell attached, that is onto $M^a \cup e^k$. So both spaces are of the same homotopy type:

$$M^b \sim M^a \cup e^k.$$

In view of these results it seems a promising idea that if we wish to control the topology of the whole manifold M we should, first of all, require that all critical points of f be non-degenerate. A function f is called a **Morse function** if it is of class C^2 and all critical points are non-degenerate. For such functions Marston Morse proved his famous inequalities [Mor34, VI Thm. 1.1] relating analysis and topology. For instance, the **weak Morse inequalities** assert that

$$c_k \ge b_k := \operatorname{rankH}_k(M; \mathbb{F}), \qquad \sum_{j=0}^n (-1)^j c_j = \sum_{j=0}^n (-1)^j b_j,$$

for $k = 0, \ldots, n = \dim M < \infty$ where $c_k = c_k(M, f)$ is the number of critical points of Morse index k and \mathbb{F} is any field. The **rank** $b_k = b_k(M; \mathbb{Q})$ of singular homology with rational coefficients, that is the number of elements of a basis of this vector space, is called the **k-th Betti number** of M. For instance, for the example in Figure 1.2 we get that

$$c_k(M, f) = \begin{cases} 2 & , k = 2, \\ 1 & , k = 1, \\ 1 & , k = 0, \end{cases} \qquad b_k(M) = \begin{cases} 1 & , k = 2, \\ 0 & , k = 1, \\ 1 & , k = 0. \end{cases}$$

1950s/60s – Dynamical systems and critical manifolds

Dynamical systems entered the stage inconspicuously in 1949 through René Thom's note [Tho49]. Given any smooth function $f: M \to \mathbb{R}$, pick a Riemannian metric g on M and consider the corresponding **downward gradient vec**tor field $-\nabla f$ on M determined by the identity of 1-forms $df = g(\nabla f, \cdot)$ since g is non-degenerate. The **downward gradient flow** associated to (M, f, g) is the 1-parameter group $\{\varphi_t\}_{t\in\mathbb{R}}$ of diffeomorphisms of M defined by $\varphi_t q := \gamma_q(t)$ where γ_q denotes the unique solution of the initial value problem

$$\dot{\gamma}(t) = -\left(\nabla f\right) \circ \gamma(t), \qquad \gamma(0) = q, \tag{1.0.3}$$

for smooth curves $\gamma : \mathbb{R} \to M$. Obviously critical points of f are fixed points of the flow. The **stable manifold** of a critical point x of f consists of all points $q \in M$ which under the flow asymptotically approach x in infinite forward time:

$$W^{s}(x) = W^{s}(x; -\nabla f) := \left\{ q \in M \mid \lim_{t \to \infty} \varphi_{t} q \text{ exists and is equal to } x \right\}.$$
(1.0.4)

The **unstable manifold** of x is defined correspondingly by taking the limit over infinite *backward* time $t \to -\infty$. For non-degenerate x the **(un)stable manifold theorem** asserts that $W^u(x)$ is an embedded open disk of dimension k = ind(x) and $W^s(x)$ is an embedded open disk of complementary dimension. Thom observed that in case of a Morse function the unstable manifolds decompose $M = \bigcup_{x \in Crit} W^u(x)$ into open disjoint disks, one for each critical point x, where the dimension of each disk is given by the corresponding Morse index. Of course, the stable manifolds decompose M as well.

Thom was awarded the Fields medal in 1958 [Hop58] for his cobordism theory which opened the field of differential topology.

The yet hidden enormous power of dynamical systems methods was only discovered, not to say unleashed, about 10 years later by Stephen Smale. In [Sma60] he proved strong Morse inequalities for dynamical systems more general than gradient flows based on the insight that *it is the intersections of unstable and stable manifolds that encode the topology of M*. He introduced the – ever since ubiquitous – **Morse-Smale (MS) condition** which asks that all unstable and stable manifolds have transverse intersection, in symbols

$$W^u(x) \pitchfork W^s(y), \quad \forall x, y \in \text{Crit.}$$

By definition two submanifolds of M intersect transversely if at each point of their intersection the two tangent spaces together span the whole tangent space to M, that is

$$T_q W^u(x) + T_q W^s(y) = T_q M, \qquad \forall q \in W^u(x) \cap W^s(y).$$

In this case it is common to say that the intersection is **cut out transversely** and differential topology, see e.g. [GP74, Hir76], asserts that it is a smooth manifold whose codimension is the sum of the two codimensions. Thus

$$\dim M_{xy} = \operatorname{ind}(x) - \operatorname{ind}(y), \qquad M_{xy} := W^u(x) \pitchfork W^s(y), \tag{1.0.5}$$

and M_{xy} is called the **connecting manifold** of x and y. We will see below that these ideas lead to a description (known as the Morse-Witten complex) of

singular homology of M in terms of the 1-dimensional connecting manifolds. On the other hand, Smale extended Theorem 1.0.1 to the smooth category, namely, he proved that in fact M^b is *diffeomorphic* to M^a with a so-called thickened handle $\mathbb{D}^k \times \mathbb{D}^{n-k}$ attached where $k = \operatorname{ind}(x)$ and $n = \dim M$. This brought him to his handlebody theory and led to proofs of the hcobordism theorem and the generalized Poincaré conjecture in dimensions ≥ 5 , see [Sma61a, Sma62, Sma67], earning him the Fields medal in 1966 [Tho66].

Critical manifolds – Morse-Bott theory

The other, again very influential, strang in these years was Raoul Bott's idea [Bot54] to replace the concept of non-degenerate critical point by nondegenerate critical manifold and extend Morse theory to the more general situation; for applications see the survey [Bot82]. A critical manifold is a connected component of the set Crit of critical points of a function $f: M \to \mathbb{R}$ which carries the structure of a submanifold of M. It is called **non-degenerate** if at each point of the critical manifold the part of the Hessian matrix in the normal direction is non-singular. Motivation for and applications of these ideas came from the study of the length and energy functionals on the space of closed loops in a Riemannian manifold (M, g). Critical points are closed geodesics, that is 1-periodic curves $\gamma : \mathbb{R} \to M$ satisfying an ODE of second order which does not depend on time. Thus once you have one closed geodesic γ , shifting the initial time, say $\gamma_{\tau}(\cdot) := \gamma(\tau + \cdot)$, gives you a whole circle worth of geodesics. Actually this problem involves another, quite serious, generalization of Morse theory, namely, the transition from finite dimensional manifolds M to infinite dimensional ones such as the free loop space of M. Among others it was Richard Palais [Pal63] who paved the road in this respect, for instance, by generalizing the Morse-Lemma [Pal69a].

1980s/90s – Connecting trajectories

Remark 1.0.3. Assume M is a compact manifold equipped with a Morse function f. It is an exercise in algebra to see that the strong Morse inequalities (3.4.9) are equivalent to existence of a chain complex² $C = (C_k, \partial_k)_{k \in \mathbb{Z}}$ such that, firstly, each chain group C_k is the free abelian group generated by the set Crit_k of critical points of f of Morse index k and, secondly, the Betti numbers $b_k(C)$ of the corresponding homology groups H_*C coincide with the Betti numbers $b_k(M) := \operatorname{rankH}_*(M;\mathbb{Z})$ of singular integral homology of M.

While in the early 1980s Remark 1.0.3 was well known in mathematics and at least a topological model for such a chain complex was known, see [Mil65a, Thm. 7.4], it was a physicist, Edward Witten [Wit82], to discover a geometric model. He received the Fields medal in 1990 [Ati90], the only physicist so far, for a multitude of achievements one of which is the discovery of the geometric chain complex.

² The $\partial_k : C_k \to C_{k-1}$ are group homomorphisms such that $\partial_{k-1} \circ \partial_k = 0$ for all k.

Witten considered a supersymmetric quantum mechanical system which involves a deformed Hodge differential $d_s := e^{-sf} de^{sf}$ depending on a real parameter s and where d is the usual exterior derivative acting on differential forms on M. He observed that for large parameter values the states of the system concentrate near the critical points of the Morse function f and that there are "tunneling" effects, called instantons, among these ground states. For very large s these instantons localize very close to downward gradient flow trajectories (1.0.3) which connect critical points of Morse index difference one. The mathematical rigorous construction of Witten's Hodge theory approach is due to Bernard Helffer and Johannes Sjöstrand [HS85].

Physics therefore suggests the following geometric construction assuming (MS). A downward gradient flow trajectory which connects two critical points whose Morse indices differ by one is called an *isolated flow line*. Counting these appropriately defines the boundary operator of the sought for geometric chain complex. Its chain groups are generated by the critical points of the Morse function $f: M \to \mathbb{R}$. This chain complex, graded by the Morse index, is called the (geometric) **Morse-Witten complex** and denoted by $\mathcal{CM} = (CM_k, \partial_k)_{k \in \mathbb{Z}}$. The resulting homology theory is called **Morse homology**.

Consider again the example in Figure 1.2. For simplicity we count modulo two using \mathbb{Z}_2 -coefficients. Observe that there are precisely four isolated flow lines, one from each local maximum to the saddle point $s := p_2$ and two from s to the minimum p_1 . Thus Morse homology of M with \mathbb{Z}_2 -coefficients is given by $\mathrm{HM}_2(M;\mathbb{Z}_2) = \mathbb{Z}_2$, generated by the cycle $p_3 + p_4$, and $\mathrm{HM}_0(M;\mathbb{Z}_2) = \mathbb{Z}_2$ is generated by p_1 . Note that the saddle $s = p_2$ is a cycle since $\partial_1 s = 2p_1 = 0$, but s is also a boundary, namely of either of the two local maxima. Thus $\mathrm{HM}_0(M;\mathbb{Z}_2) = 0$. Obviously M is homeomorphic to the 2-sphere and we have just calculated $\mathrm{H}_*(\mathbb{S}^2;\mathbb{Z}_2)$.

The mathematical rigorous construction of the geometric Morse-Witten complex has been established by Matthias Schwarz [Sch93], who used an infinite dimensional functional analytic framework in the spirit of Floer theory, and the present author [Web93], who notized that the key tools in finite dimensional hyperbolic dynamics – the λ -Lemma of Jacob Palis [Pal69b] and the Grobman-Hartman theorem [Gro59,Har60] – serve to show that counting isolated flow lines indeed satisfies $\partial^2 = 0$, that is ∂ is a boundary operator. Marzin Poźniak [Poź91] contributed an elegant method to show that Morse-Witten homology does not depend on the choice of the Morse function f and the Riemannian metric g. Andreas Floer [Flo89b] and Dietmar Salamon [Sal90] utilized Conley index theory to show that Morse homology is isomorphic to singular homology of M.

2000s – Infinite dimensions and semi-flows

In a series of papers Alberto Abbondandolo and Pietro Majer, see e.g. [AM06], generalized the construction of the Morse-Witten complex from finite dimensional manifolds M to Banach manifolds equipped with a gradient-like vector field which generates a genuine flow. Recently, the present author [Web13] generalized the theory from flows towards *semi*-flows, more precisely, towards the forward semi-flow known as the heat flow on the Hilbert manifold given by the free loop space ΛM of M. In the course of calculating heat flow homology [Web17] the need for a *backward* λ -lemma for the heat flow emerged. Rather surprisingly – given that the heat flow does not admit a backward flow – a *backward* λ -lemma for the *forward* heat flow was indeed discovered recently [Web14b]. A rich source of semi-flows appears in the mathematical field of geometric analysis. It is yet to be explored if **semi-flow Morse homology** can be established in interesting cases and if it can answer some open problems.

Of course, many more people contributed to the many facets of Morse theory. Needless to say that the above historical account exclusively reflects experience and knowledge of the author.

Conley theory

Comments and outline of these notes

Exercises

Morse theory

Exercise 1.0.4. Show that the definition of a *non-degenerate* critical point using as criterium non-singularity of the Hessian matrix (1.0.1) does not depend on the choice of coordinates (see [GP74] if you get stuck), neither does ind(p).

Exercise 1.0.5. Show that the non-degeneracy condition (1.0.1) implies that a non-degenerate critical point is **isolated** or, in other words, **discrete**. This means that there is a neighborhood which contains no other critical points. [Hint: Transversality theory.]

Exercise 1.0.6. Assume $f: M \to \mathbb{R}$ is a smooth function on a manifold M.

- (i) dim M = 1: Give an example of an isolated degenerate critical point. Give an example of a non-isolated, thus by Exercise 1.0.5 degenerate, critical point such that f is not constant near the critical point.
- (ii) dim M = 2: Give an example of a *degenerate* critical point x for each of the three cases:
 - a) Crit = $\{x\};$
 - b) Crit is a 1-dimensional submanifold of M;
 - c) Crit is not a submanifold of M.

Exercise 1.0.7. Give two proofs, one of analytic and one of algebraic nature, that the time-0-map φ_0 determined by (1.0.3) is the identity map on M.

Exercise 1.0.8. Show the dimension formula (1.0.5).

Exercise 1.0.9. If you are familiar with CW-complexes, construct a CW-complex X homotopy equivalent to the surface M in Figure 1.2. Calculate the CW-homology of X.

Exercise 1.0.10. Prove the asserted equivalence in Remark 1.0.3; see [Web95, Thm. 2.4] in case you get stuck.

Conley theory

Chapter 2

Preliminaries

In this short chapter we collect a number of basic definitions and results in topology, algebra, analysis, and geometry. We also fix some notation.

2.1 Topology

We follow a common convention in topology, namely that a **map** between topological spaces is automatically understood continuous. The symbol ' \cong ' denotes isomorphism. Hence, for instance, in the smooth category ' \cong ' means diffeomorphism. It is an exception that in the topological category we denote isomorphisms, that is homeomorphisms, by the "weaker" symbol ' \simeq '. The "weakest" symbol ' \sim ' denotes homotopy when applied to maps and homotopy equivalence when applied to topological spaces.

Definition 2.1.1. A **topological space** or simply a **space** is a pair (X, \mathcal{O}) where X is a set and \mathcal{O} is a **topology** on X, that is a collection $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda}$ of subsets $\mathcal{O}_{\lambda} \subset X$, called the **open sets** of the topology, which satisfy the following three axioms.

(TOP-1) Arbitrary unions of open sets are open.

(TOP-2) Finite intersections of open sets are open.

(TOP-4) The two natural subsets $\emptyset, X \subset X$ are open.

Complements of open sets are called **closed sets** and a set which is both open and closed is called **clopen**. For simplicity we usually denote (X, \mathcal{O}) by X. A **subspace of a topological space** X consists of a subset $A \subset X$ equipped with the **subspace topology** $\mathcal{O}_A = \{A \cap \mathcal{O}_\lambda\}_{\lambda \in \Lambda}$.

Definition 2.1.2. Suppose X is a topological space. The **topological boundary** of a subset $A \subset X$ is the set \dot{A} obtained by taking the closure of A, denoted by \bar{A} or cl A, and then removing the interior of A, denoted by $\overset{\circ}{A}$ or int A. **Definition 2.1.3.** A neighborhood of a point q of a topological space X is a subset $A \subset X$ which contains an open subset $U \subset X$ that contains q. Any subset $A \subset X$ which is a neighborhood of some point, that is which has non-empty interior int A, is called a **neighborhood**.

Definition 2.1.4. Given topological spaces X and Y, then calling $f: X \to Y$ a **map** implicitly means that f is also continuous. If f happens not to be continuous we call it application or function. In general, if the domain A or the target B of $g: A \to B$ is not a topological space to start with, then we call g likewise map, application, or function. In this case there is no continuity involved, of course. Two maps $f, g: X \to Y$ between topological spaces are called **homotopic**, in symbols $f \sim g$, if there is a **homotopy** between them, that is a map

$$h: I \times X \to Y, \qquad I:=[0,1],$$

such that $h_0 := h(0, \cdot) = f$ and $h_1 := h(1, \cdot) = g$.

Definition 2.1.5. A topological space X is called a **contractible space** if the identity map id : $X \to X$ is homotopic to a constant map, that is to a map of the form $\iota_{x_0} : X \to X, x \mapsto x_0$, for some $x_0 \in X$.

Definition 2.1.6. Two topological spaces X and Y are called **homotopy** equivalent, in symbols $X \sim Y$, if there exist reciprocal homotopy inverses, that is maps $\alpha : X \to Y$ and $\beta : Y \to X$ such that $\beta \circ \alpha \sim id_X$ and $\alpha \circ \beta \sim id_Y$. We say that two homotopy equivalent spaces are of the same homotopy type.

Definition 2.1.7. Assume X is a topological space and A is a subspace. By $\iota: A \hookrightarrow X$ we denote the inclusion.

- (i) A retraction is a map $r: X \to A$ such that $r \circ \iota = id_A$, that is r(a) = a for every $a \in A$.
- (ii) A deformation retraction of X onto A is a homotopy $h: I \times X \to X$ between the identity map $h_0 = id_X$ on X and a retraction $h_1 = r: X \to A$. In this case we say that A is a deformation retract of X.
- (iii) A deformation retract is called a **strong deformation retract** if, in addition, the points of A stay fixed throughout the homotopy, that is $h_t(a) = a$ for all $t \in I$ and $a \in A$.

Definition 2.1.8.

(i) A pair of topological spaces (X, A) consists of a topological space X and a subspace A. The cartesian product of pairs is defined by

$$(X, A) \times (Y, B) := (X \times Y, A \times Y \cup X \times B).$$

(ii) A map of pairs

$$f: (X, A) \to (Y, B)$$

is a (continuous) map $f: X \to Y$ which maps A into B, that is $f(A) \subset B$.

(iii) A homotopy between maps of pairs $f, g : (X, A) \to (Y, B)$ is a map of pairs

$$h: (I \times X, I \times A) \to (Y, B)$$

such that $h_0 = f$ and $h_1 = g$. Consequently $h_t(A) \subset B$ for every $t \in I$.

2.2 Algebra

Definition 2.2.1. (i) A group (G, *) is a set G together with a binary operation, that is a map¹ $* : G \times G \to G$ such that the following axioms hold:

(associativity) For all $a, b, c \in G$ one has a * (b * c) = (a * b) * c;

(neutral element) There is an element $e \in G$ such that e * a = a = a * e for every $a \in G$;

(inverses) For every $a \in G$ there is an element a' in G with a * a' = e = a' * a.

Additive notation: If the group operation is denoted by +, then one denotes the neutral element e by 0, inverses by -a, and k times combining the same element a by ka.

Multiplicative notation: If the group operation is denoted by \cdot , then one denotes the neutral element e by 1 called unit or identity, inverses by a^{-1} , and k times combining the same element a by a^k .

(ii) It is common to denote a group (G, *) simply by the underlying set G. If G is a finite set, the group is called a **finite group**.

(iii) A subset H of a group G is called a **subgroup of** G, in symbols $H \leq G$, if H also forms a group under the binary operation of G. This is the case if and only if H is non-empty and preserved under the binary operation and under taking inverses.

(iv) A subgroup $H \leq G$ is called a **normal subgroup**, in symbols $H \leq G$, if H is invariant under conjugation by the elements of G, that is $gHg^{-1} = H$ for each $g \in G$. Precisely the class of normal subgroups can be used to construct quotient groups G/N from a given group.

Definition 2.2.2. A group G is called **abelian** if combining elements does not depend on the order, that is if

(commutativity) a * b = b * a for all $a, b \in G$.

An abelian group that admits a **basis** - a generating and linearly independent set - is called a **free abelian group**. It is called a **finitely generated** free abelian group, if it admits a finite basis. Any two bases of a free abelian group have the same cardinality called the **rank of the free abelian group**. Any

¹ A binary operation is often formulated as an **operation** which not only combines any two elements $a, b \in G$ to form an element a * b, but which is **closed** in the sense that a * b always lies in G. A binary operation is a special case of a **binary function**, that is a map $A \times B \to C$ where A, B, C are sets. Binary refers to the fact that the domain is the cartesian product of two sets.

two maximal linearly independent subsets of an abelian group have the same cardinality called the **rank**, or **torsion-free rank**, **of the abelian group**; cf. Remark B.3.75.

Remark 2.2.3. [Abelian groups] (i) Every subgroup F of an abelian group G is normal (which is precisely what is needed to form a quotient group).

(ii) The rank of an abelian group G coincides with the dimension of the \mathbb{Z} -module tensor product $G \otimes_{\mathbb{Z}} \mathbb{Q}$ viewed as \mathbb{Q} -vector space; cf. Exercise 2.2.26.

(iii) Theorem of Dedekind: Every subgroup of a free abelian group G is itself a free abelian group. If G is not finitely generated, the proof uses the axiom of choice in the form of Zorn's Lemma; see [Lan93a, Thm. I.7.3 p.41, pf. p.880].²

Definition 2.2.4. A commutative ring R consists of a set R equipped with two maps $+, \cdot : R \times R \to R$, addition and multiplication, such that

- under addition R is an abelian group with neutral element 0;
- multiplication is associative, commutative, and has a unit element 1;
- both operations are compatible in the sense that

 $(\alpha + \beta)\gamma = \alpha\gamma + \beta\gamma, \qquad \alpha(\beta + \gamma) = \alpha\beta + \beta\gamma, \quad \alpha, \beta, \gamma \in R,$

which is called **distributivity** and where $\alpha\beta := \alpha \cdot \beta$.

The integers \mathbb{Z} carry naturally the structure of a ring. Every ring contains the two neutral elements 0 and 1, but they are not necessarily different. The smallest ring, the zero ring $R = \{0\}$ has one element, the neutral element of addition. In this case the neutral element of multiplication, the unit 1, necessarily coincides with 0.

Definition 2.2.5. An integral domain is a non-zero commutative ring R which admits no zero divisors, that is the product of any two non-zero elements is non-zero. A **principal ideal domain** or **PID** is an integral domain in which every ideal is principal, that is can be generated by a single element.

With respect to divisilibity PID's behave similar like the archetype PID \mathbb{Z} in the sense that one has unique decomposition into prime elements and any two elements have a greatest common divisor.

Definition 2.2.6. A field is a ring $(\mathbb{F}, +, \cdot)$ such that

under multiplication 𝔽* := 𝔽 \ {0} is an abelian group with neutral element 1, called unit.

In other words, a field is a commutative ring in which every non-zero element admits a multiplicative inverse. Thus \mathbb{Z} is not a field, but for example \mathbb{Q} , \mathbb{R} , \mathbb{C} , and \mathbb{Z}_p with p prime are. Every field contains the two neutral elements 0 and 1 and they are necessarily different. The smallest field is $\mathbb{Z}_2 = \{0, 1\}$.

 $^{^{2}}$ In fact, the proof is given for a free *R*-module over a PID (principal ideal domain) *R*.

Definition 2.2.7. An *R*-module M, more precisely, a module $(M, +, \cdot)$ over a ring $(R, +, \cdot)$ consists of

- an abelian group (M, +) with neutral element 0 and
- a map called scalar multiplication³

$$R \times M \to M, \quad (\alpha, m) \mapsto \alpha \cdot m,$$

which satisfies $1 \cdot m = m$ and is compatibel with the other three operations in the sense that

$$(\alpha + \beta) \cdot m = \alpha \cdot m + \beta \cdot m, \qquad \alpha \cdot (m + n) = \alpha \cdot m + \alpha \cdot n,$$

and

$$(\alpha \cdot \beta) \cdot m = \alpha \cdot (\beta \cdot m)$$

for all elements of R and M.

The additive group $(\{0\}, +)$ is a module over any ring. Any ring R is a module over itself. Any abelian group is a \mathbb{Z} -module (and trivially vice versa).

Theorem 2.2.8. Every submodule of a free *R*-module over a PID *R* is free.

Proof. [Lan93a, p.880]. See also Remark 2.2.3 (iii).

Definition 2.2.9. A module over a field is called a **vector space**.

Definition 2.2.10. Let R be a commutative ring. An R-algebra consists of

- an *R*-module $(\mathcal{A}, +, \cdot)$ and
- an *R*-bilinear map $\circ : \mathcal{A} \times \mathcal{A} \to \mathcal{A}$.

We require also that the product \circ is associative and admits a unit element 1.

Remark 2.2.11. a) What we call *R*-module is strictly speaking a left *R*-module. b) Associativity and unit are usually not part of the algebra definition. We include them for simplicity of presentation.

c) If one drops from an *R*-algebra \mathcal{A} (as defined above) the coefficient ring *R*, including scalar multiplication, and replaces bilinearity by distributivity, then \mathcal{A} becomes precisely a ring. So the notion of algebra generalizes the one of ring.

Categories and Functors

Following [Dol95, Ch. I §1] we recollect categories and functors.

Definition 2.2.12 (Category). A category C consists of

(i) a collection of objects, denoted by $Ob(\mathcal{C})$, and

³ In this context the elements of R are called **scalars**.

- (ii) for every pair X, Y of objects, a set of morphisms from X to Y, denoted by $\mathcal{C}(X, Y)$ or $[X, Y], {}^4$ and
- (iii) for every ordered triple of objects X, Y, Z an application

$$\circ: \mathcal{C}(X,Y) \times \mathcal{C}(Y,Z) \to \mathcal{C}(X,Z)$$

called **composition**. One abbreviates intuitively $g \circ f := \circ(f, g)$.⁵

Objects, morphisms, and composition maps have to satisfy two axioms:

(Associativity) For all triples of composable morphisms it holds that

$$h \circ (g \circ f) = (h \circ g) \circ f.$$

(Identities) Every object X admits a morphism $id_X : X \to X$ with

$$f \circ \operatorname{id}_X = f, \qquad \operatorname{id}_Y \circ f = f,$$

for every morphism $f: X \to Y$.

Example 2.2.13. The following are categories:

- Set Category of sets: Objects are arbitrary sets, the set of morphisms [X, Y] consists of all maps from X to Y, and $g \circ f$ has the usual meaning of composition of maps.
- AG Category of abelian groups: Objects are arbitrary abelian groups, the set of morphisms [X, Y] = Hom(X, Y) consists of all homomorphisms from X to Y, and $g \circ f$ has the usual meaning.
- Top Category of topological spaces: Objects are arbitrary topological spaces, the set of morphisms $[X, Y] = C^0(X, Y)$ consists of all (continuous) maps from X to Y, and $g \circ f$ has the usual meaning.
- $\mathcal{T}op^{(2)}$ Category of pairs of topological spaces: Objects are arbitrary pairs of spaces, the set of morphisms [(X, A), (Y, B)] consists of all maps of pairs from (X, A) to (Y, B), and $g \circ f$ has the usual meaning.
 - $\mathcal{C}^{\mathrm{op}}$ Dual or opposite category: Suppose \mathcal{C} is a category. Set $\mathrm{Ob}(\mathcal{C}^{\mathrm{op}}) := \mathrm{Ob}(\mathcal{C})$ and $\mathcal{C}^{\mathrm{op}}(X, Y) := \mathcal{C}(Y, X)$. Composition * in $\mathcal{C}^{\mathrm{op}}$ is defined by

$$g * f := f \circ g, \qquad X \xrightarrow{f}_{\mathrm{op}} Y \xrightarrow{g}_{\mathrm{op}} Z.$$

R-Mod Category of *R*-modules: Objects are arbitrary *R*-modules, the set of morphisms [M, N] = Hom(M, N) consists of all homomorphisms from *M* to N, and $g \circ f$ has the usual meaning of composition of maps.

⁴ A morphism f from X to Y is also denoted by $f: X \to Y$ or $X \xrightarrow{f} Y$.

 $^{^{5}}$ However, observe that the composition map is not in every category – although in many – given by composition of maps; see [Dol95, Ch. I Ex. 1.2 (iv)] where morphisms are not maps.

Definition 2.2.14 (Functor). Given categories C and D, a functor T from C to D, in symbols $T : C \to D$, consists of

- (i) an application $T : Ob(\mathcal{C}) \to Ob(\mathcal{D})$, and
- (ii) applications $T = T_{XY} : \mathcal{C}(X, Y) \to \mathcal{D}(TX, TY)$, whenever $X, Y \in Ob(\mathcal{C})$, which preserve composition and identities, namely
- (iii) $T(g \circ f) = (Tg) \circ (Tf)$ for all morphisms $X \xrightarrow{f} Y \xrightarrow{g} Z$ in \mathcal{C} ,
- (iv) $T(\operatorname{id}_X) = \operatorname{id}_{TX}$ for every $X \in \operatorname{Ob}(\mathcal{C})$.

Definition 2.2.15 (Cofunctor). A **cofunctor** from C to D is, by definition, a functor from C to the dual category \mathcal{D}^{op} or, equivalently, a functor $\mathcal{C}^{\text{op}} \to \mathcal{D}^{.6}$.

Direct and inverse limits

We follow the concise presentation in [BPS03, §4.6]; for further details see e.g. [Rot09, §5.2] or [GM03, §II.3.15].

Suppose (I, \preceq) is a partially ordered set (**poset**). It is useful to view this poset as a category whose objects are the elements of I and where there is precisely one morphism from i to j whenever $i \preceq i$.

Suppose R is a commutative ring. A **partially ordered system** (**posyst**) of **R-modules over** I is a functor $(I, \preceq) \rightarrow R$ -Mod written as a pair (M, ψ) where M assigns to each $i \in I$ an R-module M_i and ψ assigns to each related pair $i \preceq j$ of I a homomorphism $\psi_{ji} : M_i \rightarrow M_j$ such that

$$\psi_{kj}\psi_{ji} = \psi_{ki}, \qquad \psi_{\ell\ell} = \mathrm{id}_{M_\ell},$$

whenever $i \leq j \leq k$ and for every $\ell \in I$.

Definition 2.2.16 (Direct limit). A poset (I, \preceq) is **upward directed** if every pair of elements $i, j \in I$ admits a **common upper bound**, that is there is an $\ell \in I$ such that $i \preceq \ell$ and $j \preceq \ell$. In this case the posyst (M, ψ) above is called a **direct system of** *R***-modules**. Its **direct limit** of such a direct system is defined as the quotient

$$\varinjlim_{i \in I} M := \varinjlim_{i \in I} M_i := \{(i, x) \mid i \in I, \, x \in M_i\} \, / \sim$$

where $(i, x) \sim (j, y)$ if and only if *i* and *j* admit a common upper bound ℓ such that $\psi_{\ell i} x = \psi_{\ell j} y$, that is *x* and *y* get mapped into a common *R*-module M_{ℓ} . Since *I* is upward directed this is an equivalence relation.

The direct limit is an R-module itself under the operations

 $[i, x] + [j, y] = [\ell, \psi_{\ell i} x + \psi_{\ell j} y], \qquad r[i, x] = [i, rx],$

⁶ In Definition 2.2.14 one only needs to replace (ii) by $T =: \mathcal{C}(X, Y) \to \mathcal{D}(TY, TX)$ and (iii) by $T(g \circ f) = (Tf) \circ (Tg)$.

where $\ell \in I$ is any common upper bound for i, j and $r \in R$ is any ring element. Furthermore, for each $i \in I$ there is an **insertion homomorphism**

$$\iota_i: M_i \to \varinjlim M, \quad x \mapsto [i, x],$$

which satisfies $\iota_i = \iota_j \psi_{ji}$ whenever $i \leq j$. However, the homomorphism ι_i is not necessarily injective which is why it is called insertion and not injection.

Remark 2.2.17 (Universal property of direct limit). Up to isomorphism the direct limit is characterized by the following universal property. Suppose N is any R-module and $(\tau_i : M_i \to N)_{i \in I}$ is a family of homomorphisms such that $\tau_i = \tau_j \psi_{ji}$ whenever $i \leq j$. Then there is a unique homomorphism $\tau : \lim_{i \to I} M \to N$ such that $\tau_i = \tau_{\iota_i}$ for every $i \in I$; indeed τ is given by $[i, x] \mapsto \tau_i(x)$

Definition 2.2.18 (Inverse limit). A poset (I, \preceq) is called **downward directed** if every pair of elements $i, j \in I$ admits a **common lower bound**, that is there is an $h \in I$ such that $h \preceq i$ and $h \preceq j$. In this case a posyst $(M, \psi) : (I, \preceq) \rightarrow R$ - \mathcal{M} od is called an **inverse system of R-modules**. The **inverse limit** of such an inverse system is the submodule⁷ of $\prod M_i$ defined by

$$\varprojlim M := \varprojlim_{i \in I} M_i := \left\{ (x_i)_{i \in I} \in \prod_{i \in I} M_i \ \Big| \ i \preceq j \ \Rightarrow \ \psi_{ji} x_i = x_j \right\}.$$

For each $j \in I$ there is an obvious projection homomorphism

$$\pi_j: \underline{\lim} \ M \to M_j, \quad (x_i)_{i \in I} \mapsto x_j,$$

to the j^{th} component. These projections satisfy $\pi_j = \psi_{ji}\pi_i$ whenever $i \leq j$, but it is not necessarily surjective.

Remark 2.2.19 (Universal property of inverse limit). Up to isomorphism the inverse limit is characterized by the following universal property. Suppose N is any R-module and $(\tau_j : N \to M_j)_{j \in I}$ is a family of homomorphisms such that $\tau_j = \psi_{ji}\tau_i$ whenever $i \leq j$. Then there is a unique homomorphism $\tau : N \to \lim M$ such that $\tau_j = \pi_j \tau$ for every $j \in I$; indeed τ is given by $y \mapsto (\tau_i(y))_{i \in I}$.

Definition 2.2.20. A poset (I, \preceq) is called **bidirected** if it is both up- and downward directed. In this case the posyst functor (M, ψ) is called a **bidirected** system of *R*-modules.

Remark 2.2.21 (Existence).

Exhausting sequences

Computation of direct and inverse limits is greatly facilitated by the notion of exhausting sequences.

⁷ An element $(x_i) \in \prod M_i$ such that $\psi_{ji}x_i = x_j$ whenever $i \leq j$ is called a **thread**. Note that the set L of all threads is a submodule of $\prod M_i$.

Definition 2.2.22. Suppose (M, ψ) is a posyst of *R*-modules over (I, \preceq) . Denote $\mathbb{Z}^+ := \mathbb{N} := \{1, 2, 3, ...\}$ and $\mathbb{Z}^- := \{..., -3, -2, -1\}$.

- (i) A sequence $(i_{\nu})_{\nu \in \mathbb{Z}^+}$ is called **upward exhausting** for (M, ψ) if and only if
 - for every $\nu \in \mathbb{Z}^+$ one has $i_{\nu} \leq i_{\nu+1}$ and $\psi_{i_{\nu+1}i_{\nu}} : M_{i_{\nu}} \to M_{i_{\nu+1}}$ is an isomorphism. Moreover, it is required that
 - every $i \in I$ is dominated by some i_{ν} , that is $i \leq i_{\nu}$ for some $\nu \in \mathbb{Z}^+$.
- (ii) A sequence $(i_{\nu})_{\nu \in \mathbb{Z}^{-}}$ is downward exhausting for (M, ψ) if and only if
 - for every $\nu \in \mathbb{Z}^-$ one has $i_{\nu-1} \leq i_{\nu}$ and $\psi_{i_{\nu}i_{\nu-1}} : M_{i_{\nu-1}} \to M_{i_{\nu}}$ is an isomorphism. Moreover, it is required that
 - every $i \in I$ dominates some i_{ν} , that is $i_{\nu} \preceq i$ for some $\nu \in \mathbb{Z}^-$.

Lemma 2.2.23. Suppose (M, ψ) is a posyst of *R*-modules over (I, \preceq) .

- (i) If (i_ν)_{ν∈Z⁺} is an upward exhausting sequence for (M, ψ), then (I, ≤) is upward directed and the insertion homomorphism ι_{i_ν} : M_{i_ν} → lim M is an isomorphism for every ν ∈ Z⁺.
- (ii) If (i_ν)_{ν∈Z⁻} is a downward exhausting sequence for (M, ψ), then (I, ≤) is downward directed and the projection homomorphism π_{i_ν} : im M → M_{i_ν} is an isomorphism for every ν ∈ Z⁻.

Exercises

Exercise 2.2.24. Show that if A is a deformation retract of X, then $A \sim X$.

Exercise 2.2.25. Show that abelian groups and \mathbb{Z} -modules are the same.

Exercise 2.2.26. Show the assertion of Remark 2.2.3 (ii): For any abelian group G it holds that rank $G := |\mathcal{B}| = \dim_{\mathbb{Q}}(G \otimes_{\mathbb{Z}} \mathbb{Q})$ where $\mathcal{B} \subset G$ is any maximal linearly independent subset and the \mathbb{Z} -module tensor product $G \otimes_{\mathbb{Z}} \mathbb{Q}$ is viewed as a \mathbb{Q} -vector space with scalar multiplication $(r', g \otimes r) \mapsto g \otimes rr'$. [Hint: Show that $\{b \otimes 1 \mid b \in \mathcal{B}\}$ is a basis of the \mathbb{Q} -vector space.]

Exercise 2.2.27 (Direct limit is generalized union).

Exercise 2.2.28 (Inverse limit is generalized intersection).

Exercise 2.2.29 (Exhausting sequences). Prove Lemma 2.2.23.

2.3 Analysis

Theorem 2.3.1 (Inverse Function Theorem). Suppose $f : E \supset U \rightarrow F$ is a C^r map between Banach spaces for some $r \geq 1$ and defined on an open set U. Let

 $x_0 \in U$ and assume that the derivative $f'(x_0) = df_{x_0} : E \to F$ is a toplinear isomorphism⁸. Then f is a local diffeomorphism⁹ at x_0 of class C^r .

Proof. See e.g. [Lan93b, XIV §1].

2.4 Manifolds and transversality

Whenever the term **manifold** is used a smooth or at least C^r differentiable manifold¹⁰ M of finite dimension, say n, is meant and the degree $r \ge 1$ of differentiability should be taken from the context. Excellent introductions to manifolds and transversality theory are the elementary texts [Jän01] and [GP74] and the slightly more advanced classics [Mil65b] and [Hir76].

Suppose $f: M \to N$ is a C^1 map between manifolds. A point $x \in M$ at which the linearization $df_x: T_xM \to T_{f(x)}N$ is not surjective is called a **critical point**, otherwise, it is a **regular point**. A point $y \in N$ is called a **critical value** of f if it is of the form y = f(x) for some critical point x. Otherwise, in particular if $y \notin f(M)$, it is called a **regular value**. If $y \in f(M)$ is a regular value, then its pre-image $f^{-1}(y)$ is called a **regular level set**.

Theorem 2.4.1 (Regular Value Theorem). Suppose $f: M \to N$ is a C^r map with $r \ge 1$. If $y \in f(M)$ is a regular value, then $f^{-1}(y)$ is a C^r submanifold of M. Its dimension is the difference dim M – dim N.

Proof. Inverse Function Theorem 2.3.1; see e.g. [Hir76, Ch. 1 Thm. 3.2]. \Box

For us the case $N = \mathbb{R}$, that is $f : M \to \mathbb{R}$, will be most important. In this case a regular level set is a submanifold of codimension 1, called a **hypersurface**. Since regular values give rise to submanifolds one would wish for a result asserting that the set of regular values is large or, equivalently, that its complement the set of critical values is small. For a proof of the following theorem in the smooth case we refer to [Hir76, Ch. 3 Thm. 1.3] where also the necessity of the differentiability requirement is discussed.

Theorem 2.4.2 (Sard's theorem). Suppose $f : M \to N$ is a C^r map with $r \ge 1$. If in addition $r > \dim M - \dim N$, then the set of critical values of f has measure zero in N. The set of regular values of f is dense in M.

Substituting the regular value y in Theorem 2.4.1 by a whole family A one obtains a rather general and powerful tool called transversality.

Theorem 2.4.3 (Transversality). Suppose a C^r map $f : M \to N$ with $r \ge 1$ is transverse to a submanifold $A \subset N$ of class C^r (in symbols $f \pitchfork A$), that is

$$df_x(T_xM) + T_{f(x)}A = T_{f(x)}N$$

⁸ that is it admits an inverse (which is automatically linear) and this inverse is continuous. ⁹ that is there are open neighborhoods U_0 of x_0 and V_0 of $f(x_0)$ such that f restricts to a bijection $f: U_0 \to V_0$ and the inverse of this bijection is of class C^r .

¹⁰ that is a second countable Hausdorff space which is locally homeomorphic to euclidean space \mathbb{R}^n such that all transition maps are C^r diffeomorphisms.

whenever $f(x) \in A$. Then the pre-image $f^{-1}(A)$ is a C^r submanifold of M. Its codimension is the codimension of A in N.

Proof. See e.g. [Hir76, Ch. 1 Thm. 3.3].

Remark 2.4.4. We say that two submanifolds $A, B \hookrightarrow N$ have **transverse** intersection, in symbols $A \pitchfork B$, if

$$T_y B + T_y A = T_y N, \qquad \forall y \in A \cap B,$$

that is together the two tangent subspaces span the whole ambient tangent space or, equivalenty, the inclusion $\iota : B \hookrightarrow N$ is transverse to A. Thus by Theorem 2.4.3 the intersection $A \cap B$ is a submanifold of N whose codimension is the sum of the codimensions of A and B. In this case one also says that the intersection $A \cap B$ is **cut out transversely**.

Manifolds-with-boundary

If in the above definition of manifold one generalizes to "…locally homeomorphic to euclidean space \mathbb{R}^n or euclidean half-space $[0, \infty) \times \mathbb{R}^{n-1}$ such that…" one obtains what is called a $(C^r$ differentiable) **manifold-with-boundary** M. By definition a point $x \in M$ belongs to the boundary ∂M of M if it is identified by some, hence every¹¹, coordinate chart with an element of the boundary $\{0\} \times \mathbb{R}^{n-1}$ of euclidean half-space. The boundary ∂M of a C^r manifold-withboundary M of dimension n is itself a C^r manifold of dimension n-1.

Analogues of the Regular Value Theorem 2.4.1 and the Transversality Theorem 2.4.3 hold true for manifolds-with-boundary; see [Hir76, Ch. 1 §4].

Remark 2.4.5. Obviously a manifold M is a manifold-with-boundary whose boundary is the empty set. The latter is also called a **manifold-withoutboundary**. In other words, *manifold* and *manifold-without-boundary* are equivalent notions. A compact manifold-without-boundary is called a **closed manifold**. On the other hand, to emphasize non-triviality of the boundary a manifold-with-boundary M with $\partial M \neq \emptyset$ is called a **∂-manifold**.

2.5 Group actions

We briefly introduce basic notions of group actions. For further redaing we recommend the textbooks [tD87,DK00].

Definition 2.5.1. A (left) group action of a group G on a set X is a map

$$\phi: G \times X \to X, \quad (g, x) \mapsto \phi(g, x) =: gx,$$

that satisfies the following two axioms:

¹¹ In other words, a coordinate change (also called a transition map) cannot map a boundary point of half-space to an interior point. If $r \geq 1$ this follows from the Inverse Function Theorem 2.3.1 and for r = 0 from a highly non-trivial result in topology called *invariance of domain*; see [Hir76, Ch. 1 §4].

- (identity) The neutral element e of the group G acts as the identity on X, that is $\phi(e, \cdot) = id_X$ or equivalently $ex = x, \forall x \in X$;
- (compatibility) The action and the group operation are compatible in the sense that (gh)x = g(hx) for all $g, h \in G$ and $x \in X$.

Note that the two axioms imply that for $g \in G$ the maps $\phi_g : X \to X$ are bijections, the inverse being $\phi_{g^{-1}}$, whose compositions satisfy $\phi_g \phi_h = \phi_{gh}$.

Definition 2.5.2. A group action of G on X is called

- **transitive** if X is non-empty and if for each pair x, y in X there is a group element g such that gx = y;
- faithful, or effective, if different group elements $g \neq h$ provide different bijections $\phi_q \neq \phi_q : X \to X$.
- free, or fixed point free, if none of the maps

$$\phi(g, \cdot): X \to X, \quad g \in G \setminus \{e\},\$$

admits fixed points. (Equivalently, if gx = x has no solution unless g = e.)

Remark 2.5.3 (Orbits). Consider a group action of a group G on a set X. Given a point $x \in X$, then all points $y \in X$ to which x can be moved by the elements of G is called the **orbit of** x and denoted by

$$Gx := \{gx \mid g \in G\}.$$

Orbits are the equivalence classes of the equivalence relation on X defined by $x \sim y$ if and only if gx = y for some $g \in G$. Consequently X is partitioned by the orbits. Observe that the action is transitive if and only if it admits only one orbit, namely M. In this case M is called a **homogeneous space**. In general, the set of all orbits is called the **orbit space** and denoted X/G or X_G .

Definition 2.5.4 (*G*-manifold). Consider a group action ϕ of *G* on *M* where *G* is a Lie group and *M* is a C^k manifold, $k \ge 1$, and such that map $(g, p) \mapsto \phi(g, p) =: gp$ is of class C^k . Such group action is called a **Lie group action** or a **smooth group action** of class C^k on the manifold *M*. A manifold equipped with a Lie group action is called a **G**-manifold. A function $f: M \to \mathbb{R}$ invariant under the action of *G* is called an equivariant function.

While in general (the quotient topology on) the orbit space M/G may not be Hausdorff, it is Hausdorff whenever G is compact. If G is compact and acts *freely*, then M/G is a manifold. This is a consequence of Koszul's tube theorem [Kos53] also called *slice theorem* or *equivariant tubular neighborhood theorem*; see also [Mos57, Pal61].

Theorem 2.5.5. Suppose G is a compact Lie group which acts freely and of class C^k , $k \ge 1$, on a manifold M. Then the quotient space M/G has a unique structure of a C^k manifold of dimension dim M – dim G.

Proof. [tD87, Prop. 5.2] or [DK00, Thm. 1.11.4] or [GGK02, App. B].

2.6 Local and global dynamics

For an overview, respectively the details, of the dynamics generated by vector fields on euclidean space and on finite dimensional manifolds we recommend the books by Hirsch [Hir76, Ch. 6 §2] and Zehnder [Zeh10, §IV.1], respectively Amann [Ama90, CH. 2] and Teschl [Tes12, Ch. 2 and §6.2]. The case of Banach spaces and Banach manifolds is treated in the book by Lang [Lan01, Ch. IV].

Flows

Following [Ama90, §10] suppose S is a metric space. For each $x \in S$ let $J_x = (T_x^-, T_x^+)$ be an open interval about $0 \in \mathbb{R}$ and consider the set

$$\Omega := \bigcup_{x \in S} J_x \times \{x\}$$

Definition 2.6.1. A (local) flow or a dynamical system on S is a map

$$\varphi: \Omega \to S, \quad (t, x) \mapsto \varphi(t, x) =: \varphi_t(x) =: \varphi_t x,$$

with the following properties:

- (i) the subset $\Omega \subset \mathbb{R} \times S$ is open;
- (ii) the map $\varphi: \Omega \to S$ is continuous;
- (iii) $\varphi_0 = \mathrm{id}_M;$
- (iv) for all $x \in S$, $t \in J_x$, and $s \in J_{\varphi_t x}$ it holds that

$$s+t \in J_x, \qquad \varphi_s \varphi_t x = \varphi_{t+s} x.$$

If $\Omega = \mathbb{R} \times S$, that is $J_x = \mathbb{R}$ for every point x of S, then φ is called a **global** flow or a **global dynamical system**. For each $x \in S$, the curve

$$u_x: J_x = \left(T_x^-, T_x^+\right) \to S, \quad t \mapsto \varphi_t x$$

is called the flow line or trajectory through x and the constants $T_x^- = T^-(x)$ and $T_x^+ = T^+(x)$ are called the negative and positive life time of x, respectively. The images

$$\mathcal{O}^{-}(x) := \varphi_{(T_x^-, 0]} x, \qquad \mathcal{O}^+(x) := \varphi_{[0, T_x^+)} x, \qquad \mathcal{O}(x) := \varphi_{J_x} x$$

are called the **negative semi-orbit**, the **positive semi-orbit**, and the **orbit** through x, respectively, and S is called the **phase space** of the flow.

Remark 2.6.2.

a) If S is a C^r -manifold where $r \ge 1$ and if (ii) above is replaced by

(ii')
$$\varphi \in C^r(\Omega, S)$$

one obtains a C^r -flow.

- b) Each orbit $\mathcal{O}(x)$ comes with its **flow orientation**, that is the direction in which the flow line u_x runs through the orbit.
- c) The orbits partition the phase space, that is $S = \bigcup_{x \in S} \mathcal{O}(x)$ and two orbits are either equal or disjoint.

Definition 2.6.3. Suppose Λ is a topological space and consider a function $f : \Lambda \to [-\infty, \infty] =: \mathbb{\bar{R}}$. Then f is called **lower semi-continuous at** λ_* if for every $a < f(\lambda_*)$ there is a neighborhood U_a of λ_* such that $f(\lambda) > a$ for every $\lambda \in U_a$. A function is **upper semi-continuous** if it is upper semi-continuous at every point. A function f is **upper semi-continuous** if -f is lower semi-continuous.

Lemma 2.6.4. Suppose φ is a flow on S. Then

- (i) the backward and forward life times $T^-, T^+ : S \to (0, \infty]$ are upper and lower semi-continuous, respectively;
- (ii) for every $(t, x) \in \Omega$ it holds that $J_{\varphi_t x} = J_x t$.

Proof. [Ama90, Lemma 10.5].

Flows generated by vector fields

Suppose $U \subset \mathbb{R}^n$ with $n \geq 1$ is an open subset and $F: U \to \mathbb{R}^n$ is a map of class C^r with $r \geq 1$.¹² Then the Cauchy or initial value problem

$$\dot{u} = F(u), \qquad u(0) = x,$$
(2.6.1)

admits a unique solution

$$u_x: J_x \to U, \qquad J_x = \left(T_x^-, T_x^+\right),$$

which is of class C^{r+1} and where $J_x \ni 0$ is the maximal interval of existence; see e.g. [Ama90, Thm 7.6]. Moreover, if the solution u_x remains in a compact subset Q of U, that is $u_x(t) \in Q$ for every $t \in J_x$, then $J_x = \mathbb{R}$. Now consider the map defined by

$$\varphi(t,x):=\varphi_t x:=u_x(t)$$

on the set

$$\Omega^F := \{ (t, x) \in \mathbb{R} \times U \mid t \in J_x, x \in U \}$$

which is in fact an open subset of $\mathbb{R} \times U$ by the following result.

Theorem 2.6.5. If $F \in C^r(U, \mathbb{R}^n)$ with $r \ge 1$, then the solution

 $\varphi=\varphi^F:\Omega^F\to U$

of the Cauchy problem (2.6.1) is a C^r -flow on U, the flow generated by F.

¹² (Local) Lipschitz continuity is sufficient to obtain a Lipschitz flow; see e.g. [Ama90, §10].

Proof. [Ama90, Thm 10.3].

These results remain valid if \mathbb{R}^n is replaced by an arbitrary Banach space; see e.g. [Lan01, IV Thm. 1.16].

Manifolds and Banach manifolds

Using local coordinate charts one can lift the former results from \mathbb{R}^n to differentiable manifolds of dimension n, see e.g. [Hir76, Ch. 6 §2], and from Banach spaces to Banach manifolds, see e.g. [Lan01, IV §2].

Hyperbolic gradient dynamics

Morse theory embeds naturally, upon choosing a Riemannian metric, into the well known field of hyperbolic dynamical systems, more precisely, into the subfield of hyperbolic gradient dynamics. For convenience of the reader and also to present and mirror some possibly less known results and techniques we shall provide all relevant results with proofs. To avoid conflict with the title of the present text this material is put in the appendix, given the large number of pages. We recommend consulting the overview given in the beginning of Appendix A and then to proceed with Chapter 3. The recent developments presented in Chapter 4 are based on large parts of Appendix A.5 though.

Part I

Morse theory

Part II Conley theory

Part III Appendices

Bibliography

- [AB83] M. F. Atiyah and R. Bott. The Yang-Mills equations over Riemann surfaces. *Philos. Trans. Roy. Soc. London Ser. A*, 308(1505):523–615, 1983.
- [AL93] R. P. Agarwal and V. Lakshmikantham. Uniqueness and nonuniqueness criteria for ordinary differential equations, volume 6 of Series in Real Analysis. World Scientific Publishing Co., Inc., River Edge, NJ, 1993.
- [AM05] Alberto Abbondandolo and Pietro Majer. A Morse complex for infinite dimensional manifolds. I. Adv. Math., 197(2):321–410, 2005.
- [AM06] Alberto Abbondandolo and Pietro Majer. Lectures on the Morse complex for infinite-dimensional manifolds. In Morse theoretic methods in nonlinear analysis and in symplectic topology, volume 217 of NATO Sci. Ser. II Math. Phys. Chem., pages 1–74. Springer, Dordrecht, 2006.
- [Ama90] Herbert Amann. Ordinary differential equations, volume 13 of de Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin, 1990. An introduction to nonlinear analysis, Translated from the German by Gerhard Metzen.
- [Ang86] S. B. Angenent. The Morse-Smale property for a semilinear parabolic equation. J. Differential Equations, 62(3):427–442, 1986.
- [AS15] Alberto Abbondandolo and Matthias Schwarz. The role of the Legendre transform in the study of the Floer complex of cotangent bundles. *Comm. Pure Appl. Math.*, 68(11):1885–1945, 2015.
- [Ati90] M. F. Atiyah. ICM 1990, On the work of Edward Witten, 1990.
- [Bar94] S. A. Barannikov. The framed Morse complex and its invariants. In Singularities and bifurcations, volume 21 of Adv. Soviet Math., pages 93–115. Amer. Math. Soc., Providence, RI, 1994.
- [BFK11] Dan Burghelea, Leonid Friedlander, and Thomas Kappeler. On the space of trajectories of a generic vector field. ArXiv e-prints, 01 2011.

- [BH35a] G. D. Birkhoff and M. R. Hestenes. Generalized minimax principle in the calculus of variations. Proceedings of the National Academy of Sciences of the United States of America, 21(2):96–99, 1935.
- [BH35b] G. D. Birkhoff and M. R. Hestenes. Generalized minimax principle in the calculus of variations. *Duke Math. J.*, 1(4):413–432, 1935.
- [BH04a] Augustin Banyaga and David Hurtubise. Lectures on Morse homology, volume 29 of Kluwer Texts in the Mathematical Sciences. Kluwer Academic Publishers Group, Dordrecht, 2004.
- [BH04b] Augustin Banyaga and David E. Hurtubise. A proof of the Morse-Bott lemma. *Expo. Math.*, 22(4):365–373, 2004.
- [BH09] Augustin Banyaga and David E. Hurtubise. The Morse-Bott inequalities via a dynamical systems approach. Ergodic Theory Dynam. Systems, 29(6):1693–1703, 2009.
- [BM62] M. G. Barratt and John Milnor. An example of anomalous singular homology. Proc. Amer. Math. Soc., 13:293–297, 1962.
- [Bor53] A. Borel. La cohomologie mod 2 de certains espaces homogènes. Comment. Math. Helv., 27:165–197, 1953.
- [Bot54] Raoul Bott. Nondegenerate critical manifolds. Ann. of Math. (2), 60:248–261, 1954.
- [Bot82] Raoul Bott. Lectures on Morse theory, old and new. Bull. Amer. Math. Soc. (N.S.), 7(2):331–358, 1982.
- [Bot88] Raoul Bott. Morse theory indomitable. Inst. Hautes Études Sci. Publ. Math., 68:99–114, 1988.
- [BPS03] P. Biran, L. Polterovich, and D. Salamon. Propagation in hamiltonian dynamics and relative symplectic homology. *Duke Math. J.*, 119(1):65– 118, 2003.
- [Bro17] A. D. Brooke-Taylor. Products of CW complexes. ArXiv e-prints, October 2017.
- [BT82] Raoul Bott and Loring W. Tu. Differential forms in algebraic topology, volume 82 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1982.
- [BV07] Luis Barreira and Claudia Valls. Hölder Grobman-Hartman linearization. Discrete Contin. Dyn. Syst., 18(1):187–197, 2007.
- [BV12] Luis Barreira and Claudia Valls. *Equações Diferenciais Ordinárias: Teoria Qualitativa.* Editora Livraria da Física, Brasil, 2012.

- [BZ92] Jean-Michel Bismut and Weiping Zhang. An extension of a theorem by Cheeger and Müller. *Astérisque*, 205:235, 1992. With an appendix by François Laudenbach.
- [CE71] Charles C. Conley and Robert W. Easton. Isolated invariant sets and isolating blocks. Trans. Amer. Math. Soc., 158:35–61, 1971.
- [CH82] Shui Nee Chow and Jack K. Hale. Methods of bifurcation theory, volume 251 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science]. Springer-Verlag, New York-Berlin, 1982.
- [CLOT03] Octav Cornea, Gregory Lupton, John Oprea, and Daniel Tanré. Lusternik-Schnirelmann category, volume 103 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2003.
- [Con78] Charles C. Conley. Isolated invariant sets and the Morse index, volume 38 of CBMS Regional Conference Series in Mathematics. American Mathematical Society, Providence, R.I., 1978.
- [CR03] Octav Cornea and Andrew Ranicki. Rigidity and gluing for Morse and Novikov complexes. J. Eur. Math. Soc. (JEMS), 5(4):343–394, 2003.
- [Die09] Jean Dieudonné. A history of algebraic and differential topology 1900– 1960. Modern Birkhäuser Classics. Birkhäuser Boston Inc., Boston, MA, 2009. Reprint of the 1989 edition [MR0995842].
- [DK00] J. J. Duistermaat and J. A. C. Kolk. *Lie groups*. Universitext. Springer-Verlag, Berlin, 2000.
- [DK01] James F. Davis and Paul Kirk. Lecture notes in algebraic topology, volume 35 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2001.
- [dMdS00] Adriano A. de Moura and Fausto M. de Souza. A Morse lemma for degenerate critical points with low differentiability. Abstr. Appl. Anal., 5(2):113–118, 2000.
- [Dol95] Albrecht Dold. Lectures on algebraic topology. Classics in Mathematics. Springer-Verlag, Berlin, 1995. Reprint of the 1972 edition.
- [Dra13] A. Dranishnikov. On Lusternik-Schnirelmann category, last accessed 11/01/2017 on Webpage, beamer presentation, December 2013.
- [EK62] James Eells, Jr. and Nicolaas H. Kuiper. Manifolds which are like projective planes. Inst. Hautes Études Sci. Publ. Math., 14:5–46, 1962.
- [ES45] Samuel Eilenberg and Norman E. Steenrod. Axiomatic approach to homology theory. Proc. Nat. Acad. Sci. U. S. A., 31:117–120, 1945.

- [ES52] Samuel Eilenberg and Norman Steenrod. Foundations of algebraic topology. Princeton University Press, Princeton, New Jersey, 1952.
- [Far04] Michael Farber. Topology of closed one-forms, volume 108 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2004.
- [FHT01] Yves Félix, Stephen Halperin, and Jean-Claude Thomas. Rational homotopy theory, volume 205 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2001.
- [Flo89a] Andreas Floer. Symplectic fixed points and holomorphic spheres. Comm. Math. Phys., 120(4):575–611, 1989.
- [Flo89b] Andreas Floer. Witten's complex and infinite-dimensional Morse theory. J. Differential Geom., 30(1):207–221, 1989.
- [Fra79] John M. Franks. Morse-Smale flows and homotopy theory. Topology, 18(3):199–215, 1979.
- [GGK02] Victor Guillemin, Viktor Ginzburg, and Yael Karshon. Moment maps, cobordisms, and Hamiltonian group actions, volume 98 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2002. Appendix J by Maxim Braverman.
- [GM69] Detlef Gromoll and Wolfgang Meyer. On differentiable functions with isolated critical points. *Topology*, 8:361–369, 1969.
- [GM03] Sergei I. Gelfand and Yuri I. Manin. Methods of homological algebra. Springer Monographs in Mathematics. Springer-Verlag, Berlin, second edition, 2003.
- [GP74] Victor Guillemin and Alan Pollack. *Differential topology*. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1974.
- [Gro59] D. M. Grobman. Homeomorphism of systems of differential equations. Dokl. Akad. Nauk SSSR, 128:880–881, 1959.
- [Had01] J. Hadamard. Sur l'itération et les solutions asymptotiques des équations différentielles. Bull. Soc. Math. Fr., 29:224–228, 1901.
- [Har60] Philip Hartman. A lemma in the theory of structural stability of differential equations. Proc. Amer. Math. Soc., 11:610–620, 1960.
- [Hat02] Allen Hatcher. *Algebraic topology*. Cambridge University Press, Cambridge, 2002.
- [Hau14] Jean-Claude Hausmann. Mod two homology and cohomology. Universitext. Springer, Cham, 2014.

- [Hen81] Daniel Henry. Geometric theory of semilinear parabolic equations, volume 840 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1981.
- [Hin84] N. Hingston. Equivariant Morse theory and closed geodesics. J. Differential Geom., 19(1):85–116, 1984.
- [Hir76] Morris W. Hirsch. Differential topology. Springer-Verlag, New York-Heidelberg, 1976. Graduate Texts in Mathematics, No. 33.
- [HM17] T. Holck Colding and W. P. Minicozzi, II. Arnold-Thom gradient conjecture for the arrival time. *ArXiv e-prints*, December 2017.
- [Hop58] Heinz Hopf. ICM 1958, The work of R. Thom, 1958.
- [HS85] B. Helffer and J. Sjöstrand. Puits multiples en mécanique semiclassique. IV. Étude du complexe de Witten. Comm. Partial Differential Equations, 10(3):245–340, 1985.
- [Hur12] David E. Hurtubise. Three approaches to Morse-Bott homology. Afr. Diaspora J. Math., 14(2):145–177, 2012.
- [HZ11] Helmut Hofer and Eduard Zehnder. Symplectic invariants and Hamiltonian dynamics. Modern Birkhäuser Classics. Birkhäuser Verlag, Basel, 2011. Reprint of the 1994 edition.
- [III75] Sören Illman. Equivariant singular homology and cohomology. I. Mem. Amer. Math. Soc., 1(issue 2, 156):ii+74, 1975.
- [Jän01] Klaus Jänich. Vector analysis. Undergraduate Texts in Mathematics. Springer-Verlag, New York, 2001. Translated from the second German (1993) edition by Leslie Kay.
- [Jos11] Jürgen Jost. *Riemannian geometry and geometric analysis*. Universitext. Springer, Heidelberg, sixth edition, 2011.
- [JWR02] JWR. Lusternik Schnirelman and Cup Length, last accessed 11/01/2017 on Webpage, preprint, December 2002.
- [Kal75] Gudrun Kalmbach. On some results in Morse theory. Canad. J. Math., 27:88–105, 1975.
- [KMP00] Krzysztof Kurdyka, Tadeusz Mostowski, and Adam Parusiński. Proof of the gradient conjecture of R. Thom. Ann. of Math. (2), 152(3):763– 792, 2000.
- [Kos53] J. L. Koszul. Sur certains groupes de transformations de Lie. In Géométrie différentielle. Colloques Internationaux du Centre National de la Recherche Scientifique, Strasbourg, 1953, pages 137–141. Centre National de la Recherche Scientifique, Paris, 1953.

- [Kre10] Matthias Kreck. Differential algebraic topology, volume 110 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2010. From stratifolds to exotic spheres.
- [KS10] Matthias Kreck and Wilhelm Singhof. Homology and cohomology theories on manifolds. Münster J. Math., 3:1–9, 2010.
- [Lan93a] Serge Lang. Algebra. 3rd ed. Reading, MA: Addison Wesley, 1993.
- [Lan93b] Serge Lang. Real and functional analysis, volume 142 of Graduate Texts in Mathematics. Springer-Verlag, New York, third edition, 1993.
- [Lan01] Serge Lang. Fundamentals of differential geometry. Springer-Verlag, New York, corr. printing 2nd edition, 2001.
- [Law74] H. Blaine Lawson, Jr. Foliations. Bull. Amer. Math. Soc., 80:369–418, 1974.
- [Lee11] John M. Lee. Introduction to topological manifolds, volume 202 of Graduate Texts in Mathematics. Springer, New York, second edition, 2011.
- [LPNV13] Dorian Le Peutrec, Francis Nier, and Claude Viterbo. Precise Arrhenius law for *p*-forms: the Witten Laplacian and Morse-Barannikov complex. Ann. Henri Poincaré, 14(3):567–610, 2013.
- [LS30] L. Lusternik and L. Schnirelmann. Méthodes topologiques dans les problèmes variationnels. Moskau: Issledowatelskij Institut Mathematiki i Mechaniki pri J. M. G. U, 1930.
- [LS34] L. Lusternik and L. Schnirelmann. Méthodes topologiques dans les problèmes variationnels. I. Pt. Espaces à un nombre fini de dimensions. Traduit du russe par J. Kravtchenko. Paris: Hermann & Cie. 51 S., 5 Fig., 1934.
- [Mar00] Sibe Mardešić. *Strong shape and homology*. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2000.
- [Mas78a] W. S. Massey. How to give an exposition of the Čech-Alexander-Spanier type homology theory. *Amer. Math. Monthly*, 85(2):75–83, 1978.
- [Mas78b] William S. Massey. Homology and cohomology theory. Marcel Dekker, Inc., New York-Basel, 1978. An approach based on Alexander-Spanier cochains, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 46.
- [Mat02] Yukio Matsumoto. An introduction to Morse theory, volume 208 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 2002. Translated from the 1997 Japanese original by Kiki Hudson and Masahico Saito, Iwanami Series in Modern Mathematics.

- [McC01] John McCleary. A user's guide to spectral sequences, volume 58 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 2001.
- [Mil56] John Milnor. On manifolds homeomorphic to the 7-sphere. Ann. of Math. (2), 64:399–405, 1956.
- [Mil62] John Milnor. On axiomatic homology theory. *Pacific J. Math.*, 12:337–341, 1962.
- [Mil63] John Milnor. Morse theory. Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51. Princeton University Press, Princeton, N.J., 1963.
- [Mil64] J. Milnor. Differential topology. In Lectures on Modern Mathematics, Vol. II, pages 165–183. Wiley, New York, 1964.
- [Mil65a] John Milnor. Lectures on the h-cobordism theorem. Notes by L. Siebenmann and J. Sondow. Princeton University Press, Princeton, N.J., 1965.
- [Mil65b] John Milnor. Topology from the differentiable viewpoint. Based on notes by David W. Weaver. The University Press of Virginia, Charlottesville, Va., 1965.
- [Mor34] Marston Morse. The calculus of variations in the large, volume 18 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 1934.
- [Mos57] G. D. Mostow. Equivariant embeddings in Euclidean space. Ann. of Math. (2), 65:432–446, 1957.
- [MP87] Francesco Mercuri and Giuliana Palmieri. Morse theory with low differentiability. Boll. Un. Mat. Ital. B (7), 1(3):621–631, 1987.
- [Mun84] James R. Munkres. *Elements of algebraic topology*. Addison-Wesley Publishing Company, Menlo Park, CA, 1984.
- [MW06] Pietro Majer and Joa Weber. Research visit of P. Majer. HU Berlin, 24 October – 3 November 2006.
- [MW15] Pietro Majer and Joa Weber. Private communication during research visit of P. Majer at UNICAMP. Campinas, 17 January – 27 February 2015.
- [Nas91] Charles Nash. Differential topology and quantum field theory. Academic Press, Ltd., London, 1991.
- [Nic11] Liviu Nicolaescu. An invitation to Morse theory. Universitext. Springer, New York, second edition, 2011.

- [O'N83] Barrett O'Neill. Semi-Riemannian geometry, volume 103 of Pure and Applied Mathematics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. With applications to relativity.
- [Paj06] Andrei V. Pajitnov. Circle-valued Morse theory, volume 32 of de Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin, 2006.
- [Pal61] Richard S. Palais. On the existence of slices for actions of non-compact Lie groups. Ann. of Math. (2), 73:295–323, 1961.
- [Pal63] Richard S. Palais. Morse theory on Hilbert manifolds. Topology, 2:299– 340, 1963.
- [Pal66] Richard S. Palais. Lusternik-Schnirelman theory on Banach manifolds. Topology, 5:115–132, 1966.
- [Pal67] Jacob Palis, Jr. On Morse-Smale diffeomorphisms. PhD thesis, UC Berkeley, 1967.
- [Pal69a] Richard S. Palais. The Morse lemma for Banach spaces. Bull. Amer. Math. Soc., 75:968–971, 1969.
- [Pal69b] Jacob Palis, Jr. On Morse-Smale dynamical systems. *Topology*, 8:385–404, 1969.
- [PdM82] Jacob Palis, Jr. and Welington de Melo. Geometric theory of dynamical systems. Springer-Verlag, New York, 1982. An introduction, Translated from the Portuguese by A. K. Manning.
- [Per28] O. Perron. Über Stabilität und asymptotisches Verhalten der Integrale von Differentialgleichungssystemen. *Math. Z.*, 29:129–160, 1928.
- [Pes04] Yakov B. Pesin. Lectures on partial hyperbolicity and stable ergodicity. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2004.
- [Pit58] Everett Pitcher. Inequalities of critical point theory. Bull. Amer. Math. Soc., 64(1):1–30, 1958.
- [Poź91] Marcin Poźniak. The Morse complex, Novikov homology, and Fredholm theory. Preprint, Warwick Mathematics Institute Library, 1991.
- [Qin10] Lizhen Qin. On moduli spaces and CW structures arising from Morse theory on Hilbert manifolds. J. Topol. Anal., 2(4):469–526, 2010.
- [Qin11] Lizhen Qin. An application of topological equivalence to Morse theory. ArXiv e-prints, February 2011.
- [Rob95] Clark Robinson. Dynamical systems. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1995. Stability, symbolic dynamics, and chaos.

- [Rob13] Joel W. Robbin. Thom's Catastrophe Theory and Zeeman's model of the Stock Market, last accessed 09/02/2017 on Webpage, beamer presentation, February 2013.
- [Rot09] Joseph J. Rotman. An introduction to homological algebra. Universitext. Springer, New York, second edition, 2009.
- [Rot16] T. O. Rot. The Morse-Bott inequalities, orientations, and the Thom isomorphism in Morse homology. *ArXiv e-prints*, July 2016.
- [RS92] Joel W. Robbin and Dietmar A. Salamon. Lyapunov maps, simplicial complexes and the Stone functor. *Ergodic Theory Dynam. Systems*, 12(1):153–183, 1992.
- [RV14a] T. O. Rot and R. C. A. M. Vandervorst. Functoriality and duality in Morse-Conley-Floer homology. J. Fixed Point Theory Appl., 16(1-2):437-476, 2014.
- [RV14b] T. O. Rot and R. C. A. M. Vandervorst. Morse-Conley-Floer homology. J. Topol. Anal., 6(3):305–338, 2014.
- [Sal90] Dietmar Salamon. Morse theory, the Conley index and Floer homology. Bull. London Math. Soc., 22(2):113–140, 1990.
- [Sal99] Dietmar Salamon. Lectures on Floer homology. In Symplectic geometry and topology. Lecture notes from the graduate summer school program, Park City, UT, USA, June 29–July 19, 1997, pages 145–229. Providence, RI: American Mathematical Society, 1999.
- [Sch93] Matthias Schwarz. Morse homology, volume 111 of Progress in Mathematics. Birkhäuser Verlag, Basel, 1993.
- [Shu87] Michael Shub. Global stability of dynamical systems. Springer-Verlag, New York, 1987. With the collaboration of Albert Fathi and Rémi Langevin, Translated from the French by Joseph Christy.
- [Sma60] Stephen Smale. Morse inequalities for a dynamical system. Bull. Amer. Math. Soc., 66:43–49, 1960.
- [Sma61a] Stephen Smale. Generalized Poincaré's conjecture in dimensions greater than four. Ann. of Math. (2), 74:391–406, 1961.
- [Sma61b] Stephen Smale. On gradient dynamical systems. Ann. of Math. (2), 74:199–206, 1961.
- [Sma62] Stephen Smale. On the structure of manifolds. *Amer. J. Math.*, 84:387–399, 1962.
- [Sma67] Stephen Smale. Differentiable dynamical systems. Bull. Amer. Math. Soc., 73:747–817, 1967.

- [Spa81] Edwin H. Spanier. Algebraic topology. Springer-Verlag, New York, 1981. Corrected reprint.
- [Ste40] N. E. Steenrod. Regular cycles of compact metric spaces. Ann. of Math. (2), 41:833–851, 1940.
- [SW06] Dietmar Salamon and Joa Weber. Floer homology and the heat flow. Geom. Funct. Anal., 16(5):1050–1138, 2006.
- [tD87] Tammo tom Dieck. Transformation groups, volume 8 of de Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin, 1987.
- [tD08] Tammo tom Dieck. *Algebraic topology*. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zürich, 2008.
- [Tes12] Gerald Teschl. Ordinary differential equations and dynamical systems, volume 140 of Graduate Studies in Mathematics. Online edition, authorized by American Mathematical Society, Providence, RI, 2012.
- [Tho49] René Thom. Sur une partition en cellules associée à une fonction sur une variété. C. R. Acad. Sci. Paris, 228:973–975, 1949.
- [Tho66] René Thom. ICM 1966, Sur les travaux de Stephen Smale, 1966.
- [Tu06] Loring W. Tu. The life and works of Raoul Bott. Notices Amer. Math. Soc., 53(5):554–570, 2006.
- [Tu11] Loring W. Tu. What is ... equivariant cohomology? Notices Amer. Math. Soc., 58(3):423–426, 2011.
- [Vic94] James W. Vick. Homology theory. An introduction to algebraic topology. 2. ed., volume 145 of Graduate Texts in Mathematics. New York: Springer-Verlag, second edition, 1994.
- [Was69] Arthur G. Wasserman. Equivariant differential topology. *Topology*, 8:127–150, 1969.
- [Web] Joa Weber. The heat flow and the homology of the loop space. Book in preparation.
- [Web93] Joa Weber. Der Morse-Witten Komplex (access pdf). Master's thesis, Department of Mathematics, TU Berlin, February 1993.
- [Web95] Joa Weber. Morse-Ungleichungen, Supersymmetrie und quasiklassischer Limes (access pdf). Master's thesis, Department of Physics, TU Berlin, February 1995.
- [Web06] Joa Weber. The Morse-Witten complex via dynamical systems. Expo. Math., 24(2):127–159, 2006.
- [Web13] Joa Weber. Morse homology for the heat flow. *Math. Z.*, 275(1-2):1–54, 2013.

- [Web14a] Joa Weber. The Backward λ-Lemma and Morse Filtrations. In Analysis and topology in nonlinear differential equations, volume 85 of Progr. Nonlinear Differential Equations Appl., pages 457–466. Birkhäuser/Springer, Cham, 2014.
- [Web14b] Joa Weber. A backward λ -lemma for the forward heat flow. Math. Ann., 359(3-4):929–967, 2014.
- [Web15] Joa Weber. Contraction method and Lambda-Lemma. São Paulo Journal of Mathematical Sciences, 9(2):263–298, 2015.
- [Web16] Joa Weber. Classical Morse theory revisited I Backward λ -Lemma and homotopy type. Topol. Methods Nonlinear Anal., 47(2):641–646, 2016.
- [Web17] Joa Weber. Stable foliations and semi-flow Morse homology. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), Vol. XVII(3):853–909, 2017.
- [Whi40] J. H. C. Whitehead. On C¹-complexes. Ann. of Math. (2), 41:809–824, 1940.
- [Whi62] Hassler Whitney. ICM 1962, The work of John. W. Milnor, 1962.
- [Wit82] Edward Witten. Supersymmetry and Morse theory. J. Differential Geom., 17(4):661–692, 1982.
- [WY73] F. Wesley Wilson, Jr. and James A. Yorke. Lyapunov functions and isolating blocks. J. Differential Equations, 13:106–123, 1973.
- [Zeh10] Eduard Zehnder. Lectures on dynamical systems. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zürich, 2010.

BIBLIOGRAPHY

Index

G-manifold, 20 $\operatorname{Crit}_{k}^{a} f := \operatorname{Crit}_{k} f \cap \{ f \leq a \}, 150$ (MS), 100, 115 Abbondandolo-Majer filtration, 128 abelian group, 11 action, 19 effective, 20 faithful, 20 fixed point free, 20 free, 20 Lie group -, 20 smooth -, 20 transitive, 20 admissible homotopy, 118 algebra, 13 ambient Lusternik-Schnirelmann category, 63 ambient nullhomotopic, 63 asymptotic limit vector, 113 attaching a k-cell, 36 attaching map, 36 attracting submanifold, 159 base space, 327 basis of module, 328 standard orthonormal, 30 Betti number $k^{\rm th}$ -, 40 maximal -, 40 Betti numbers sum of -, 40 bidirected, 16 bidirected system, 16 binary function, 11

operation, 11 Birkhoff minimax principle, 33 Borel construction, 57 boundaries, 265 relative -, 266 boundary topological -, 9 boundary operator simplicial, 286 singular, 297 broken orbit, 107 Broken Orbit Lemma, 107 bundle, 326 bundle cross product, 329 bundle pair, 336 canonical basis of $CM_*(f)$, 150 cap product simplicial, 311 singular, 314 cartesian product of pairs, 10 categorical cover, 62 categories, 14 R-Mod – R-modules, 14 δAG – cochain complexes, 264 \mathcal{AG} – abelian groups, 14 GAG – graded abelian groups, 264 GAlg – graded algebras, 264 GVec – graded vector spaces, 264 Set - sets, 14Simp - simplicial complexes, 283 $\mathcal{Top}^{(2)}$ – pairs of spaces, 14 Top – topological spaces, 14 $\mathcal{C}^{\mathrm{op}}$ – dual category, 14 $\partial \mathcal{A}G$ – chain complexes, 264 category, 13

morphisms, 14 composition of -, 14 objects, 13 CEF, 327, 336, 337 cell, 3, 49 attaching a k-cell, 36 cellular filtration, 128 cellular map, 128 chain simplicial coloring definition, 285 subset definition, 285 singular coloring definition, 296 subset definition, 295 chain complex, 265 direct sum –, 278 simplicial, 286 total dimension of -, 280 chain complex triad, 277 map of -, 279 chain homotopy, 266 chain map, 265 characteristic function, 285 characteristic map of cell, 37 characterized, 322 classifying space, 57 closed category, 63 coboundaries, 267 coboundary operator simplicial, 287 singular, 297 cochain simplicial – coloring definition, 285 subset definition, 285 singular coloring definition, 296 subset definition, 295 cochain complex, 266 dual, 268 simplicial, 287 singular, 297 cochain homotopy, 267 cochain map, 267 cocycles, 267

cofunctor, 15 cohomologous, 267 cohomology of chain complex, 268 of cochain complex, 267 relative -, 267 cohomology cross product, 321 cohomology disk bundle pair, 337 cohomology exact sequence naturality, 274 cohomology extension of fiber (CEF) relative -, 336 cohomology extension of fiber (CEF), 327, 337 cohomology of chain complex cohomology sequence of pairs, 277 relative -, 277 cohomology ring, 304 cohomology sphere, 341 cohomology sphere bundle, 341 cohomology theory, 261 compact up to broken orbits, 106 Compactness Theorem, 101 complement of set, 297 completable critical manifold, 53 completable critical point, 48 completion principle, 48 Morse-Bott, 53 component of simplicial complex, 283 condition (C), 62 cone, 341 conjecture Thom's gradient -, 113 Conley block, 171 Conley pair isolated critical point, 172 isolated fixed point, 171 connecting homomorphism cohomology, 273 homology, 272 connecting manifold, 100 on triads, 105 constant map, 10 continuation isomorphism

for manifold triads, 117 Continuation Theorem for manifold triads, 117 contractible space, 10 conventions, 262 cover categorical, 62 critical point, 18 value, 18 critical manifold completable, 53 non-degenerate, 51 nullity, 51 critical manifolds, 51 critical point completable, 48 existence, 33 isolated, 172 oriented, 99 cross product bundle -, 329 cohomology -, 321 homology, 322 homology bundle -, 329 relative bundle -, 336 cross product of maps, 320 cup product simplicial, 304 singular, 306 cup product non-degeneracy of -, 348 cup-square-map, 310 cuplength, 68 cycles, 265 relative -, 266 de Rham model, 68 deformation retract, 10 strong, 10 deformation Theorem, 72 degree of element of graded vector space, 262diagonal approximation, 311 diagonal map, 345

diagonal set, 345 diffeomorphism local -, 18 dimension CW-complex, 323 of element of graded vector space, 262dimension axiom, 260 direct limit, 15 direct system, 15 disk bundle pair, 337 distributivity, 12 downward directed, 16 downward gradient equation, 100 downward gradient flow, 100 dual operator, 268 vector space, 268 duality isomorphisms, 347 dynamical Morse triad, 106 dynamical system, 21 dynamically compact, 106 effective group action, 20 Eilenberg-Steenrod axioms, 259 (Sum) simplicial, 289 Eilenberg-Zilber maps, 310 empty set generates $\{0\}, 115$ energy functional, 54 equivariant function, 20 equivariant homology, 57 equivariant Morse-Bott function, 58 equivariant Morse-Bott polynomial, 58 equivariant Poincaré polynomial, 57 equivariantly perfect, 59 Euler characteristic of a manifold, 40, 347 of chain complex, 280 Euler class, 338 and Poincaré dual, 352 of a submanifold, 351 of closed manifold, 357 of cohomology sphere bundle, 342 of vector bundle, 344 via two transverse sections, 355

exact sequence, 260, 271 cohomology -, 273 homology -, 272 exactness axiom, 260 excision propety strong, 44 excision axiom, 260 excisive, 308 excisive couple of pairs, 308 of subsets, 308 exhausting sequences, 16 exhaustive functions, 139 exhaustive Morse-Smale pairs, 141 exit set, 171 extension by zero, 299 linear, 296

face

simplicial, 282 faithful group action, 20 fiber bundle G-principal, 57 fiber inclusion, 327 field, 12 finite cohomology type, 315 finite group, 11 finite homology type, 315 finite type chain complex of -, 280 finitely generated free group, 11 fixed point free group action, 20 flow, 21 -orientation, 22 line, 21 local -, 21 phase space of, 21 formal dual basis, 150 formal sums, 151 free abelian group, 11 free group action, 20 free loop space, 54 free module, 328

functor, 15 fundamental class, 290, 347 generalized cohomology theory, 323 gluing of isolated flow lines, 109 of orientations, 111 gluing map, 109 good pair, 315 graded R-module, 318 graded vector space, 262 gradient equation, 100 flow, 100 group, 11 abelian, 11 free. 11 rank of -, 12additive/multiplicative notation, 11 finite, 11 free abelian rank of -, 11 sub-, 11 group action, 19 Gysin exact sequence, 338 Gysin homomorphism, 354 Hawaiian earring, 68 homogeneous space, 20 homologous, 265 homology equivariant, 57 mod two, 261 of chain complex, 265 relative -, 266 Steenrod, 44 strong, 44 with coefficients, 260 homology classes subordinated -, 70 homology bundle cross product, 329 homology classes subordinated pair of -, 70homology cross product, 322

homology exact sequence naturality, 273 homology sequence of pairs, 276 of triples, 276 homology theory, 259 homotopy, 10, 116, 118 between functions, 117 between metrics, 118 equivalent, 10 inverse, 10 monotone, 118 monotone -, 118 pair, 116 type, 10 homotopy axiom, 260 homotopy of homotopies, 125 homotopy quotient, 57 homotopy admissible, 118 Hopf bundle, 328 hypersurface, 18, 159 induced bundle, 339 induced homomorphisms, 298 integral domain, 12 intersection transverse -, 19 intersection form, 348 intersection product, 348 invariant set, 168 trivial -, 168 inverse limit, 16 inverse system, 16 isolated flow lines, 101 isolated invariant set (IIS), 168 isolated orbits, 116 isolating neighborhood of IIS, 168 isolating neighborhood (IN), 168 isomorphism toplinear -, 18 Künneth Theorem, 320 Kronecker homomorphism, 269 cohomology -, 270

simplicial -, 286 singular -, 296 pairing, 269 simplicial, 286 singular, 296 Kronecker duality, 270 simplicial -, 288 Kronecker pairing singular relative, 301 Kronecker triple, 269 canonical -, 269 Kronecker triples canonical morphism of -, 271 morphism of -, 270 Lefschetz duality, 347 level set regular -, 18 Lie group, 30 Lie group action, 20 life time, 21 linear combination, 151 locally trivial fiber bundle, 326 loop space free, 54 lower bound, 16 Lusternik-Schnirelmann category, 62 ambient, 63 manifold, 18 G-, 20 ∂- -, 19 closed, 19, 27 differentiable, 18 manifold triad, 104 manifold-with-boundary, 19 manifold-with-corners, 113 map, 9 map of pairs, 10 homotopy between -, 11 mapping cylinder, 341 mapping cylinder bundle pair, 341 maximal invariant subset, 168 Mayer-Vietoris cohomology sequence, 279

connecting homomorphism, 278, 279sequence, 278 minimax principle, 33 Birkhoff, 33 module, 13 basis of -, 328free -, 328 rank of free -, 328 monotone homotopy, 118 monotone pair of homotopies, 118 Morse boundary operator, 142 Morse chain group, 99 for closed manifold, 100 Morse chain groups, 142 Morse coboundary operators, 149 Morse cochain groups, 149 Morse cohomology for Morse-Smale pairs, 149 of a manifold, 150 Morse complex of exhaustive MS-pairs, 142 Morse homology, 142 of a manifold, 140 of closed manifold, 103 of exhaustive MS-pairs, 142 relative -, 158 Morse homology of the manifold triad, 131 Morse stratification, 49 Morse-Bott series, 54 Morse-Bott function, 52 equivariant, 58 equivariantly perfect, 59 Morse-Bott index, 51 Morse-Bott Lemma, 52 Morse-Bott polynomial, 52 Morse-Smale condition, 115 Morse-Smale condition (MS), 49, 100 Morse-Smale pair, 141 on closed manifold, 100 on manifold triad, 115 relative -, 156

Morse-Smale transversality, 100

Morse-Smale triad, 106

Morse-Witten boundary operator on closed manifold, 102 Morse-Witten complex, 142 for closed manifolds, 103 for manifold triads, 115 relative -, 158 multiplicative, 305, 307 neighborhood, 10 non-degenerate critical orbit, 58 normal bundle, 351, 355 negative/positive part, 52 normal subgroup, 11 normalized triad functions, 120 notation, 262 nullhomotopic, 62 ambient -, 63 nullity, 51 open map, 143 operation binary, 11 closed, 11 opposite partial order, 150 orbit, 21 orbit space, 20 orientation flow -, 22 oriented critical point, 99 orthogonal group, 59 orthogonal matrizes, 60 pair of subordinated homology classes, 70 pair of homotopies monotone -, 118 pair of homotopies, 116 pair(s) of spaces cartesian product of -, 10 map of -, 10 Palais-Smale condition, 62 partially ordered system, 15 partition, 49 partner pairs, 101 PID, 12 Poźniak cone, 120

Poźniak double cone, 125 Poźniak's cone construction, 116 Poincaré series, 54 Poincaré dual, 348 and Euler class, 352 functoriality, 353 localization principle, 349 of a submanifold, 348, 351 of diagonal, 349 Poincaré duality, 347 Morse homology, 154 Poincaré duality map chain level, 154 Poincaré duality operators, 347 Poincaré polynomial, 52 equivariant, 57 of chain complex, 280 Poincaré series, 280 polytope, 283 poset, 15 positively invariant, 171 posyst, 15 power set, 282 principal bundle, 57 principal ideal domain, 12 product bundle, 345 pseudo-manifold, 284 pull-back bundle, 339 pure tensor, 316 push-forward orientation, 102 quotient complex, 266, 267 rank of abelian group, 12 of free abelian group, 11 of free module, 328 regular level set. 18 point, 18 value, 18 relative bundle cross product, 336 relative homeomorphism, 44 relative homology bundle cross product, 336

relative Morse homology, 158 relative Morse homology of manifold pair, 158 relative Morse-Witten complex, 158 restriction bundle, 327 retraction, 10 ring, 12 round sphere, 54 scalar multiplication, 13, 311 scalars, 13 semi-continuous lower/upper, 22 semi-direct product, 60 set clopen, 9 closed, 9 open, 9 short exact sequence, 271 shriek homomorphism, 354 and Thom isomorphism, 354 simplex, 282 *i*-th face inclusion, 295 back of -, 304 front of -, 304 standard euclidean, 295 simplicial boundary operator, 286 coboundary operator, 287 map, 283 order, 284 simplicial (co)homology groups, 288 simplicial chain coloring definition, 285 subset definition, 285 simplicial chain complex, 286 simplicial chain group basis definition, 286 simplicial cochain coloring definition, 285 subset definition, 285 simplicial cochain complex, 287 simplicial cochain group, 285 simplicial complex, 282 connected, 283 euclidean realization, 283

finite, 282 geometric realization, 283 locally finite, 283 polytope, 283 skeleton of -, 282 total space, 283 singular boundary operator, 297 coboundary operator, 297 singular chain coloring definition, 296 subset definition, 295 singular chain complex, 297 canonical basis, 295 relative, 299 singular chain group basis definition, 296 singular cochain coloring definition, 296 subset definition, 295 singular cochain complex, 297 relative, 300 singular cochain group, 295 singular simplex back face, 306 front face, 306 skeleton of simplicial complex, 282 slice inclusions, 325 smooth group action, 20 space, 9 space of connecting orbits, 100, 101 on triads, 105 space of solution curves, 101 special orthogonal group, 60 sphere bundle, 341 stabilizer, 58 Steenrod homology, 43 Steenrod square, 310 strong excision property, 44 strong homology, 43 subcomplex, 266, 267 simplicial, 282 subgroup, 11 normal -, 11 subordinated homology classes, 70

subordinated relative homology classes, 70 subordination number, 70 subspace, 9 sum axiom, 260 surface, 290 v/e/f, 291 (co)homology of -, 291 tautological bundle, 345 tensor product, 316 of graded algebras, 318 of graded modules, 318 universal property of -, 317 Theorem Künneth -, 320 theorem deformation-, 72 inverse function -, 17 of Dedekind, 12 of Sard, 18 regular interval -, 2 regular value -, 18 transversality -, 18 thickening of unstable manifolds, 64 Thom isomorphism, 337 Thom class, 337 of cohomology sphere bundle, 342 of vector bundle, 344 Thom isomorphism Homology -, 338 and shriek homomorphism, 354 Thom's gradient conjecture, 113 topological space contractible, 10 subspace of -, 9 topological space(s), 9pair of -, 10 topology, 9 subspace -, 9 total dimension, 280 trajectory, 21 transfer homomorphism, 354 transitive group action, 20 transpose, 268 transversality, 19

triad function, 104 manifold -, 104 Morse function, 104 Morse-Smale pair, 105, 115 of topological spaces, 308 triad function normalized, 120 triad homotopy, 116 triangulable, 284 triangulation, 284 trivial invariant sets, 168 tubular neighborhood, 351 Umkehr homomorphism, 354uniqueness of a homology theory, 259 unit, 12 unit cochain simplicial, 289 singular, 297 unit disk bundle, 344 unit sphere bundle, 344 universal property of direct limit, 16 of inverse limit, 16 unstable manifold thickening of -, 64 upper bound, 15 upward directed, 15 vector bundle, 343 zero section, 344 vector space, 13 graded, 262 vertex, 282 Whitney sum, 346 zero divisors, 12 zero section, 344, 351

List of Symbols

$(\mathbb{D}^0, \mathbb{S}^{-1})$	$(\{0\}, \emptyset)$	37
$(\mathbb{D}^r, \mathbb{S}^{r-1})$	unit disk, unit sphere in \mathbb{R}^r	
$(M; \partial^- M, \partial^+ M)$	manifold triad	104
(N,L)	Conley pair	171, 173
$(X, A) \times (Y, B)$	is defined by $(X \times Y, A \times Y \cup X \times B)$	10
$ \mathbf{C} = \sum_{i} \dim \mathbf{C}_{i}$	total dimension of chain complex C	280
$\bar{\alpha}$	linear extension of function on basis	296
$\mathcal{B}_{f}^{\#} = \operatorname{Crit}^{\#} f = (\eta^{x})_{x}$	formal dual basis of $\mathcal{B}_f = \operatorname{Crit} f$	150
$(\mathrm{H}^{*}(X)\otimes\mathrm{H}^{*}(Y),+,\bullet)$	tensor product algebra	318
$\dot{A} = \bar{A} \setminus \dot{A}$	topological boundary of a set A	
\cap	cap product $H^* \times H_* \to H_*$	311,314
$\operatorname{cat}(X)$	Lusternik-Schnirelmann category	62
x	Euler characteristic	280
$\operatorname{cl} A = \bar{A}$	closure of a set A	
$\operatorname{Crit}_k f$	set of critical points of Morse index k	100
U	cup product on singular cochains	306
$\cup_{<}$	cup product on simplicial cochains	304
$\operatorname{cup}(X)$	cuplength of X	68
$\operatorname{cup}_{\mathbb F}(X)$	\mathbb{F} -cuplength of X	68
$\mathbb{D}^0=\{pt\},\mathbb{S}^{-1}=\emptyset$	0-disk and (-1) -sphere	37
Δ	diagonal map Δ : $X \to X \times X, x \mapsto$	345
	(x,x)	
	diagonal set $\Delta = \{(x, x) \mid x \in X\}$	
$\delta^k: \mathrm{CM}^k \to \mathrm{CM}^{k+1}$	coboundary operator given by $\partial_{k+1}^{\#}$	149
Δ^m	standard euclidean m -simplex	295
$\eta^x : \mathrm{CM}_k \to \mathbb{Z}_2$	Dirac functional of $x \in \operatorname{Crit}_k f$	150
\hat{lpha}	zero extension from $A \subset D$ to D	299
$\hat{u}(+\infty)$	asymptotic limit vector of orbit u	113
$\operatorname{HM}_*(M;\partial^-M,\partial^+M)$	Morse homology of manifold triad	131
I = [0, 1]	unit interval	
int $A = \mathring{A}$	interior of a set A	

List of Symbols

$\overset{{}_\circ}{X}$	interior of topological space X	
$\mathcal{K}_{\mathrm{C}} = (\mathrm{C}, \mathrm{C}^{\#}, \langle \cdot, \cdot \rangle_{\mathrm{ev}})$	canonical Kronecker triple	269
$\langle \alpha, c \rangle_{\rm ev}$	evaluation pairing $\alpha(c)$	269
$\langle \emptyset \rangle = \{0\}$	empty set generates trivial group	99.115.296
$\mathfrak{mb}_s = \mathfrak{mb}_s^{[a,b]}(f;\mathbb{F})$	Morse-Bott polynomial	52
$\mathfrak{mb}_{a}^{G} = \mathfrak{mb}_{a}^{G;[a,b]}(f;\mathbb{F})$	equivariant Morse-Bott polynomial	58
$\mathfrak{p}_{s}^{G} = \mathfrak{p}_{s}^{G}(M;\mathbb{F})$	equivariant Poincaré polynomial	57
$\mathfrak{p}_{\mathfrak{s}}(\mathbb{C};\mathbb{F})$	Poincaré polynomial of chain complex C	280
$\dot{\cup}_{\lambda} X_{\lambda}$	disjoint union: $\lambda \neq \beta \Rightarrow X_{\lambda} \cap X_{\beta} = \emptyset$	260.283
v/e/f	vertices/edges/faces	291
$\max \phi := -\infty$	$\min \emptyset := \infty$	
$\mathcal{K}_{HC} = (H_*(C), H^*(C), \langle \cdot, \cdot \rangle)$	canonical Kronecker homology triple	270
$\mathcal{MS}(M) \ni h = (f,g)$	positive exhaustive Morse-Smale pairs	141
$\mathcal{MS}(M,A)$	relative Morse-Smale pairs	156
$\nu_Q = \nu_Q^M$	normal bundle of Q in M	351
O(2)	orthogonal group $SO(2) \rtimes \mathbb{Z}_2$	59
$\partial^{\#}$	dual operator or transpose	268
$\partial_k = \partial_k^{\mathrm{M}}$	Morse-Witten boundary operator	103
$\mathrm{PD}:\mathrm{H}_{n-\ell}\to\mathrm{H}^\ell$	Poincaré duality operators	347
${}^{p}\sigma$	simplicial/singular front face	$304,\!306$
$\Psi^{etalpha}_*:=[\psi^{etalpha}_*(h_{lphaeta})]$	continuation isomorphism	117
$\mathbb{R}^+ = (0, \infty)$		
$SB(X, A) := \sum_{k} b_{k} = \dim H_{*}(X, A; \mathbb{Q})$	sum of Betti numbers	40
$\sigma^{\#}$	gluing map for orientations	111
σ^q	simplicial/singular back face	$304,\!306$
$\operatorname{SP}_{\boldsymbol{m}}^{m}(K)$	simplicial cochain group $2_{fin}^{\mathcal{S}_m(K)}$	285
$\mathbf{S}X$	singular chain complex	297
$S^{\#}X$	singular cochain complex	297
$S^m_m(X)$	singular cochain group $2_{6n}^{S_m(X)}$	295
$\mathcal{S}_m(X)$	canonical basis of singular group $S_m(X)$	296
$\sum_{i=1}^{j}$	formal sum	151
$\theta_{\mathrm{rel}}^{t}:\mathrm{H}^{*}(F,F^{\prime})\to\mathrm{H}^{*}(E,E^{\prime})$	CEF: cohomology extension of the fiber	268
	associated to Thom class $\boldsymbol{t} \in \mathrm{H}^r(E,E')$	
$\text{Thom}: \mathrm{H}^m(B) \to \mathrm{H}^{m+r}(E, E')$	Thom isomorphism $oldsymbol{eta}\mapsto p^*oldsymbol{eta}\cup_{\boldsymbol{\cdot}} t$	337
×	(co)homology cross product	321
$ imes_{ heta}$	bundle cross product	329
$ imes_{ heta_{ m rel}}$	relative bundle cross product	336
$\underline{\mathrm{Thom}}: \mathrm{H}_m(E, E') \to \mathrm{H}_{m-r}(B)$	homology Thom isom. $c \mapsto p_*(t \cap c)$	337
×	homology cross product	322
$(a) \xrightarrow{\times_{\theta}}$	homology bundle cross product	329
$\varphi^{(f,g)} = \varphi = \{\varphi_t\}$	downward gradient flow (of $-\nabla^g f$)	100
$A \otimes_R B$	tensor product of R -modules	316
A^{C}	complement $X \setminus A$ of subset A	297
$A_* \otimes_R B_*$	tensor product of graded R -modules	318
e^{k}	k-cell	36

$G = N \rtimes H$	semi-direct product of $N \trianglelefteq G$ and $H \le$	59
	G	
$H \trianglelefteq G$	H is a normal subgroup of G	11
$H \leq G$	H is a subgroup of G	11
M^a	sublevel set, half-space	2
$M_G := (\mathbf{E}G \times M))/G$	homotopy quotient by Lie group G	57
$m_{xy} := M_{xy} \cap f^{-1}(r)$	space of connecting orbits between x, y	100
$M_{xy} := W^u(x) \cap W^s(x)$	connecting manifold of $x, y \in \operatorname{Crit} f$	100
m_{xy}^q, M_{xy}^q	connected component containing q	100
$p_k \longrightarrow (u^1, \dots, u^\ell)$	convergence to broken orbit	106
$S^1 = [-1, 1] / \{\pm 1\}$	1-sphere as $[-1, 1]$ modulo boundary	116
$s_0: B \to E, \ ps_0 = \mathrm{id}_B$	zero section of bundle $p: E \to B$	351
$SM_{\alpha\beta} = \left(S^1 \times M, -\nabla^G F\right)$	Poźniak cone of homotopy $h_{\alpha\beta}$	120
$SSM^{\gamma\delta}_{lphaeta}$	Poźniak double cone	125
$u \#_{\rho} v$	gluing map	109
$u_*\langle x \rangle$	push-forward orientation of $\langle x \rangle$ along u	102
$V^{\#}$	dual vector space: $\operatorname{Hom}(V, \mathbb{F})$	268
X/G or X_G	orbit space of action of G on X	20
$X \cup e^k$	space X with k -cell attached	37
LHS	left hand side	
RHS	right hand side	