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Notations:
Every quadratic map

fc(z) = z2 + c

has two fixed points, α and β, where

α + β = 1 , αβ = c , R(α) ≤ R(β) .

The multiplier
µ = f ′c(α) = 2α

will be used as an alternative parameter for the quadratic family.

Here c and µ determine each other:

c = c(µ) = α(1 − α) with α = µ/2 ,

µ = µ(c) = 1 −
√

1 − 4c , with R(µ) ≤ 1 .

The map fc(µ) corresponding to µ will be denoted by

f̂µ(z) = z2 + c(µ) . 2



The connectedness locus M̂ , consisting of all µ in the
half-plane R(µ) ≤ 1 with K (̂fµ) connected, will be called the
rounded Mandelbrot set .

Its period one hyperbolic component , the set of all
µ ∈ M̂ for which f̂µ has an attracting fixed point,
is the open unit disk D.
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Region in M̂ and Disk Approximation

There is a satellite hyperbolic component H(n/p) of period
p attached to D at each p-th root of unity e2πin/p.

Similarly, there are satellites H(n/p) . H(n′/p′)
of period pp′ attached to H(n/p) at corresponding
boundary points; and so on.

Empirically, each iterated satellite H(n1/p1) . · · · . H(nk/pk )
can be approximated by a round disk of radius 1/(p1 · · ·pk )2.

Question: How can this be made precise? 4



Tuning (in parameter space).

The Douady-Hubbard tuning construction assigns to each
hyperbolic component H ⊂ M̂ a homeomorphism

H. : M̂
∼=−→ (H . M̂) ⊂ M̂

from M̂ onto a “small copy” of M̂.

• Each H. maps hyperbolic components to hyperbolic
components, with per(H . H ′) = per(H) per(H ′) .

• The set of all H forms a free non-commutative monoid, with
D as identity element.

• Each H. : D → H is holomorphic, and yields the canonical
Douady-Hubbard parametrization of H: For each µ ∈ D,
the attracting periodic orbit for the map f̂H.µ has multiplier µ .

• The image H . 1 ∈ ∂H is called the root point of H.
5



Tuning in the dynamic plane (intuitive picture).

. — =

To obtain the filled Julia set for H1 . µ2 , choose µ1 ∈ H1,
then replace every Fatou component of K (f̂µ1) by a copy
of K (̂fµ2). (In the figure, f̂µ2 is the Chebyshev map
z 7→ z2 − 2, and K (̂fµ2) is the line segment [−2, 2].) 6



Constructing a non locally-connected K (f̂µ)

r0 = 1

r1 r2
r3

Unit disk

H(t  )1

H(t  )1 H(t  )2

(Small disk sizes exaggerated.)

Choose any sequence of rational angles t1 , t2 , . . . 6≡ 0,
and let rk be the root point of

H(t1) . · · · . H(tk ) .
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The Theorem.

Let ω ∈ M̂ be any limit point for the sequence of root points

rk ∈ ∂
(

H(t1) . · · · . H(tk )
)

as k → ∞ .

Theorem (Douady, Hubbard, Sørensen).
If the sequence

{
|tj |

}
converges to zero sufficiently

rapidly, then the filled Julia set K (̂fω) is not
locally-connected.

The proof will be based on external rays and separating
periodic orbits.
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Two nested wakes W[1/7, 2/7] ⊃ W[1/5, 4/15] .

Every root point H . 1 ∈ M̂ is the landing point of exactly two
external rays, with angles 0 ≤ a < b ≤ 1. These rays cut the
parameter plane into two halves.

Definition. The half containing H = H[a,b] is called the
wake W[a,b], and [a, b] is called its characteristic interval.
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In the Dynamic Plane:

b = 4/15

a = 1/5

c

For every hyperbolic component H = H[a,b] of period p > 1

and every µ ∈ H, the external rays of angle a and b for K (f̂µ)
land at a common repelling periodic point. I will write

z1 = z1([a, b], µ
)

= `a(µ) = `b(µ) ∈ ∂K (̂fµ) . 10
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Number the periodic Fatou components of f̂µ as
0 ∈ U0 7→ U1 7→ · · · . Then the orbit of z1 consists of points

zι = zι
(
[a, b], µ

)
= `2ι−1a(µ) = `2ι−1b(µ) ∈ ∂Uι

called dynamic root points, indexed by ι ∈ Z/p. 11



b/2

a/2
z
0

The a/2 and b/2 rays land on opposite sides of U0 :

`a/2(µ) = ±z0([a, b], µ) and `b/2(µ) = ∓z0([a, b], µ) .
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More generally, these periodic points z ι
(
[a, b], µ

)
∈ ∂K (̂fµ)

are defined, and vary holomorphically with µ, for all µ in the
wake W[a,b], even when µ 6∈ M̂.
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Given any infinite sequence of hyperbolic components Hk of
period pk > 1, any point in the nested intersection,

ω ∈
⋂

k

(H1 . · · · . Hk . M̂) ,

is said to be infinitely renormalizable. Let [ak , bk ] be the
characteristic interval for the k-fold tuning product

H✺
k = H1 . · · · . Hk .

I will consider only the case where the nested
intersection

⋂
[ak , bk ] consists of a single angle θ.

(An equivalent condition would be that Hk ∩ R = ∅ for
infinitely many k.)

Note that the points

zk (ω) = z0([ak , bk ], ω)

and their negatives cut the filled Julia set K
(̂
fω

)
into countably

many pieces. 14
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In this schematic diagram, externals rays are orange,
equipotentials are blue, and the Julia set is black.

Let X be the connected component of zero in the set

K
(
f̂ω

)
r {±zk (ω)} .

.
Lemma 1. X is compact, connected, and cellular. Every limit
point of {±zk (ω)}, and every limit point of the θ/2 and
(1 + θ)/2 rays, belongs to X. But every other ray is bounded
away from X. If K (̂fω) is locally connected then X = {0}.

Conjecture. Conversely, if X = {0}, then K (f̂ω) is locally
connected. 15



Choosing the Angles.
Now assume that the Hk are satellite hyperbolic components
H(nk/pk ). Again let H✺

k = H1 . H2 . · · · . Hk , with
characteristic interval [ak , bk ], and let rk be the root point of
H✺

k . Then the periodic point

zj(rk) = z0([aj , bj ], rk) ∈ ∂K (̂frk ) .

is defined for all j ≤ k . (This point has period p1 · · ·pj−1. It is
parabolic for j = k , and repelling for j < k .)

Lemma 2. We can choose the angles tj = nj/pj 6≡ 0
inductively so that these points zj(rk) are within some
specified neighborhood of z1(r1) for all j ≤ k.

Start Proof. Suppose H1, . . . , Hk have already been chosen.
We must show that each zj(rk+1) with j ≤ k + 1 depends
continuously on the choice of rk+1, and hence can be placed
arbitrarily close to zj(rk) by choosing rk+1 close to rk . 16



H✺
k

H✺
k-1 rk

rk+1?

Since r1, . . . , rk have been chosen, zk (rk) is a well defined
parabolic point of period p1 · · ·pk−1 and multiplier e2πink /pk .

For µ in a small neighborhood of rk , the orbit of zk (rk )
splits into an orbit of the same period p1 · · ·pk−1 with
multiplier ≈ e2πink /pk , and a nearby orbit of period p1 · · ·pk

with multiplier ≈ +1.

Take µ = rk+1 to be a point at rational angle along the
boundary of H✺

k . Then this new orbit will again be parabolic,
and the orbit point zk+1(rk+1) will converge to zk (rk) as rk+1

converges to rk .

Since the points zj(rk+1) with j ≤ k clearly vary continuously
with rk+1, this proves Lemma 2. �
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Proof of the Theorem.

Recall that:
• The sequence {rk} of root points has ω as limit point.
• The function µ 7→ zj(µ) is continuous for µ ∈ W[aj , bj ].

Therefore, for each fixed j , the sequence of points zj(rk ) has
zj(ω) as a limit point.

By Lemma 2, we can choose the Hk so that the zj(rk) are
uniformly bounded away from 0.

Hence the points zj(ω) are also bounded away from 0.

Therefore, by Lemma 1, K (̂fω) cannot be locally connected. �
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...

... θ/2

(θ+1)/2

If tk > 0 for all angles tk , then the θ/2 and (θ + 1)/2 rays
spiral around each other without landing, in a “paper clip”
pattern as sketched above, with the Julia set spiraling between
them.

b1/2

a1/2

θ/2

ZZZ -Z-Z

Here is a schematic picture close to the (θ/2)-ray, which has
been straightened out. All the points zj(ω) are assumed to lie
in the region Z, while their negatives lie in −Z. 19



The sin(1/x) model.
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On the hand, if the signs of the tk alternate, then the Julia set
(indicated here in black) contains a sin(1/x)-like curve.
Compare Sørensen.

20



How rapidly must tk → 0 ?
What rate of convergence is needed to guarantee that the
zk (ω) do not converge to zero? Here is a wild guess.
Perhaps there are order of magnitude estimates something like
the following

log
zk (ω)

zk+1(ω)
≈ log

zk (rk )

zk+1(rk+1)
≈ t 1/pk

k+1

so that {zk (ω)} converges to zero if and only if
∑

k

t 1/pk
k+1 = ∞ . (??)

For example, if tk = 1/pk with pk+1 = (k + 1)pk , then

p1 = 1, p2 = 2, p3 = 9, p4 = 262144, p5 ≈ 1.2 × 1027, . . .

tending rapidly to infinity. Yet t 1/pk
k+1 = 1/(k + 1) with sum +∞.

Conjecturally, this {pk} does not increase fast enough! 21



To conclude: Four Pictures

It is probably impossible to make any real picture of one of
these non locally-connected Julia sets. However, we may get
some intuitive idea by looking at relatively modest iterated
satellite tunings.

In the first two pictures, the separating periodic points z1 and
z2 are circled. The rays of angle a1/2 = 1/14 and
b1/2 = 1/7 are shown, but those of angle a2/2 ≈ b2/2 are
too close to distinguish from 1/14 respectively 1/7.

In the last two pictures, z1, z2 and z3 are defined and circled.
(As the angles t2, t3 tend to zero, these circled points would
converge towards each other.) In these cases, the rays of angle
a1/2 = 1/14 < a2/2 < b2/2 < b1/2 = 1/7 can be
distinguished.

(Assuming only that pk ≥ 3 for all k , it follows that the
differences bk − ak ≈ 2−p1···pk tend faster than exponentially to
zero as k → ∞.) 22



H(1/3) . H(1/20) . 0 23



H(1/3) . H(−1/20) . 0 24



H(1/3) . H(1/7) . H(1/13) . 0 25



H(1/3) . H(−1/7) . H(1/13) . 0 26
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