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Notations:
Every quadratic map

fe(z) = 2% +c¢
has two fixed points, « and 3, where
a+p =1, af =c, R(a) <R(B).

The multiplier
p = fi(a) = 2a

will be used as an alternative parameter for the quadratic family.
Here ¢ and p determine each other:

c =c(pu) = a(l—a) with a=pu/2,
w =p(c) =1—-+v1-—4c, with R(u)<1.

The map f.,) correspondingto p will be denoted by

fu(z) = 2% +c(p). 2



The connectedness locus I\A/I, consisting of all x in the
half-plane 9(n) < 1 with K(f,) connected, will be called the
rounded Mandelbrot set.

Its period one hyperbolic component, the set of all
w € M forwhich f, has an attracting fixed point,
is the open unit disk D.



Unit Disk
/25

and Disk Approximation
There is a satellite hyperbolic component H(n/p) of period
p attached to D at each p-th root of unity e2n/p.

Region in M

Similarly, there are satellites H(n/p)>H(n’/p’)

of period pp’ attached to H(n/p) at corresponding
boundary points; and so on.

Empirically, each iterated satellite H(ny/py)®>--->H(ng/pk)
can be approximated by a round disk of radius 1/(p1 - - - pk)?.
Question: How can this be made precise?
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Tuning (in parameter space).

The Douady-Hubbard tuning construction assigns to each
hyperbolic component H C M a homeomorphism

HD:l\//\Ii(HDI\//\l)Cl\//\l

from M onto a “small copy” of M.

e Each Hr maps hyperbolic components to hyperbolic
components, with  per(H > H’) = per(H) per(H’) .

e The setof all H forms a free non-commutative monoid, with
D as identity element.

e Each Hr:D — H is holomorphic, and yields the canonical
Douady-Hubbard parametrization of H: Foreach p €D,
the attracting periodic orbit for the map fy,,, has multiplier . .

e Theimage H>1 € gH iscalled the root point of H.



Tuning in the dynamic plane (intuitive picture).

To obtain the filled Julia set for Hy > p», choose g € Hy,
then replace every Fatou component of K(fm) by a copy

of K(fﬂz) (In the figure, f,t is the Chebyshev map
z+2z?-2, and K(ﬁz) is the line segment [-2, 2].) 6

] [ =

DA™



A~

Constructing a non locally-connected K(f,)

H(t) b H(t)

Unit disk

(Small disk sizes exaggerated.)

Choose any sequence of rational angles t,, t,, ... Z0,
and let ry be the root point of

H(ty)>--->H(t) .



The Theorem.

Let w e M be any limit point for the sequence of root points

rk€8(H(t1)l>--~>H(tk)) as koo,

Theorem (Douady, Hubbard, Sgrensen).
If the sequence {|tj|} converges to zero sufficiently

rapidly, then the filled Julia set K(f,) is not
locally-connected.

The proof will be based on external rays and separating
periodic orbits.



Two nested wakes W17, 2/71 O Wi1/5, 4/15] -

Every root point H>1 € M is the landing point of exactly two
external rays, with angles 0 < a < b < 1. These rays cut the
parameter plane into two halves.

Definition. The half containing H = Hgp; is called the
wake Wi, pj, and [a,b] is called its characteristic interval.
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In the Dynamic Plane:

Nb=4/15

1 » ....
For every hyperbolic component H = Hy,; of period p > 1

and every p € H, the external rays of angle a and b for K(ﬂ)
land at a common repelling periodic point. | will write

2zt = 2M[a,b], ) = la(n) = (i) € OK(). 10
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Number the periodic Fatou components of ?ﬂ as

Then the orbit of z! consists of points
z = z'([a,b], ) = Lp-14(p) = Lp-1p(n) € OU,
called dynamic root points, indexed by « € Z/p. -

11

DA™



The a/2 and b/2 rays land on opposite sides of Ug:

Ea/Z(:U‘) = :I:ZO([a., b], ©) and Eb/Z(N) = :FZO([a’ b], n).



More generally, these periodic points z*([a, b], n) € 9K (ﬂ)
are defined, and vary hoIomorEhicaIIy with p, forall i inthe
wake W[y p), even when u ¢ M.
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Given any infinite sequence of hyperbolic components Hy of
period px > 1, any point in the nested intersection,

w € m(H]_D---DHkDM\),
k

is said to be infinitely renormalizable. Let [ay, bk] be the
characteristic interval for the k-fold tuning product

HO = Hyo- o Hy .

I will consider only the case where the nested
intersection ([ax, bx] consists of a single angle 6.
(An equivalent condition would be that H, "R = () for
infinitely many Kk.)

Note that the points

zi(w) = z%([ax, bx], w)

and their negatives cut the filled Julia set K (fw) into countably
many pieces. 14



(Lrag)2 ——, : by/2
(+ap)/2 —— — by/2
02— X et
(1+b)2 — P al2
(L+by)/2 — i ayl2

In this schematic diagram, externals rays are orange,
equipotentials are blue, and the Julia set is black.

Let X be the connected component of zero in the set

K (fo) ~ {£zk(w)} .
Lemma 1. X is compact, connected, and cellular. Every limit
point of {+zy(w)}, and every limit point of the #/2 and
(14 0)/2 rays, belongsto X. But every other ray is bounded
away from X. If K(?w) is locally connected then X = {0}.

Conjecture. Conversely, if X = {0}, then K(ﬂ) is locally
connected. 15



Choosing the Angles.
Now assume that the Hy are satellite hyperbolic components
H(nk /px)- Again let HkD = Hi>Hyp>- - > H, with
characteristic interval [ay, bx], and let ry be the root point of
HkD. Then the periodic point

zi(n) = 2°([ay, byl ) € OK(Fy).

is defined for all j < k. (This point has period p;---pj—1. Itis
parabolic for j = k , and repelling for j < k.)

Lemma 2. We can choose the angles t; = n;/p; #0
inductively so that these points z;(r) are within some
specified neighborhood of z;(r;) forall j <k.

Start Proof. Suppose Hg, ..., Hc have already been chosen.
We must show that each zj(rc41) with j <k + 1 depends
continuously on the choice of r¢,1, and hence can be placed
arbitrarily close to zj(r¢) by choosing r¢,1 close to r. 16



Hi

0
Hicr T w?

Since ry, ..., 1y _have been chosen, z(ry) is a well defined
parabolic point of period p;---px_1 and multiplier e2mn«/Px,

For p in a small neighborhood of ry, the orbit of z,(rk)
splits into an orbit of the same period p; ---px—1 with
multiplier ~ e2™/Px and a nearby orbit of period p; - - - pk
with multiplier ~ +1.

Take 1 =r¢,1 to be a point at rational angle along the
boundary of HkD. Then this new orbit will again be parabolic,
and the orbit point zy . 1(rx1) will converge to zy(ry) as rei1
converges to ry.

Since the points zj(rcy1) with j <k clearly vary continuously

with rc.q, this proves Lemma 2. [J
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Proof of the Theorem.

Recall that:

e The sequence {r¢} of root points has w as limit point.
e The function p +— zj(un) is continuous for € Wia by

Therefore, for each fixed j, the sequence of points zj(r) has
zj(w) as alimit point.

By Lemma 2, we can choose the Hy so that the z;(rc) are
uniformly bounded away from O.

Hence the points z;(w) are also bounded away from 0.

Therefore, by Lemma 1, K(ﬂ,) cannot be locally connected. (I
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If tx > O for all angles ty, thenthe 6/2 and (0 +1)/2 rays
spiral around each other without landing, in a “paper clip”
pattern as sketched above, with the Julia set spiraling between
them.
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Here is a schematic picture close to the (6/2)-ray, which has
been straightened out. All the points z;(w) are assumed to lie
in the region Z, while their negatives lie in —=. 19



The sin(1/x) model.

(1+al)/2
(1+a2)/2<_

——

(1+8)/2

——

(1+b,)/2
(1+bp/2!

Z

b1/2
b2/2
0/2

a2/2
a1/2

On the hand, if the signs of the t; alternate, then the Julia set

(indicated here in black) contains a sin(1/x)-like curve.
Compare Sgrensen.
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How rapidly must tx — 0 ?

What rate of convergence is needed to guarantee that the
zx(w) do not converge to zero? Here is a wild guess.

Perhaps there are order of magnitude estimates something like
the following

Z(w) Z(k) ¢ 1/p
Zxy1(w) Zi41(re+1)

so that {zx(w)} converges to zero if and only if
1
ST = oo, (77)
k
For example, if tx = 1/px with py 1 = (k +1)P<, then
pr=1 p,=2, p3=9, ps=262144, ps~ 1.2 x 10%/, ...

tending rapidly to infinity. Yet t Ype 1k +1) with sum +o0.
k+1

Conjecturally, this {px} does not increase fast enough! 21



To conclude: Four Pictures

It is probably impossible to make any real picture of one of
these non locally-connected Julia sets. However, we may get
some intuitive idea by looking at relatively modest iterated
satellite tunings.

In the first two pictures, the separating periodic points z; and
z, are circled. The rays of angle a;/2 =1/14 and

by/2 =1/7 are shown, but those of angle a,/2 ~ b,/2 are
too close to distinguish from 1/14 respectively 1/7.

In the last two pictures, z;, z, and zz are defined and circled.
(As the angles t,, t3 tend to zero, these circled points would
converge towards each other.) In these cases, the rays of angle
a1/2=1/14 < ap/2 <by/2 <by/2=1/7 canbe
distinguished.

(Assuming only that px > 3 for all k, it follows that the
differences by — ay ~ 27P1Px tend faster than exponentially to
zeroas k — .) 22
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H(1/3)>H(1/7) > H(1/13) 50
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H(1/3)>H(~1/7)>H(1/13)50
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