Understanding Cubic Maps

John Milnor

Stony Brook University (www.math.sunysb.edu)

Toulouse, December 2009

PROBLEM: To study cubic polynomial maps F with a critical point which is periodic under F.

-work with Araceli Bonifant and Jan Kiwi-

Normal form:

Any cubic polynomial map is affinely conjugate to a monic centered map

$$F(z) = F_{a,v}(z) = (z-a)^2(z+2a) + v$$
.

Here a is the marked critical point, and F(a) = v is the marked critical value.

The **parameter space** for the family of all such maps is the set of all pairs $(a, v) \in \mathbb{C}^2$.

Definition. The **period** p **curve** S_p consists of those parameter pairs $(a, v) \in \mathbb{C}^2$ such that that marked critical point a for $F = F_{a,v}$ has period *exactly* p.

(Conjecture: S_p is irreducible for all $p \ge 1$.)

Degree computation: The set of parameter pairs (a, v) which satisfy the polynomial equation

$$F^{\circ p}(a) = a \tag{1}$$

forms a smooth affine variety

$$S_p^{\oplus} = \bigsqcup_{n|p} S_n \subset \mathbb{C}^2.$$

Equation (1) has degree 3^{p-1} . Hence the degree d_p of S_p can be computed inductively from the equation

$$\sum_{n|p} d_n = 3^{p-1}$$
.

$$d_1 = 1$$
, $d_2 = 2$, $d_3 = 8$, $d_4 = 24$, $d_5 = 80$, ...

Define $H_p: \mathbb{C}^2 \to \mathbb{C}$ by

$$H_p(a, v) = F^{\circ p}(a) - a$$
, with $F = F_{a,v}$.

This vanishes everywhere on \mathcal{S}_p , with $dH_p \neq 0$ on \mathcal{S}_p .

Think of H_p as a complex Hamiltonian function, and consider the Hamiltonian differential equation

$$\frac{da}{dt} = \frac{\partial H_p}{\partial v}, \qquad \frac{dv}{dt} = -\frac{\partial H_p}{\partial v}.$$

The local solutions $t\mapsto (a,v)=(a(t),v(t))$ are holomorphic, and lie in curves $H_p={\rm constant}$.

Those solutions which lie in S_p provide a local holomorphic parametrization, unique up to a translation, $t \mapsto t + \text{constant}$.

Equivalently, the holomorphic 1-form

$$dt = \frac{da}{\partial H_D/\partial V}$$
 and/or $\frac{-dV}{\partial H_D/\partial a}$

is well defined and non-zero everywhere on S_p .

More generally, any smooth affine curve $S \subset \mathbb{C}^2$ has such a canonical 1-form dt.

Such a curve can be decomposed (non-uniquely) into a compact subset, together with finitely many end regions \mathcal{E}_h , each conformally isomorphic to $\mathbb{C} \setminus \overline{\mathbb{D}}$.

We can compactify, to obtain a smooth compact complex 1-manifold $\overline{\mathcal{S}}$, by adding a single ideal point ∞_h to each end region \mathcal{E}_h .

The holomorphic 1-form dt on S becomes a meromorphic 1-form on \overline{S} , with zeros or poles only at the ideal points.

The **Euler characteristic** of $\overline{\mathcal{S}}$ can be computed as follows:

$$\chi(\overline{S}) = \#(\text{poles}) - \#(\text{zeros}),$$

counted with multiplicity.

If S is connected, then

genus(
$$S$$
) = genus(\overline{S}) = 1 - $\chi(\overline{S})/2$.

Special properties of the period *p* curve

There is a dynamically defined compact subset of S_p , namely the **connectedness locus** $C(S_p)$ consisting of all maps $F \in S_p$ such that the Julia set J(F) is connected.

Each connected component $\mathcal{E}_h \subset \mathcal{S}_p \smallsetminus \mathcal{C}(\mathcal{S}_p)$, called an escape region in \mathcal{S}_p , is conformally isomorphic to $\mathbb{C} \smallsetminus \overline{\mathbb{D}}$.

Theorem. The residue of dt at each ideal point $\infty_h \in \overline{\mathcal{S}}_p$ is zero:

$$\frac{1}{2\pi i}\oint_{\infty_h}dt = 0.$$

Thus t can be defined as a meromorphic function throughout any simply connected subset of $\overline{\mathcal{S}}_p$.

Normal form near an ideal point ∞_h : We can choose a local parameter ζ for $\overline{\mathcal{S}}_p$, and a canonical parameter t, so that

$$t = \zeta^{\mathbf{w}_h}, \quad \text{with} \quad \mathbf{w}_h \in \mathbb{Z}, \quad \mathbf{w}_h \neq \mathbf{0}.$$

Here w_h is the **winding number** of the *t*-plane around ∞_h .

As
$$\zeta \to 0$$
, note that $t \to \begin{cases} 0 & \text{if } w > 0, \\ \infty & \text{if } w < 0. \end{cases}$

Since $t = \zeta^{w_h}$,

$$dt = d(\zeta^{w_h}) = w_h \zeta^{w_h-1} d\zeta,$$

with a zero of order $w_h - 1$ at the ideal point.

Thus the formula $\chi = \#(poles) - \#(zeros)$ takes the form

$$\chi(\overline{\mathcal{S}}_p) = \sum_h (1 - w_h),$$

summed over all ideal points. With a lot of work, this yields

$$\chi(\overline{\mathcal{S}}_p) = (2-p)d_p + \text{(number of ideal points)}.$$

(Key tool for the proof:

Kiwi's theory of dynamics, including Branner-Hubbard puzzles, over the completion of the field of formal Puiseux series.) Examples:

$$\chi(S_1) = \chi(S_2) = 2, \ \chi(S_3) = 0, \ \chi(S_4) = -28.$$

Further computations of $\chi(\overline{\mathcal{S}}_p)$ by Laura DeMarco 10.

- Period 5: -184
- Period 6: -784
- Period 7: -3236
- ▶ Period 8: -11848
- Period 9: -42744
- Period 10: -147948
- ▶ Period 11: -505876
 - Period 12: -1694848
 - ► Period 13: -5630092
- ▶ Period 14: -18491088
- Period 15: -60318292
 - ► Period 16: -195372312
- ► Period 17: -629500300
- Period 18: -2018178780
- ► Period 19: -6443997852
- Period 20: -20498523320

Dynamics: A sample Julia set picture

Filled Julia set for a map in the "rabbit" escape region of S_3 .

Sketch of the dynamic plane for a map belonging to any escape region $\mathcal{E}_h \subset \mathcal{S}_p$.

Critical points: a, -a.

Cocritical points: 2a, -2a, with $F(\pm 2a) = F(\mp a)$.

Definition: $\theta = \theta(F) \in \mathbb{R}/\mathbb{Z}$ is the **cocritical angle**.

Rays in parameter space: Examples in S_2 13.

The indicated rays all land at parabolic maps, and have angles of the form m/3n.

Each external ray in an escape region $\mathcal{E}_h \subset \mathcal{S}_p$ is labeled by its cocritical angle $\theta(F) \in \mathbb{R}/\mathbb{Z}$.

Theorem. Every parameter ray with rational cocritical angle θ lands at a well defined map F_0 in the topological boundary $\partial \mathcal{E}_h \subset \mathcal{S}_p$.

This landing map F_0 has a parabolic orbit

- \iff one of the two angles $\theta \pm 1/3$ is periodic.
- \iff θ has the form $\frac{m}{3n}$ with $3 \nmid m$ and $3 \nmid n$.

Complication: For each θ , there are $\ \mu_h$ distinct parameter rays in $\ \mathcal{E}_h$ with label $\ \theta$, where $\ \mu_h \geq 1$ is an invariant called the **multiplicity** of $\ \mathcal{E}_h$.

Here F_0 is the landing map for the 10/24, 11/24, 14/24, and 17/24 rays at the upper left of the previous figure.

Critically finite maps

17.

Theorem: If the landing map for a rational parameter ray is not parabolic, then it is critically finite. An example in S_4 :

The same rays land at $F \in \mathcal{S}_p$ as at $2a_F \in J(F)$.

Asymptotic similarity (as in Tan Lei)

18.

 $F \in \mathcal{S}_p$ critically finite map, $\eta =$ multiplier of postcritical cycle.

Kœnigs: There is a Hausdoff limit $\lim_{n\to\infty} \eta^n(K(F)-2a)$. Linear equivalence: $\cong \lim_{n\to\infty} \eta^n(\mathcal{C}(\mathcal{S}_p)-F)$ (interpreting last expression using a local parameter).

Julia set

parameter space (in S_3)

Cubic Polynomial Maps with Periodic Critical Orbit:

Part I, in "Complex Dynamics Families and Friends", ed. D. Schleicher, A. K. Peters 2009, pp. 333-411.

Part II: Escape Regions (with Bonifant and Kiwi), arXiv:0910.1866. To appear in Journal of Conformal Geometry and Dynamics.

Part III: External rays (with Bonifant), in preparation.