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Parameter Space 1.

PROBLEM: To study cubic polynomial maps F with a critical
point which is periodic under F .

—work with Araceli Bonifant and Jan Kiwi—

Normal form:
Any cubic polynomial map is affinely conjugate to a
monic centered map

F (z) = Fa,v (z) = (z − a)2(z + 2a) + v .

Here a is the marked critical point,
and F (a) = v is the marked critical value.

The parameter space for the family of all such maps is the set
of all pairs (a, v) ∈ C2 .



The Period p Curve 2.

Definition. The period p curve Sp consists of those
parameter pairs (a, v) ∈ C2 such that that marked critical point
a for F = Fa,v has period exactly p .

(Conjecture: Sp is irreducible for all p ≥ 1.)

Degree computation: The set of parameter pairs (a, v) which
satisfy the polynomial equation

F ◦p(a) = a (1)

forms a smooth affine variety

S⊕p =
⊔

n|p Sn ⊂ C2 .

Equation (1) has degree 3p−1. Hence the degree dp of Sp can
be computed inductively from the equation∑

n|p dn = 3p−1 .

d1 = 1 , d2 = 2 , d3 = 8 , d4 = 24 , d5 = 80 , . . . .



Canonical Coordinates for Sp 3.
Define Hp : C2 → C by

Hp(a, v) = F ◦p(a)− a , with F = Fa,v .

This vanishes everywhere on Sp, with dHp 6= 0 on Sp .

Think of Hp as a complex Hamiltonian function, and consider
the Hamiltonian differential equation

da
dt

=
∂Hp

∂v
,

dv
dt

= −
∂Hp

∂v
.

The local solutions t 7→ (a, v) =
(
a(t), v(t)

)
are

holomorphic, and lie in curves Hp = constant .
Those solutions which lie in Sp provide a local holomorphic
parametrization, unique up to a translation, t 7→ t + constant.

Equivalently, the holomorphic 1-form

dt =
da

∂Hp/∂v
and/or

−dv
∂Hp/∂a

is well defined and non-zero everywhere on Sp.



Smooth compactification 4.

More generally, any smooth affine curve S ⊂ C2 has such a
canonical 1-form dt .
Such a curve can be decomposed (non-uniquely) into a
compact subset, together with finitely many end regions Eh,
each conformally isomorphic to CrD.

We can compactify, to obtain a smooth compact complex
1-manifold S , by adding a single ideal point ∞h to each end
region Eh.



Computation of the Euler characteristic 5.

The holomorphic 1-form dt on S becomes a meromorphic
1-form on S, with zeros or poles only at the ideal points.

The Euler characteristic of S can be computed as follows:

χ(S) = #(poles) − #(zeros) ,

counted with multiplicity.

If S is connected, then

genus(S) = genus(S) = 1− χ(S)/2 .



Special properties of the period p curve 6.
There is a dynamically defined compact subset of Sp, namely
the connectedness locus C(Sp) consisting of all maps F ∈ Sp
such that the Julia set J(F ) is connected.

Each connected component Eh ⊂ SprC(Sp) , called an
escape region in Sp , is conformally isomorphic to CrD.



The winding number 7.

Theorem. T he residue of dt at each ideal point ∞h ∈ Sp is
zero:

1
2πi

∮
∞h

dt = 0 .

Thus t can be defined as a meromorphic function throughout
any simply connected subset of Sp.
Normal form near an ideal point∞h : We can choose a local
parameter ζ for Sp , and a canonical parameter t , so that

t = ζwh , with wh ∈ Z , wh 6= 0 .

Here wh is the winding number of the t-plane around ∞h .

As ζ → 0 , note that t →

{
0 if w > 0 ,
∞ if w < 0 .



Winding number: examples in S4 8.



Euler characteristic formulas 9.
Since t = ζwh ,

dt = d(ζwh) = wh ζ
wh−1 dζ ,

with a zero of order wh − 1 at the ideal point.
Thus the formula χ = #(poles)−#(zeros) takes the form

χ(Sp) =
∑

h

(1− wh) ,

summed over all ideal points. With a lot of work, this yields

χ(Sp) = (2− p)dp + (number of ideal points) .

(Key tool for the proof:
Kiwi’s theory of dynamics, including Branner-Hubbard puzzles,
over the completion of the field of formal Puiseux series.)
Examples:

χ(S1) = χ(S2) = 2 , χ(S3) = 0 , χ(S4) = −28 .



Further computations of χ(Sp) by Laura DeMarco 10.

I Period 5: -184
I Period 6: -784
I Period 7: -3236
I Period 8: -11848
I Period 9: -42744
I Period 10: -147948
I Period 11: -505876
I Period 12: -1694848
I Period 13: -5630092
I Period 14: -18491088
I Period 15: -60318292
I Period 16: -195372312
I Period 17: -629500300
I Period 18: -2018178780
I Period 19: -6443997852
I Period 20: -20498523320



Dynamics: A sample Julia set picture 11.

 

Filled Julia set for a map in the “rabbit” escape region of S3.



External rays in the dynamic plane 12.
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Sketch of the dynamic plane for a map belonging to any escape
region Eh ⊂ Sp.

Critical points: a , −a .

Cocritical points: 2a , −2a , with F (±2a) = F (∓a) .

Definition: θ = θ(F ) ∈ R/Z is the cocritical angle.



Rays in parameter space: Examples in S2 13.
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The indicated rays all land at parabolic maps,
and have angles of the form m/3n.



Parameter rays 14.

Each external ray in an escape region Eh ⊂ Sp is labeled by its
cocritical angle θ(F ) ∈ R/Z.

Theorem. Every parameter ray with rational cocritical
angle θ lands at a well defined map F0 in the
topological boundary ∂Eh ⊂ Sp .

This landing map F0 has a parabolic orbit
⇐⇒ one of the two angles θ ± 1/3 is periodic.
⇐⇒ θ has the form m

3n with 3 6 |m and 3 6 |n .

Complication: For each θ, there are µh distinct parameter rays
in Eh with label θ, where µh ≥ 1 is an invariant called the
multiplicity of Eh .



More examples in S2 15.
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Picture of a corresponding of a Julia set J(F0) 16.

Here F0 is the landing map for the 10/24, 11/24, 14/24, and
17/24 rays at the upper left of the previous figure.



Critically finite maps 17.

Theorem: If the landing map for a rational parameter ray is not
parabolic, then it is critically finite. An example in S4:

The same rays land at F ∈ Sp as at 2aF ∈ J(F ).



Asymptotic similarity (as in Tan Lei) 18.

F ∈ Sp critically finite map, η = multiplier of postcritical cycle.
Kœnigs: There is a Hausdoff limit limn→∞ ηn(K (F )− 2a

)
.

Linear equivalence: ∼= limn→∞ ηn(C(Sp)− F
)

(interpreting last expression using a local parameter).

Julia set parameter space (in S3)
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