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Parameter Space 1.

PROBLEM: To study cubic polynomial maps F with a critical
point which is periodic under F.

—work with Araceli Bonifant and Jan Kiwi—

Normal form:
Any cubic polynomial map is affinely conjugate to a
monic centered map

F(z) = Fau(z) = (z—a)’(z+2a)+v.

Here a is the marked critical point,
and F(a) = v is the marked critical value.

The parameter space for the family of all such maps is the set
of all pairs (a,v) € C2.



The Period p Curve 2,

Definition. The period p curve S, consists of those
parameter pairs (a, v) € C? such that that marked critical point
a for F = F,, has period exactly p.

(Conjecture: S, is irreducible for all p > 1.)

Degree computation: The set of parameter pairs (a, v) which
satisfy the polynomial equation
FP(a) = a (1)

forms a smooth affine variety
SSB:Llr”p S[‘)C(Cz.

Equation (1) has degree 3°~'. Hence the degree dp of Sp can
be computed inductively from the equation

Zmp d, = 3p-1,

di=1, db=2, d3=8, dy=24, ds=80, ....



Canonical Coordinates for S,
Define Hp: C2 — C by
Hp(a, V) - Fo'o(a) - a, Wlth F - Fa7v .
This vanishes everywhere on Sp, with dHp, #0 on Sp.

Think of Hp, as a complex Hamiltonian function, and consider
the Hamiltonian differential equation

da _ oM v _ 0K
a  ov’ a  ov’
The local solutions t — (av) = (a(t), v(t)) are

holomorphic, and lie in curves H, = constant.
Those solutions which lie in S, provide a local holomorphic
parametrization, unique up to a translation, t+— t + constant.
Equivalently, the holomorphic 1-form
da —av

dt = Fpav YT B oa

is well defined and non-zero everywhere on Sp.



Smooth compactification 4,

More generally, any smooth affine curve S ¢ C? has such a
canonical 1-form dft.

Such a curve can be decomposed (non-uniquely) into a
compact subset, together with finitely many end regions &,
each conformally isomorphic to C~\.D.

We can compactify, to obtain a smooth compact complex
1-manifold S, by adding a single ideal point oo to each end
region &,



Computation of the Euler characteristic

The holomorphic 1-form dt on S becomes a meromorphic
1-form on S, with zeros or poles only at the ideal points.

The Euler characteristic of S can be computed as follows:

x(S) = +(poles) — #(zeros),
counted with multiplicity.

If S is connected, then

genus(S) = genus(
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Special properties of the period p curve 6.
There is a dynamically defined compact subset of Sp, namely
the connectedness locus C(Sp) consisting of all maps F € Sp
such that the Julia set J(F) is connected.

Each connected component &£, C Sp~C(Sp), called an
escape region in S,, is conformally isomorphic to C~\.D.




The winding number 7.

Theorem. The residue of dt at each ideal point oop € Sp is

Zero:
1

21 Joo,

dt = 0.

Thus t can be defined as a meromorphic function throughout

any simply connected subset of Sp,.

Normal form near an ideal point oo, : We can choose a local

parameter ¢ for Sp, and a canonical parameter t, so that

t = (", with WhE€Z, Wh#0.
Here wj, is the winding number of the f-plane around ooy, .

0 ifw>0,

As (—0, note that t — )
o ifw<0.



Winding number: examples in S4




Euler characteristic formulas 9.
Since t = (",
dt = d(¢") = wy¢" 1 dC,
with a zero of order wy — 1 at the ideal point.
Thus the formula y = #(poles) — #(zeros) takes the form

X(Sp) = > (1 —wh),

h
summed over all ideal points. With a lot of work, this yields

x(Sp) = (2—p)dp + (number of ideal points).

(Key tool for the proof:

Kiwi’s theory of dynamics, including Branner-Hubbard puzzles,
over the completion of the field of formal Puiseux series.)
Examples:

X(S1) = x(S2) = 2, x(S3) = 0, x(S4) = —28.



Further computations of x(Sp) by Laura DeMarco 1o.

Period 5: -184

Period 6: -784

Period 7: -3236

Period 8: -11848

Period 9: -42744

Period 10: -147948
Period 11: -505876
Period 12: -1694848
Period 13: -5630092
Period 14: -18491088
Period 15: -60318292
Period 16: -195372312
Period 17: -629500300
Period 18: -2018178780
Period 19: -6443997852
Period 20: -20498523320
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Dynamics: A sample Julia set picture

Filled Julia set for a map in the “rabbit” escape region of Ss.

11.



External rays in the dynamic plane 12.

Sketch of the dynamic plane for a map belonging to any escape
region &, C Sp.

Critical points: a, —a.
Cocritical points: 2a, —2a, with F(+2a) = F(Fa).
Definition: 6 =60(F) € R/Z isthe cocritical angle.



Rays in parameter space: Examplesin S, 13,

The indicated rays all land at parabolic maps,
and have angles of the form m/3n.



Parameter rays 14,

Each external ray in an escape region &, C Sy is labeled by its
cocritical angle 0(F) € R/Z.

Theorem. Every parameter ray with rational cocritical
angle 0 lands at a well defined map Fq in the
topological boundary 0&, C Sp.

This landing map Fo has a parabolic orbit

<= one of the two angles 6 +1/3 is periodic.
<= 0 hasthe form g with 3 /m and 3 /n.

Complication: For each 6, there are uj, distinct parameter rays

in &, with label 0, where u, > 1 is aninvariant called the
multiplicity of &,.



More examples in S» 15.

0724




Picture of a corresponding of a Julia set J(Fy) 16,

Here F is the landing map for the 10/24, 11/24, 14/24, and
17/24 rays at the upper left of the previous figure.



Critically finite maps 17.

Theorem: If the landing map for a rational parameter ray is not
parabolic, then it is critically finite. An example in Sy:

7713

P

The samerays landat F € S, as at 2ar € J(F).



Asymptotic similarity (as in Tan Lei) 18.
F € Sy critically finite map, 1 = multiplier of postcritical cycle.

Koenigs: There is a Hausdoff limit  lim,_... »"(K(F) — 2a).
Linear equivalence: =~ iMoo n"(C(Sp) — F)
(interpreting last expression using a local parameter).

Julia set parameter space (in S3)
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