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An Example 2.

F (z) = z3 + .75z + .04811 F (z) = z3 + .75z + .055



A Non-Real Approximation 3.

F (z) = z3 + .75 z + (.08 + .0089 i)



The Green’s Function: Three Versions. 4.

(1) In the z-plane. For any polynomial function F of degree
d ≥ 2,

gF (z) = lim
n→∞

1
dn log+ |F ◦n(z)| ≥ 0 .

Then
• gF

(
F (z)

)
= d · gF (z) ,

• gF (z) = 0 ⇐⇒ z ∈ K (F ) , and
• gF is continuous everywhere and harmonic
throughout CrK (F ).

(2) In parameter space. Define G(F ) = maxF ′(c)=0 gF (c) .

(3) The relative Green’s function. If G(F ) > 0, set

rgF (z) = gF (z)/G(F ) .

In practice we will assume that there is a marked critical point
c with gF (c) = G(F ); so that rgF (z) = gF (z)/gF (c).



External rays in the z-plane. 5.

Now assume that F is monic, so that

F (z) ∼ zd as |z| → ∞ .

The orthogonal trajectories to the family of equipotentials
gF (z) = constant are called dynamic rays, denoted by
RF (θ) where θ ∈ R/Z is the angle, measured at infinity.
Every such ray either terminates when it hits a critical or
pre-critical point of F , or else accumulates on J(F ).
Note that

F
(
RF (θ)

)
⊂ RF (d · θ) ,

where d is the degree.
For example, F always maps the zero-ray RF (0) into itself.



Theorem 1: Hypothesis. 6.

Let {Fj} be a sequence of monic polynomial maps of degree
d , with G(Fj)↘ 0 as j →∞.

Suppose that each Fj has a marked critical point cj with
gj(cj) = G(Fj).

Suppose that each marked critical value vj = Fj(cj) belongs to
the dynamic ray RFj (θ), for some fixed angle θ ∈ Q/Z.

Finally, suppose that

lim Fj = F and lim cj = c ,

where c belongs to a cycle of parabolic basins for F .
Let B be the total parabolic basin consisting of all points
whose orbit under F enters this cycle.



Theorem 1: Conclusion. 7.

After passing to a suitable infinite subsequence of {Fj},
the relative Green’s functions rgFj

converge locally
uniformly throughout B to a continuous function
rg(z) ≥ 0 which is harmonic on the open subset B∗
where rg(z) > 0.

Furthermore
rg
(
F (z)

)
= d · rg(z) .

(In fact rg restricted to B∗ is the real part of a holomorphic
function from B∗ to the right-half plane {u + iv ; u > 0} which
satisfies the corresponding identity.)



Example: The Cauliflower Map F (z) = z2 + z 8.

Julia set for
z 7→ z2 + z + .004

A limiting relative Green’s
function for

z 7→ z2 + z



Our First Example 9.

Limiting relative Green’s
function for a param-
eter ray landing on
F (z) = x3 + .75 z + .04811.



Notations for the proof. 10.

For any monic f (z) of degree d ≥ 2, and any constant
g ≥ G(f ), let

Ωg(f ) ⊂ C

be the neighborhood of infinity consisting of all z with gf (z) > g.

Since there are no critical points in Ωg(f ), there is a Böttcher
isomorphism bf : Ωg(f )

∼=−→ CrDexp(g). The universal covering
space Ω̃g(f ) can be identified with the right half-plane
Hg = {u + iv ; u > g}, with projection map p : Hg → Ωg(f )
given by

Hg
exp−→ CrDexp(g)

b−1
f−→ Ωg(f ) .

Note that p sends the real axis in Hg onto the zero dynamic
ray in Ωg .

Note also that f : Ωg(f )
∼=−→ Ωd ·g lifts to the linear map

w 7→ d · w from Hg to Hd ·g .



Understanding (f−1)◦n. 11.

Let f be monic of degree d and let g0 ≥ G(f ).

Main Lemma.
For any n ≥ 1 there is a
commutative diagram
of holomorphic maps

Hg0

p

��

∼= ·dn
// Hdn·g0

p

��

ψ

wwnnn
nnn

nnn
nnn

n

Ωg0
f◦n // Ωdn·g0 ,

where ψ
(
d · w

)
= f
(
ψ(w)

)
,

and
gf
(
ψ(w)

)
= <(w)/dn.

c

f(c)

0-ray

g = d g0

f°n

g = dng0

g=g0



The Special Case dk · θ = 0 . 12.

Remember that each vj = Fj(cj) belongs to the θ-ray RFj (θ).
Since θ eventually maps to zero under multiplication by d ,
for each Fj , most points of the critical orbit

Fj : cj = c0,j 7→ c1,j 7→ c2,j 7→ · · ·

must belong to the zero ray RFj (0).

Ω1(F j)J(Fj)

0-ray
cn(j), j

Let cn(j),j be the last orbit point with gFj (cn(j),j) < 1.
Then ψj : H1 → Ω1/dn(j) maps R ∩H1 to the zero ray, with
Fj
(
ψj(u)

)
= ψj(d · u) and gFj

(
ψj(u)

)
= u/dn(j).



Montel’s Theorem 13.

Let K be any compact subset of H1.

The successive images ψj(K ) ⊂ C have uni-
formly bounded Green’s function, hence are uniformly
bounded.

Thus by Montel’s Theorem, we can choose a locally convergent
subsequence of {ψj |interior(K )}.

Repeating this for larger and larger K , we can find
a subsequence which converges locally uniformly to a
holomorphic map Ψ : H1 → C.

Lemma. The image Ψ(H1) is an open subset of K (f )rJ(f )
which contains all but finitely many points of the orbit of c.

Proof Outline. The map Ψ is not constant since the images
of points on the critical orbit are distinct. Hence it is univalent by
a theorem of Hurwitz. The image U0 = Ψ(H1) is open,
F -invariant, and bounded.

Hence it can’t intersect the Julia set. �



A Holomorphic Relative Green’s Function 14.

Thus we have a conformal isomorphism

Ψ : H1
∼=−→ U0 ⊂ U ⊂ B∗

with Ψ(d · w) = F
(
Ψ(w)

)
. Hence the inverse isomorphism

Ψ−1 : U0
∼=−→ H1 .

satisfies Ψ−1(F (z)
)

= d ·Ψ−1(z) .

Lemma. Ψ−1 extends uniquely to a holomorphic map
G from B∗ to the right half-plane H0 satisfying the
corresponding identity G

(
F (z)

)
= d · G(z) .

Furthermore the real part <
(
G(z)

)
coin-

cides with the limiting relative Green’s function
rg(z) = limj→∞ rgj(z) up to a multiplicative constant.

(The precise formula is rg(z) = <
(
G(z)

)
/gc where

gc = limj→∞ gj(cj) dn(j).)



The Relative Green’s Function in Fatou Coordinates 15.

The Fatou coordinate on B is the unique holomorphic map

Φ : B → C such that

(1) Φ
(
F (z)

)
= Φ(z) + 1 , and

(2) Φ(c) = 0 .
Two points of B are eventually equal under F , that is
F ◦n(z) = F ◦n(z ′) for some n, if and only if Φ(z) = Φ(z ′).
It follows easily that rg(z) is uniquely determined by Φ(z).

Plot of log2
(
rg(z)

)
in the

Φ(z) plane for
F (z) = z2 + z .

Theorem 2. The quotient
of Φ(B∗) under unit transla-
tion is an annulus of modulus
π/ log(dq).



The Limiting θ-Ray. 16.

Recall that each dynamic ray RFj (θ) passes through the
marked critical value Fj(cj). Since θ is rational, it is eventually
periodic.

Theorem 3. For each k ≥ 0, the sequence of rays
RFj (d

kθ) converges locally uniformly as j → ∞ to a
limit ray R(dkθ), which is smooth except at a single
point where it crosses the Julia set J(F ), passing from
the basin of infinity to the Fatou component containing
F ◦k+1(c). Within B, this limit ray is an orthogonal tra-
jectory to the family of equipotentials rg(z) = constant.
This limit ray extends until it either terminates at a crit-
ical or pre-critical point of F , or until it accumulates on
the boundary of the locus rg(z) = 0.



An Example: The Fat Rabbit 17.

F (z) = z2 + e2πi/3z .

A limit of maps where the critical orbit escapes along the 1/7
ray.



Another Example 18.

F (z) ' z3 + i z2 + z



With an Extra Hypothesis. 19.

Theorem 4.
Now suppose that c is the only critical point in B∗.

Then:
(1) The angle θ is strictly periodic, say of period q.

(2) Each limit ray R(dkθ) terminates at the unique criti-
cal point of F ◦q in the basin of F ◦k+1(c)

(3) The intersection of each component of B with B∗ is
connected and simply-connected.

QUESTION: Are these statements true without the extra
hypothesis?



The Lavaurs-Oudkerk Limit. 20.

Conjecture. If our maps Fj belong to a parameter ray in a one
complex dimensional space of polynomials, then there is a
circle of possible limits rg. The limit is uniquely determined by
the phase parameter

logd (gc) = lim
j→∞

(
logd

(
gj(cj)

)
(modulo Z)

)
∈ R/Z .
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