
Control Theory and Holomorphic Diffeomorphisms
Dror Varolin

Department of Mathematics, University of Michigan 48109-1109 USA
email varolin@math.lsa.umich.edu
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1 Introduction

This paper surveys some results about holomorphic diffeomorphisms on very
symmetric complex manifolds. However, the true underlying objective is to show
how this can be achieved using certain ideas which lie at the foundations of control
theory.

By symmetric complex manifolds we mean those whose holomorphic diffeomor-
phism groups are infinite dimensional and, even more, as large as they can possibly
be. As a complex analyst might expect, the manifolds of greatest interest are Stein.
However, much stronger hypotheses than these will be needed. In fact, having so
many holomorphic diffeomorphisms is the non-generic situation in complex analysis.
This will be explained in more detail below.

In what follows, a central role will be played by complete holomorphic vector
fields. While this is to be expected, a new twist in complex analysis is that there are
always very few complete holomorphic vector fields. (Contrast this with situations
where nontrivial compactly supported functions exist.) However, there is a trick,
going back to Euler, which allows one to approximate by diffeomorphisms the flow of
a holomorphic vector field satisfying certain conditions. One is then lead naturally
to the so-called Density Property, which we introduced in [17].

One of the simplest ways to exploit the ideas alluded to in the previous paragraph
is to study the possible jets of holomorphic diffeomorphisms using these ideas. Here
again, ideas from control theory make an appearance, since as we shall see, one
wants to look at the orbits of the holomorphic diffeomorphism group in the jet
space. With good control over the jets of holomorphic diffeomorphisms, classical
techniques from complex dynamics can be used to reveal a lot about the underlying
structure of these complex manifolds with very large holomorphic diffeomorphism
groups.

The organization of the talk is as follows. We begin in section 2 by explaining
the geometry behind the reasons one expects few complex manifolds to have very
large holomorphic diffeomorphism groups. The basic obstruction is a generalization
of the classical phenomenon of “Schwarz’s lemma”, i.e., the nondegeneracy of the
so called Kobayashi pseudometric. We then go on, in section 3, to discuss holo-
morphic vector fields and Euler’s method, which lead naturally to the definition of
the Density Property, a condition which rigorizes the notion of “largest possible”
holomorphic diffeomorphism group. Finally, in section 4 we state results on the
jets of holomorphic diffeomorphisms and numerous corollaries which are proved via
techniques from complex dynamics. These corollaries reveal much about the under-
lying complex structure of these manifolds. As we shall see, although the situation
where there are largest possible holomorphic diffeomorphism groups resembles in
many ways the situation of (real) smooth manifolds, there still arise some rigidities,
which again distinguish the complex case.
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Since the paper is primarily a survey, proofs are almost always omitted. There
are three exceptions. The first is our proof of the Andersén-Lempert theorem
(theorem 3 below), which appears in print here for the first time. The second is a
sketch of the proof of the general jet theorem (theorem 11 below), which we have
chosen to include because it is fundamentally control theoretic. Finally, we prove
one of the corollaries, because it gives a sense of the role of dynamical systems in
the application of the jet theorems. (The proof we include is based on an old idea,
often attributed to König, but the complete proof is due to Rosay-Rudin [13].)

One glaring omission, due only to lack of space, is that of our general notion
of shears [19]. This subject is based on the rigid existence criterion for functions
which multiply complete holomorphic vector fields to complete holomorphic vector
fields, and involves first integrals more directly than the real theory; it would have
been nice to include here.

2 Complex analytic considerations

In the complex category it is generally more rare to have diffeomorphisms. As
an illustrative example, let’s look at the unit disk D. First, for any complex number
a with |a| < 1, the map ϕa : ζ 7→ (a − ζ)/(1 − āζ) is a holomorphic involution on
the unit disc which carries 0 to a. It follows that the unit disc is a homogeneous
space, and using the Schwarz lemma one can easily show that the isotropy group
of a point is S1.

In fact, it is possible, without much difficulty, to see that the Schwarz lemma
says essentially that every holomorphic diffeomorphism preserves the Poincaré line
element ds = |dz|/(1− |z|2). There is an analogous construction in a more general
context, which we now describe.

Let M be a complex manifold, and let v ∈ TMx. We define a (generally non-
smooth) Finsler pseudometric KM on M , called the Kobayashi-Royden pseudomet-
ric, as follows. With Dr := {|ζ| < r} ⊂ C, let

KM (v) := inf
{

1
r

; ∃ holof : Dr →M s.t. f(0) = x and f ′(0) = v

}
.

Vaguely, the length of a vector v is one over the radius of the largest possible disc
which can be mapped into M such that the origin passes through x with velocity v.
We leave it as an exercise for the interested reader to apply the Schwarz lemma to
show that when M is the unit disc, the Finsler metric so obtained is the Poincaré
line element.

A nontrivial result, due to Royden [14], is that KM is upper semicontinuous.
One can then define a pseudometric ρM by

ρM (a, b) = inf
{∫ 1

0

KM (γ′(t))dt ; γ([0, 1], 0, 1)→ (M,a, b) smooth
}
.

If ρM is actually a metric, one says M is Kobayashi hyperbolic.
Note that the metric ρM is invariant under the action of DiffO(M). It then follows

from general geometric principles that DiffO(M) is a locally compact topological
group (see, e.g., [11]). This is the main step in proving that DiffO(M) is actually a
Lie group.

It is a strongly believed piece of folklore that most complex manifolds have
Kobayashi pseudometrics with some sort of nondegeneracy. The trouble with prov-
ing something like that is that we don’t have any idea what most complex manifolds
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means. However, there are various special situations where the philosophy has been
verified. For example, for domains in Cn there are quite sophisticated results. For
compact Riemann surfaces, the uniformization theorem realizes our claim, and for
complex surfaces one can witness the Kodaira classification. Recent work of Siu,
Demailly and others even states that the generic smooth algebraic variety in CPn
of sufficiently high degree (depending on n) is hyperbolic.

3 Holomorphic vector fields

In this section we want to study the Lie algebra of DiffO(M). In the hyperbolic
case, since the latter is a Lie group, we will have the usual Lie theoretic picture
provided by the exponential map, but this will not be so in general.

For details on the geometry of holomorphic vector fields, we recommend the
appropriate section of chapter 0 in [9].

3.1 Approximating solutions of ODE. The approximation technique we will
describe now is due to Euler. Suppose one is given a family Ft : M → M of
(holomorphic) maps on a (complex) manifold M which is C1 in both variables at
once, such that F0 = idM , and let

X :=
d

dt

∣∣∣∣
t=0

Ft.

(In practice, one is given X, and constructs the family Ft.) This datum says that,
for a very short time, Ft is a good approximation to the flow of X. Euler’s idea
was to use this approximation repeatedly for shorter and shorter times. He proved
that the limit converged to the flow. Precisely, the result is as follows.

Theorem 1. Let X and Ft be as above, and denote the flow of X by ϕtX . Then

lim
N→∞

F
(N)
t/N (x)→ ϕtX(x),

with the limit holding locally uniformly on the subset of R×M where either side is
defined (the so-called fundamental domain of X).

For a proof, one can see [1] where the family Ft is called an algorithm for X.
Two particular algorithms which are of interest to us arise from the following

differentiation formulas. Let X and Y be two vector fields. Then
d

dt

∣∣∣∣
t=0

ϕtX ◦ ϕtY = X + Y, and
d

dt

∣∣∣∣
t=0+

ϕ−
√
t

Y ◦ ϕ−
√
t

X ◦ ϕ
√
t

Y ◦ ϕ
√
t

X = [X,Y ].

These two algorithms, together with Euler’s approximation theorem, lead immedi-
ately to the following, key observation.
Observation If a vector field X lies in a Lie algebra g of vector fields which is
generated by the complete vector fields on a manifold M , then the time T map of
this vector field, if and where it is defined, can be approximated, locally uniformly
on its domain of definition, by diffeomorphisms which are time one maps of the
complete vector fields in g.

We should point out that, while approximating the flows of real vector fields on
compact sets by diffeomorphisms is easy (due to the existence of cutoff functions),
this is not so for vector fields in Lie algebras which do not admit multiplication by
compactly supported functions.
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3.2 The density property. In light of what has been developed above, the next
definition is quite natural.

Definition 2. A Lie algebra g ⊂ XO(M) of holomorphic vector fields on a complex
manifold M is said to have the density property if the Lie subalgebra Cg ⊂ g
generated by complete vector fields is dense in g (in the locally uniform topology).
If XO(M) has the density property, we shall say that M has the density property.
Lastly, if (M,ω) is a calibrated complex manifold (meaning ω is a nondegenerate
holomorphic top form, or holomorphic volume element, on M , and if XO(M,ω) :=
{X ∈ XO(M) ; divω(X) = 0} has the density property, we say that (M,ω) has the
volume density property.

Of course, for such a definition to be meaningful, one has to have examples.
While compact manifolds give examples, they are less interesting, due to the fact
that they support only finite dimensional Lie algebras of holomorphic vector fields.
A more interesting class to consider is that of Stein manifolds. A complex manifold
is called Stein if it can be embedded as a closed complex submanifold of CN for
some N . This condition guarantees existence of a lot of holomorphic functions and
vector fields.

Most Stein manifolds do not have the density property. As an example, note that
all open Riemann surfaces have infinite dimensional Lie algberas of holomorphic
vector fields, but only finite dimensional diffeomorphism groups. (In fact, most of
them only have finite diffeomorphism groups.)

The first results in the study of the density property predate the definitions, and
were, in fact, the inspiration for the theory. These are the theorems of Andersén
[3] and Andersén-Lempert [4].

Theorem 3. Let n ≥ 2 and ω := dz1 ∧ ... ∧ dzn. Then
1. (Cn, ω) has the volume density property [3], and
2. Cn has the density property [4].

Proof. We restrict to the case n = 2, since the higher dimensional case can be
obtained by an obvious adaptation of this proof.
1. We will prove that given any polynomial divergence zero vector field, we can
write it as a sum of Lie brackets of complete divergence zero vector fields. By
linearity, it suffices to consider a vector field of the form

X(z1, z2) = zm1 z
n
2 ∂z1 + g(z)∂z2 .

Consider the vector field

Y (z) =
[
zn1 ∂z2 ,

1
m+ 1

zm+1
2 ∂z1

]
.

Then X(z) − Y (z) = h(z)∂z2 , and since X and Y have zero divergence, so does
X − Y . Thus h is independent of z2, and hence X − Y is complete. It follows that
X = Y + (X − Y ) is completely generated, which proves 1.
2. It suffices to show that if P is any polynomial vector field, then there exists
a completely generated vector field Q such that div Q = div P , for then P =
Q+(P −Q) is completely generated by 1. Moreover, it suffices by linearity to show
that there is a completely generated vector field whose divergence is zm1 z

n
2 . To this

end, notice that

div
[
zn2 ∂z1 ,

1
m+ 1

zm+1
1 z2∂z2

]
= zm1 z

n
2 ,
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which completes the proof. �
A similar method, together with some basic complex analysis, can be used to

prove the following result.

Theorem 4. [17] Let G be a complex Lie group. Then
1. G× C has the volume density property.
2. If G has the volume density property, then so does G× C∗.
3. If G is Stein and nontrivial, then G× C has the density property.

This theorem gives numerous examples of Stein manifolds having the density prop-
erty. We note the following.
• If we consider the case (G,ω) = (Cn, dz1 ∧ ... ∧ dzn), this result recovers the
Andersén-Lempert theorem.
• We can apply 2 to (G,ω) = ((C∗)k, (z1 · ... · zk)−1dz1 ∧ ...∧ dzk) inductively (it is
easy for k = 1). It follows that (C∗)k has the volume density property for k ≥ 1.
• Every simply connected Lie group is Stein. In fact, this is the case for most Lie
groups. For example, every semisimple Lie group is Stein.

Theorem 5. [15] Every semisimple Lie group has the density property.

Finally, a structure result.

Theorem 6. [17] Let M and N be Stein manifolds.
1. If M and N have the density property, then so does M ×N .
2. If M has the density property, then so do M × C and M × C∗.
3. If (M ×C, ω ∧ dz) has the volume density property, then M ×C has the density
property.

It is clear that in order to have complete holomorphic vector fields, a lot of
symmetry is needed. One might wonder, based on this and the above results,
whether the only possible examples are groups. This turns out not to be the case.
In order to give more examples, we need the following definition.

Definition 7. [19] An EMV manifold is a pair (M,ω), where M is a complex
manifold and ω is a holomorphic volume element on M , with the property that for
any V ∈ XO(M), compact K bM and ε > 0 there are functions f1, ..., fr ∈ O(K)
and divergence zero completely generated vector fields X1, ..., Xr satisfying∣∣∣∣∣∣V −∑ fjXj

∣∣∣∣∣∣
K
< ε

Examples (See [19] for details.)
(1) Every complex Lie group G is EMV with respect to an invariant volume.
(2) Every Stein complex homogeneous space is EMV, again with respect to an

invariant volume.
(3) M := {(x, y) ∈ C2 | xy 6= 1} together with the volume form (xy−1)−1dx∧dy

is EMV, since the complete vector fields (xy−1)∂x and (xy−1)∂y parallelize
the tangent bundle.

(4) The space

Σ3 := {(a, b, c, d) ∈ C4 | a2d− bc = 1},

which is a smooth subvariety of C4 and is also a branched double cover of
SL(2,C) is EMV with respect to a certain volume element.
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Theorem 8. [19] If (M,ω) is an EMV manifold, then (M × C, ω ∧ dz) has the
volume density property.

It follows from theorem 6 above that if M is Stein, then M × C has the density
property. This theorem gives a lot of “non-group” examples of the density property.
There are also the following results.

Theorem 9. [19] The space in example 3 has the volume density property.

Theorem 10. [15, 16] The complex quadrics

Qn :=

{
(x0, ..., xn) ∈ Cn+1

∣∣∣∣∣
n∑
0

x2
i = 1

}
have the density and volume density property, the latter with an SO(n+ 1,C) left-
invariant volume element.

Finally, let us conclude this section by mentioning that there are some results
about the density property for more general Lie algebras. Due to lack of space, we
do not mention these here, but refer the interested reader to [17].

4 Jets

4.1 The jet theorems. Behind all known applications is a key theorem which
allows one to realize jets as those of holomorphic diffeomorphisms. To state this
theorem, we need to define certain spaces of jets which, a priori, satisfy obvious
conditions for being jets of holomorphic diffeomorphisms.

Let M be a complex manifold. To recall, two germs f, g ∈ O(M,M)x,y (the
subscripts indicate that f(x) = g(x) = y) are equivalent if they have the same Tay-
lor expansion to order k, and a k-jet is simply an equivalence class. Let Jk(M)x,y
denote the space of k-jets of germs from x to y, and write

Jk(M)x,∗ :=
⋃
y∈M

Jk(M)x,y and Jk(M) :=
⋃
x∈M

Jk(M)x,∗.

We note that both of these spaces are actually manifolds. Given a map f from a
neighborhood U of x in M into M , we denote by jkx(f) the induced jet in Jk(M)x,∗
and by jk(f) : U → Jk(M) the map jk(f)(x) := jkx(f).

Definition Let M be a complex manifold.
(1) Let J0(M)×x,y := J0(M)x,y, and for k ≥ 1 let Jk(M)×x,y be the set of all

k-jets [f ] with the property that Df(x) : TxM → TyM is an isomorphism.

(2) Let ω be a holomorphic volume element on M . Then J0(M,ω)x,y :=
J0(M)x,y and for k ≥ 1 let Jk(M,ω)x,y be the set of all k-jets [f ] such
that the ω-Jacobian determinant Jf of f (defined by f∗ω = Jfω) coincides
to order k with the constant function ϕ(x) ≡ 1.

The jets in Jk(M)×x,y and Jk(M,ω)x,y might be thought of as jets of maps which sat-
isfy minimal necessary conditions for being holomorphic diffeomorphisms, namely,
one point conditions on derivatives.

Let g ⊂ XO(M) be a Lie algebra of holomorphic vector fields.

Definition The orbit of g through p ∈ M , denoted Rg(p), consists of all points
q ∈M of the form

q = ϕtNXN
◦ ... ◦ ϕt1X1

(p) (1)
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for some N ∈ N, X1, ...XN ∈ g, and t1, ..., tN ∈ R such that (1) makes sense.

Each X ∈ XO(M) induces a vector field pk(X) ∈ XO(Jk(M)) whose flow is
defined by

ϕtpk(X)([f ]) := [ϕtX ◦ f ].

Clearly pk maps complete vector fields to complete vector fields. It is not difficult
to show that pk : XO(M)→ XO(Jk(M)) is a Lie algebra isomorphism, and that(

ϕtpk(X)

)
∗

(pk(Y )) = pk
(
(ϕtX)∗Y

)
.

Definition Let g be a Lie algebra of holomorphic vector fields on a complex manifold
M , and let k ≥ 0 be an integer. Then

Jkg (M)x,∗ := Rpk(g)

(
jkx(idM )

)
,

and
Jkg (M) :=

⋃
x∈M

Jkg (M)x,∗.

We note that when M is Stein, it is easy to show that

JkXO(M)(M)x,∗ = Jk(M)×x,∗ and JkXO(M)(M)x,∗ = Jk(M,ω)x,∗.

However, this is of course false for a general complex manifold, as for example, a
compact manifold would show.

Finally, we let Autg(M) denote the subgroup of DiffO(M) generated by time one
maps of complete vector fields in g. The key results are now the following.

Theorem 11. [18] Let g be a Lie algebra of holomorphic vector fields with the
density property. Then for each γ ∈ Jkg (M) there exists Φ ∈ Autg(M) such that

jkσ(γ)(Φ) = γ.

Here and below, σ and τ are the source and target maps, respectively.

Theorem 12. [18] Let M be a connected Stein manifold, and let K ⊂ M be a
compact set.

(1) If M has the density property and γ ∈ Jk(M)× is a k-jet such that x := σ(γ)
and τ(γ) are not in the O(M)-hull of K, then there exists Φ ∈ DiffO(M)
such that

jkx(Φ) = γ,

and such that jkz (Φ) is as close to jkz (id) as we like for all z ∈ K. Fur-
thermore, we can arrange that jkz (Φ) = jkz (id) for z in some finite subset of
K.

(2) If (M,ω) has the volume density property and γ ∈ Jk(M,ω) is a k-jet such
that x := σ(γ) and τ(γ) are not in the O(M)-hull of K, then there exists
Φ ∈ DiffO(M) with the same properties as in 1, and such that Φ∗ω = ω.

Let us give a sketch of the proof of theorem 11. The first step is to reduce to the
case of zero jets; k = 0. To this end, note that since pk : XO(M)→ XO(Jkg (M)) is
just an invariant way of collecting X and its first k derivatives into a single object,
it follows from the Cauchy inequalities that pk is continuous, and hence pk(g) has
the density property if and only if g does.
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Consider next the map associating to each Φ ∈ Aut(M) an element Φ# ∈
Aut(Jk(M)) defined by Φ#[f ] = [Φ ◦ f ]. Then

(Autg(M))# = Autpk(g)

(
Jk(M)

)
,

and we are thus reduced to the case k = 0. That is to say, Theorem 11 follows
immediately from the following theorem.

Theorem 13. If a Lie algebra g has the density property, then for all p ∈ M ,
Autg(M) acts transitively on the orbit Rg(p).

Now, given two points on the orbit of g, the density property easily implies (using
Euler’s approximation theorem) the existence of a holomorphic diffeomorphism
which maps one of these points arbitrarily close to the other. Since by the orbit
theorem [10] the orbit is a manifold, one can correct this approximation using an
implicit function type argument. A more complete proof can be found in [18].

4.2 Applications. Theorem 3 was quickly applied by many authors to the study
of analytic geometry of Cn, n ≥ 2. Many of the applications in that context are well
documented in the surveys [7] and [12], so we shall not discuss them here. Instead,
we mention the results on more general (mostly Stein) manifolds with the density
and volume density property. These results are corollaries of Theorems 11 and 12.
Some of them are just generalizations of similar results in the case of Cn, but others
are of interest only in this general context. All of the results of this section can be
found in [18].

The Fatou-Bieberbach Phenomenon. The first consequence of Theorem 11 is
the following.

Corollary 14. Let M be a Stein manifold of complex dimension n with the density
property. Then there is an open subset of M which is biholomorphic to Cn.

Proof. Fix p ∈M , and let F ∈ DiffO(M) be such that F (p) = p, and that DF (p) =:
A : TMp → TMp has eigenvalues λ1, ..., λn (n := dimC(M)) satisfying |λ1| ≥ |λ2| ≥
... ≥ |λn| > |λ1|2. Fix a holomorphic diffeomorphism χ from a small neighborhood
of p in M to a small neighborhood of 0 in TMp, and denote by U the basin of
attraction to p by F . Then the map K : U → TMp given by

K := lim
k→∞

A−k ◦ χ ◦ F (k)

is a well defined, injective holomorphic map on U , satisfying the functional equation

K = A−1 ◦K ◦ F.

(The eigenvalues guarantee the convergence. See [13], theorem 9.1.) Note that K
conjugates F |U to a linear map on TMp, and that K is injective by the Hurwitz
principle. It follows from the functional equation that the image of K is invariant
by A−1. Since the latter is an expanding linear map, K must be surjective. This
completes the proof. �
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K conjugates F to the lin-
ear map A on the basin of
attraction to p.

With little more effort, one can also prove the following result.

Corollary 15. Let M be an n dimensional Stein manifold with the density property.
Then there are infinitely many disjoint domains in M which are biholomorphic to
Cn.

One can also use the so-called “kick out” method of Dixon-Esterle [6] to prove
the following result.

Corollary 16. Let M be a Stein manifold with the density property. Then there
exist proper open subsets of M which are biholomorphic to M .

We note that when M = Cn, this corollary gives another construction of the clas-
sical Fatou-Bieberbach domains, i.e., proper open subsets of Cn which are biholo-
morphic to Cn. (This fact has been exploited in many results of analytic geometry
in Cn.) However, these corollaries show that the two methods (dynamical and kick
out) might be “different”. A natural question is whether every Fatou Bieberbach
domain in Cn is the region of attraction of a holomorphic diffeomorphism. Corollary
16 suggests that the answer might not be very simple.

If we consider now a calibrated Stein manifold (M,ω) with the volume density
property, one can show the following.

Corollary 17. Let (M,ω) be a calibrated Stein manifold with the volume density
property. Then there exists a proper open subsets of M which is biholomorphic to
M .

One can also construct nondegenerate maps of Cn into a calibrated Stein mani-
fold (M,ω) with the volume density property.

Corollary 18. Let (M,ω) be a calibrated Stein manifold of dimension n having
the volume density property. Then there exists a map h : Cn → M such that h∗ω
is not identically zero.

One can also get injective immersions of Cn−1 tangent to any given complex hy-
perplane in TM .

Corollary 19. Let (M,ω) be a calibrated Stein manifold of dimension n with the
volume density property, and let Vp ⊂ TMp be a complex hyperplane. Then there
is an injective holomorphic immersion g : Cn−1 →M such that dgp(Cn−1) = Vp.

Finally we have the following proposition.

Proposition 20. Let (M,ω) be a calibrated Stein manifold with the volume density
property, and suppose there exists F ∈ Aut(M) such that the ω Jacobian determi-
nant JF of F has modulus different from 1 at some point p ∈ M , then M has an
open subset biholomorphic to Cn.

The idea of the proof is to use holomorphic diffeomorphisms with jets in Jk(M,ω)
to modify F so that p becomes an attracting fixed point, and then apply the same
dynamical principle as above.
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Completeness of vector fields. One of the consequences of corollaries 14 and
19 is that on a Stein manifold with the density or volume density property, all
bounded plurisubharmonic functions are constant. Then the main theorem of [2]
implies the following corollary.

Corollary 21. Let M be a Stein manifold with the density or volume density
property. Then every R+-complete holomorphic vector field on M is C-complete.

A holomorphic vector field X is R+-complete if one can extend the flow of X to all
of R+, and it is called C-complete if X and iX are complete (in the usual sense).

Interpolation results. In this paragraph we note that for manifolds with the
density property or volume density property, a given (proper, or closed) complex
submanifold can be modified so as to interpolate any given discrete sequence. For
the proof of the next result in the case M = Cn (which can easily be adapted to
the more general case stated here) see [7].

Corollary 22. Let M be a Stein manifold of C-dimension n ≥ 2 with the density or
volume density property, Σ a Stein manifold of C-dimension r < n, and {γm;m ≥
1} ⊂ Jk(Σ,M) a sequence of k-jets such that {σ(γm)} and {τ(γm)} are discrete
sequences in Σ and M respectively. If Σ admits a proper holomorphic embedding
in M , then there exists a proper holomorphic embedding ϕ : Σ ↪→M such that

jkσ(γm)(ϕ) = γm.

In a recent preprint [20], J. Winkelmann has constructed “non-tame sequences”
in any Stein manifold. These can be used, together with corollary 22 to construct
non-equivalent embeddings of a given complex manifold Σ into a Stein manifold M
with the density or volume density property, provided one such embedding exists.
Precisely, one has the following.

Corollary 23. Let M be a Stein manifold of C-dimension n ≥ 2 with the density
or volume density property, and Σ a Stein manifold of C-dimension r < n such that
there exists a proper holomorphic embedding j : Σ ↪→M . Then there exists another
proper holomorphic embedding j′ : Σ ↪→M such that for any Φ ∈ Aut(M),

Φ ◦ j(Σ) 6= j′(Σ).

In connection with the last corollary, we should mention that the analytically in-
equivalent embeddings constructed in the proof are all ambiently smoothly isotopic,
in the sense that there exists a global smooth diffeomorphism of M which is isotopic
to the identity and carries one embedding to the other. Thus the obstructions are
not topological. In particular, even in the presence of extreme symmetry, complex
rigidity persists.
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