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0. Introduction

Let M be a complex manifold and fix once and for all a complete Riemannian metric on M and a
holomorphic diffeomorphism, or automorphism, f ∈ DiffO(M). Recall that the stable manifold W s

p

through a point p ∈ M with bounded orbit is defined by

W s
p :=

{
x ∈ M | dist(fNx, fNp) ≤ CρN for N ≥ 0

}
,

where ρ = ρp < 1 and C = Cp > 0. It turns out that often W s
p is an immersed complex manifold.

Assuming this to be the case, the following problem was posed by E. Bedford [B].
Problem: Determine the complex structure of the stable manifolds of f .

In many cases it can be shown that W s
p is a monotone union of balls, and this in turn implies [Br]

that it is diffeomorphic to real Euclidean space. Moreover, by the contracting nature of the dynamics,
one sees that the Kobayashi pseudometric of W s

p vanishes identically. However, when dim(W s
p ) ≥ 3,

it is not possible to deduce only from these properties that W s
p is biholomorphic to Euclidean

space. For example, there exist monotone unions of balls which are not Stein [F]. (The question of
Steinness of monotone unions of balls in complex dimension 2 is open.) When dim(W s

p ) = 1, the
Uniformization Theorem implies that W s

p is biholomorphic to C [BLS, W].
The main results of this paper are proved in the non-uniform setting, i.e. with respect to compactly

supported invariant measures. More precisely, we say that a subset A ⊂ M is invariant if fA = A,
and that it has total measure if µ(A) = 1 for every compactly supported invariant probability
measure µ.

Our main objective in this paper is to prove the following theorem.

Theorem 1. There exists an invariant Borel set K(f) ⊂ M of total measure such that for every
p ∈ K(f), W s

p is a complex manifold biholomorphic to complex Euclidean space.

Let us clarify things a little further. The set K(f) is the set of so-called Oseledec points or regular
points. Its existence is a part of the well known and fundamental theorem of V. Oseledec [O].
The equally fundamental work of Pesin [P] states in part that the stable manifold passing through
each Oseledec point p ∈ K(f) is an immersed (complex) manifold. What we show is that for each
p ∈ K(f), W s

p is biholomorphic to Ck, where k = dimCW s
p .

We postpone to Section 3 a more detailed discussion of the results of Oseledec and Pesin which
we will use in this paper. For now, however, we content ourselves with saying that every point in
K(f) has a bounded orbit, although K(f) itself need not be bounded. Moreover, we emphasize that,
to have a non-trivial result, it is necessary to have at least one invariant measure with compact
support, but this is guaranteed to happen once f leaves invariant a bounded subset of M .

Our approach to proving Theorem 1 is to associate to the dynamical system f a certain “unrav-
eled” dynamical system, and then conjugate the latter to a much simpler (polynomial) dynamical
system on the so-called stable distribution. To state the result more precisely we need to develop
some notation and concepts, which we now proceed to do.
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Recall that the stable distribution Es is a family of vector subspaces Es
p of TMp on which df is

asymptotically contracting: for p ∈ M with bounded orbit, Es
p is given by

Es
p :=

{
v ∈ TMp | |dfNv| ≤ CρN for N ≥ 0

}
,

where ρ = ρp < 1 and C = Cp > 0. Notice that this exponential decay is not uniform, i.e. p 7→ ρp,
p 7→ Cp and even p 7→ dim Es

p could be discontinuous.
From here on, let K(f) denote the set of Oseledec points (whose well known definition is recalled

in Section 3). If the stable manifold W s
p defined above exists as an immersed submanifold of M ,

then (TW s
p )p = Es

p. In view of Pesin’s work mentioned above, this is the case whenever p ∈ K(f).
Next we discuss what was meant by ”unraveled” above. To this end, even though it might happen

that for q 6= p the two stable manifolds W s
p and W s

q intersect and thus agree, we treat W s
p and W s

q

as distinct stable manifolds. More precisely, we define the set

Ws :=
⊔

p∈K(f)

W s
p . (0.1)

Since W s
fp = fW s

p , f induces a bijection on Ws, still denoted f , which is holomorphic on the fibers.
(We will topologize Ws and Es shortly.) We note again that the bundle Ws is defined only over the
topological space K(f) of Oseledec points. The following is our main result.

Theorem 2. There exists a measurable isomorphism Ψ : Ws → Es|K(f) and a bundle automor-
phism P : Es|K(f) → Es|K(f) such that, for every p ∈ K(f),

(1) Pp : Es
p → Es

fp is a polynomial automorphism;
(2) PN

p → 0 locally uniformly on Es
p;

(3) Ψp := Ψ|W s
p is a biholomorphism of W s

p onto Es
p and (dΨp)p = id;

(4) Ψ ◦ f ◦Ψ−1 = P on K(f).

Remark. Note first that (3) implies Theorem 1. Secondly, we do not claim that p 7→ deg(Pp) is
constant or even bounded. However, it is constant along orbits. Finally, the map Ψ turns out to be
slightly better than measurable. It is slowly varying; a concept we shall discuss more thoroughly in
Section 4.

We now return to the question of topologizing Ws and Es. Let

dist(x, y) =
{

distp(x, y) x, y ∈ W s
p

distp(x, p) + d(p, q) + distq(q, y) x ∈ W s
p , y ∈ W s

q

dist(v, w) =
{
|v − w| v, w ∈ Es

p

|v|+ d(p, q) + |w| v ∈ Es
p, w ∈ Es

q

The function distp is a distance on W s
p associated to the complete Riemann metric on M (so that

distp recovers the intrinsic topology of W s
p ). The function d appearing on the right hand side of these

definitions is the same for both functions. In the case of Theorem 2, we shall take d(p, q) = δp,q, i.e.
Ws is the disjoint union of all the stable manifolds. We refer to this as the discrete case. Later on,
it is also useful to take d to be the Riemannian distance on M . We shall refer to this as the bouquet
case. To these topologies we associate the Borel sets, and it is with respect to this σ-algebra that Ψ
is measurable.

We turn now to the hyperbolic picture. Recall that f ∈ DiffO(M) is hyperbolic on a compact set
K if K is invariant and there exists a continuous splitting

TM |K = Es ⊕ Eu

with the following properties.
(a) Es

p and Eu
p have constant rank for all p ∈ K, say k and n− k (n = dim M);

(b) df(Es
p) = Es

fp and df(Eu
p ) = Eu

fp for all p ∈ K;
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(c) there exist positive constants C and ρ, with ρ < 1, so that, for all p ∈ K and all N ≥ 0

‖dfN |Es
p‖ ≤ CρN and ‖dfN |Eu

p ‖ ≥ C−1ρ−N .

In this case we write
Ws =

⊔
p∈K

W s
p and Es =

⋃
p∈K

Es
p.

Then Es is a continuous vector bundle and the set of (local) stable manifolds form a lamination
near K (see, e.g. [S]). (We are abusing language slightly here: we are interested in the restriction of
Es to the set K of hyperbolicity, but Es is being written instead of Es|K.)

Theorem 1 implies that W s
p is biholomorphic to Ck for every p ∈ K(f) ∩K. Moreover there are

always invariant measures on an invariant compact set, so the set K(f)∩K is nonempty: it contains
every periodic point in K and many more points (unless K is a finite set). Nevertheless, one would
like to prove that every stable manifold through K is biholomorphic to Ck. We conjecture that this
is indeed the case. The main problem in proving this is that even though dfN uniformly contracts
vectors in Es

p, p ∈ K, the exact rate of contraction can be highly nonconstant. In fact, controlling
the (asymptotic) rates of contraction within Es is central to our approach.

On the other hand, the conjecture above is easy to prove if an (unfortunately quite strong)
hypothesis is placed on the map f . If A is the restriction to Es of df , let

L+ := lim sup
N→∞

sup
p∈K

N−1 log ‖AN
p ‖ and L− := lim inf

N→∞
inf
p∈K

−N−1 log ‖A−N
p ‖.

Note that L− ≤ L+ < 0. We say that f is equi-contracting if 2L+ < L−.
Note, in particular, that if f has one dimensional stable manifolds, then f is automatically equi-

contracting.

Theorem 3. If f is hyperbolic and equi-contracting on a compact set K, then there exists a home-
omorphism Ψ : Ws → Es over K such that

(1) for every p ∈ K, Ψp := Ψ|W s
p is a biholomorphism of W s

p onto Es
p and (dΨp)p = id;

(2) Ψ ◦ f ◦Ψ−1 = df |Es.

In Theorem 3 we use the bouquet topology onWs and Es. Note that the equi-contracting hypothesis
implies that f can be brought to a linear form as opposed to the more general polynomial form
given by Theorem 2.

Regarding history, while Oseledec/Pesin theory has been used in complex dynamics before (see
e.g. [BD],[BLS]), to our knowledge this is the first application to the study of the complex structure
of stable manifolds in higher dimensions. When f has a fixed point, the fact that f is conjugate
to a normal form is due to S. Sternberg [St], and (independently, though much later) to Rosay and
Rudin [RR] in the holomorphic case with essentially the same proof. (We note that, even though
Sternberg’s theorem is stated for an attracting fixed point, say p, one can reduce to this case by
restricting f to its stable manifold W s

p , since the latter is invariant in the fixed point case.) The
condition for linearization was known to C. Siegel [Si]. In the general, non-stationary case, very little
seems to have been done. The main work we know of is due to M. Guysinsky and A. Katok [G, GK].
However, they place rather strong hypotheses on the spectrum of the of df which, while sufficient
(and perhaps more so necessary) for their applications, would be much too strong for the problem
we are interested in here.

Roughly speaking, our approach combines the ideas from the proof of Sternberg’s Theorem with
techniques from Oseledec-Pesin Theory. The proof of Sternberg’s theorem, as in [St] or [RR], uses
linear algebra to split the stable space Es

p into invariant subspaces where df has an essentially
fixed rate of contraction (given by the eigenvalues of df |Es

p). In the setting of Theorem 2 we use
Oseledec-Pesin theory in order to control the rate of contraction of df .
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The organization of the paper is as follows. In Section 1 we define a continuous family of uniformly
sized charts for the stable manifolds, and in Section 2 we prove Theorem 3. In Section 3 we state
the results we use from the Oseledec/Pesin theory and in Section 4 we set up the slowly varying
formalism, working out some useful lemmas and propositions. In Section 5 we prove the existence
of Ψ locally. This section is the main step in the proof of Theorem 2, the latter being completed in
Section 6.

Acknowledgments We thank John-Erik Fornæss and Ralf Spatzier for their interest in this project
and for interesting discussions, and more particularly we thank Ralf for also directing us to many
useful references on related results in real dynamics. We are also grateful to Charles Favre, Nessim
Sibony and the referee for many helpful comments and suggestions.

1. Holomorphic exponential maps I. Hyperbolic case

In this section, we construct a continuous (in p) family of biholomorphic maps χp from a neighbor-
hood of 0p in Es

p into W s
p . To this end, let f ∈ DiffO(M) be hyperbolic on a compact set K ⊂⊂ M .

For ε > 0, set
Es

p(ε) := {v ∈ Es
p | |v| < ε} and Es(ε) :=

⋃
p∈K

Es
p(ε),

the latter equipped with the bouquet topology discussed in the Introduction.

Proposition 1.1. There exists ε > 0 and a continuous mapping χ : Es(ε) → Ws which maps
each Es

p(ε) biholomorphically into W s
p , maps the zero vector 0p ∈ Es

p to p ∈ W s
p , and satisfies

d(χ|Es
p)0p = idEs

p
.

Remark. Originally, we had a rather complicated and not even completely general proof of this
proposition. We thank C. Favre for showing us a much simpler and complete proof, which we now
present.

Proof of Proposition 1.1. As mentioned before, it is shown in [S] that Ws gives a lamination near
K. Cover K by a finite number of balls Bi, 1 ≤ i ≤ l. Let

ξi : Es(εi)|Bi ∩K →Ws, 1 ≤ i ≤ l

be local parameterizations ofWs near K∩Bi such that, for all p ∈ Bi∩K, ξi(0p) = p and dξi(0p) = id.
Such parameterizations exist if the balls Bi are taken small enough. Write ε := min{εi; 1 ≤ i ≤ l}.
Let Ws

i (ε) = ξi(Es(ε)|Bi ∩K) be the image of Es(ε)|Bi ∩K under ξi , and set Ws(ε) = ∪iWs
i (ε).

Finally, let {ϕi; 1 ≤ i ≤ l} be a partition of unity subordinate to the covering {Bi; 1 ≤ i ≤ l} of K.
Then the map χ : Es(ε) →Ws(ε) whose inverse is given by the formula

χ−1(x) =
∑

1≤i≤l

ϕi(p)ξ−1
i (x), x ∈ W s

p ,

has the desired properties. �

2. Proof of Theorem 3

We first sketch the basic idea of the proof. Let

A := df |Es

denote the restriction to Es of df and, with χ as in Proposition 1.1, set

F := χ−1 ◦ f ◦ χ and Ws(ε) := χ(Es(ε)).

Here and below, in order to avoid referring to the specific coordinates v chosen on Es, we use the
notation O(m) in place of the more common O(|v|m).
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We want to show that the map A−Nχ−1fN converges, locally uniformly on Ws as N →∞, to a
biholomorphic map. (Note that, because of the use of χ−1, the former map is only defined on some
compact subset of Ws.) Since A−1F − id = O(2), we have, on a given compact subset of Ws and
for N sufficiently large, that

A−(N+1)χ−1fN+1 −A−Nχ−1fN = A−N
(
A−1F − id

)
χ−1fN

∼ e(−L−+2L+)N ,

where the last estimate is uniform on compact sets. By the equi-contracting hypothesis, this implies
locally uniform convergence. Injectivity and surjectivity of the limit map are then easily established.
The details are as follows.

Given δ > 0 with L+ + δ < 0 there exists N0 ∈ N and ε > 0 such that

|FN0v| ≤ e(L++δ)N0 |v| whenever v ∈ Es(ε).

This follows from the definition of L+ and the fact that (dFp)p = Ap. Now set

C := sup
{
|F jv|/|v| ; 0 ≤ j < N0, v ∈ Es(ε)

}
.

For N ≥ 0, write N = kN0 + j with 0 ≤ j < N0. Then

|FNv| = |F j(F kN0v)| ≤ C|F kN0v| ≤ Ce(L++δ)kN0 |v|,
and so there exists N1 = N1(δ) such that for all N ≥ N1,

|FNv| ≤ e(L++2δ)N , v ∈ Es(ε)

Now consider a compact J ⊂⊂ Ws. By the contracting nature of f there exists n ≥ 0 such that
fn(J) ⊂ Ws(ε). Since χ−1 is continuous on Ws(ε), the above estimate implies that there exists
N2 = N2(J, δ) ≥ N1 + n such that for all N ≥ N2,

|χ−1fNz| ≤ e(L++3δ)N , z ∈ J

Since (dFp)p = Ap there exists C > 0 such that for all v ∈ Es(ε),∣∣v −A−1Fv
∣∣ ≤ C|v|2.

Using the definition of L− and increasing N2 if necessary, one then obtains, for all z ∈ J and N ≥ N2,
the estimate ∣∣∣A−Nχ−1fNz −A−(N+1)χ−1fN+1z

∣∣∣ ≤ ‖A−N‖ ·
∣∣wN −A−1FwN

∣∣2
≤ e−(L−−δ)NC |wN |2

≤ Ce(2L+−L−+5δ)N ,

where wN = χ−1fNz. Since 2L+ < L− by the equi-contracting hypothesis, it follows that

Ψ := lim
N→∞

A−Nχ−1fN

exists locally uniformly in the bouquet topology. Thus Ψ is continuous and clearly satisfies dΨ = id
as well as the functional equation

A−1 ◦Ψ ◦ f = Ψ.

We claim that Ψ is in fact a homeomorphism. Clearly Ψ(W s
p ) ⊂ Es

p for all p ∈ K. For fixed p, Ψ|W s
p ,

being a uniform limit of automorphisms, is holomorphic and injective. Thus Ψ is itself injective.
This implies that Ψ(Ws) contains a neighborhood N of the zero section of Es. We now use the
contracting property of A to show surjectivity of Ψ. Consider any v ∈ Es

p and pick N large enough
so that ANv ⊂ N , i.e. there exists y ∈ W s

fN p with Ψ(y) = ANv. Let x := f−Ny. Then

v = A−NΨ(y) = Ψ(f−Ny) = Ψ(x).
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Thus Ψ is a homeomorphism, which completes the proof. �

3. Lyapunov data and stable manifolds

In this section, we give an overview, containing no proofs, of various results in smooth ergodic
theory. There are several references which the reader can consult for details. We have taken most
of our statements from [PS], but a more detailed proof of some of the theorems can be found in [M].

First, to an automorphism f one can associate its Lyapunov data: these are vector spaces Eλ
p ⊂

TMp, called the Lyapunov spaces of f , defined by

Eλ
p :=

{
v ∈ TMp

∣∣∣∣ lim
N→±∞

N−1 log
∣∣dfNv

∣∣ = λ

}
.

The numbers λ = λ(p) such that Eλ
p 6= {0} are called the Lyapunov exponents.

In general, of course, there are only a finite number of Lyapunov exponents at a given point p. A
point p with bounded orbit such that

TMp =
⊕
λ∈R

Eλ
p , (3.1)

is called an Oseledec point (or regular point) of f . The splitting (3.1) is called the Lyapunov splitting.
We denote the set of Oseledec points by K(f).

Before stating the basic result on Oseledec points, we need the following definitions.

Definition 3.1. Let X ⊂ M be an f-invariant Borel set.
(1) A Borel function R : X → (0,∞) is called ε-slowly varying if e−ε ≤ R(fp)/R(p) ≤ eε for

every p ∈ X.
(2) A collection of Borel functions {Rε : X → (0,∞) ; ε > 0} is called a slow variation if Rε is

ε-slowly varying for every ε > 0.
(3) A function h : X → (0,∞) is called slowly varying if there exists a slow variation Rε such

that either h ≤ Rε or h ≥ 1/Rε for all ε > 0.

Remark. In what follows, we shall have to control either the growth or shrinking of certain functions
along orbits of f . To distinguish these two situations, we establish the following convention: in the
former case, the functions shall have ranges of the form (a,∞) with a ≥ 1, and in the latter, ranges
of the form (0, b) with b < ∞.

Theorem 3.2 ([O]). The set K(f) is an invariant Borel set of total measure. Moreover, there is a
slow variation {Rε : K(f) → (1,∞)} such that for all p ∈ K(f) and all ε > 0,

a)

Rε(p)−1e−εN ≤ |d(fN )pv|
eλN |v|

≤ Rε(p)eεN whenever v ∈ Eλ
p (3.2)

b)

]
(
Eλ

p , Eλ′

p

)
≥ 1

Rε(p)
whenever λ′ 6= λ.

At every Oseledec point, one has the following decomposition.

TMp = Es
p ⊕ E0

p ⊕ Eu
p ,

where
Es

p =
⊕
λ<0

Eλ
p and Eu

p =
⊕
λ>0

Eλ
p .

Given such a p we define the stable manifold at p by

W s
p :=

{
x ∈ M

∣∣∣∣ lim sup
N→∞

1
N

log dist(fNx, fNp) < 0
}

.
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The Pesin stable manifold theorem can thus be stated as follows.

Theorem 3.3 ([P]). For every p ∈ K(f), W s
p is an immersed (complex) submanifold of M .

In fact, Pesin’s result also tells us how the stable manifolds W s
p depend on the base point p. In

particular we have a non-uniform version of the exponential map in Proposition 1.1.

Theorem 3.4 ([P]). The stable lamination Ws defined by (0.1) is a slowly varying lamination on
K(f) in the following sense: let M ↪→ Rn be an isometric immersion into Euclidean space. Then
there is a slowly varying function r : K(f) → (0, 1) with the property that if Dp is the ball of radius
r(p) and center 0p in Es

p, then the orthogonal projection Π : W s
p → Es

p is invertible on the branch
of Π−1(Dp) containing p. Moreover, there exists a map χ : Es(r) → Ws which maps Es

p(r(p))
biholomorphically into W s

p , maps 0p to p, and satisfies dχ0p = idEs
p
. Moreover, p 7→ ‖dχp|Es(r(p))‖

is a slowly varying function on K(f).

Remark. This lamination aspect of Pesin’s theorem is rarely stated, but it is easily seen to be true
if one follows the proof, say in [PS], based on the graph transform.

The set K(f) can be further decomposed into invariant subsets as follows. For l ∈ N+, λ =
(λ1, . . . , λl) with λl < · · · < λ1 < 0 and m = (m1, . . . ,ml), let

K(λ,m) :=
{
p ∈ K(f)

∣∣ Es
p = Eλ1

p ⊕ · · · ⊕ Eλl
p and dim(Eλj

p ) = mj 1 ≤ j ≤ l.
}

.

Then
K(f) =

⋃
λ,m

K(λ,m),

and each K(λ,m) is a Borel set which is invariant for f . These subset of “constant stable Lyapunov
data” will be crucial to our further analysis.

4. Slowly varying bundles and maps

In this section we establish definitions and basic results about slowly varying objects. The slowly
varying notion of regularity is the strongest form of regularity that can be expected to hold in the
non-uniform picture. Roughly speaking, slowly varying objects can be treated as constants, as long
as we are interested in exponential estimates.

Measurable bundles and maps. Recall that the relative k-Grassmannian of TM is a bundle
Gk(TM) → M whose fiber over p ∈ M is the set of k dimensional complex subspaces of TMp. A
measurable complex vector bundle over a Borel subset X ⊂ M is then a measurable section E of the
Grassmann bundle Gk(TM) over X. A measurable subbundle E′ of a measurable complex vector
bundle E is a measurable complex vector bundle such that E′

p is a subspace of Ep for each p ∈ X.
We implicitly assume that the base X is invariant for f , and endow all such vector bundles with
the metric inherited from TM . The total spaces are given the discrete topology discussed in the
introduction.

As a matter of notation, given a function g : X → (0,∞), let

E(g) :=
⋃

p∈X

Ep(g(p)),

where Ep(r) = {v ∈ Ep | |v| < r}. Notice that this is a neighborhood of the zero section OE of E
and we call such a neighborhood a tube. Later on we will work with slowly varying tubes, i.e. tubes
defined by slowly varying functions g.

Let E → X and E′ → X be two measurable vector bundles. A (measurable) bundle map
Φ : E → E′ fibered over φ : X → X is then a map of the total spaces, defined in some tube E(g),
such that φ is measurable (with respect to the Borel σ-algebra inhereted from M) and Φ(Ep) ⊂ E′

φ(p)
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for p ∈ X. We shall require that Φ map the zero section of E to the zero section of E′, and that
the map Φp := Φ|E′

p be holomorphic for each p ∈ X. This situation is sometimes denoted by the
shorthand Φ/φ. In our setting, it will always be the case that φ = f or φ = id.

A bundle map Φ/φ is said to be homogeneous of degree m if for every c ∈ C one has Φ(c · v) =
cm · Φ(v). We use the notation

‖Φp‖ := max
v∈Ep

|Φp(v)|
|v|m

, (4.1)

and the notation ‖Φ‖ : p 7→ ‖Φp‖.
More generally, Φ is said to be polynomial of degree m if there exist homogeneous maps Φj

of degree j, 1 ≤ j ≤ m such that Φ =
∑m

j=1 Φj . By our requirement that the fiber maps be
holomorphic, every bundle map Φ/φ has a homogeneous expansion

Φ =
∞∑

m=1

Φm (4.2)

Using the notation in (4.1) we have B(p) := supm ‖Φm,p‖1/m < ∞ for every p ∈ X. In general one
can say very little about the dependence of B(p) on p, but the maps we will work with have more
regularity: we say that Φ is slowly varying if B is slowly varying in the sense of Definition 3.1.

It trivially follows that if Φ is slowly varying, then so are all of its homogeneous parts Φm. Also,
sums, compositions and inverses of slowly varying maps are easily seen to be slowly varying.

Tubes associated to slowly varying maps. Consider a slowly varying selfmap T/id of a bundle
E → X such that dT |OE = id. This has the homogeneous expansion

T = id +
∞∑

j=2

Tj .

Then ‖Tj‖ ≤ Bj for some slowly varying function B : X → (2,∞) and T is defined on the slowly
varying tube E(1/B).

In the next two propositions, which will be crucial in the final step of the proof of Theorem 2, we
will show that the range, as well as the domain of injectivity of T contain slowly varying tubes.

Proposition 4.1. Let T/id be as above. Then there exists a slowly varying function g : X → (0, 1)
such that

T (E(1/B))) ⊃ E(g).

Proof. For each v ∈ E(1/B), one has

|Tv| ≥ |v| −
∞∑

j=2

(B|v|)j = |v| − B2|v|2

1−B|v|
= |v|

(
1− B2|v|

1−B|v|

)
.

Letting |v| ≤ 1/(2B2) < 1/4B, we see that |Tv| ≥ |v|/3. The proposition now follows (with
g = 1/3B) from this and the openness of the maps Tp. �

Of course, since dTp = id, the Inverse Function Theorem says that Tp is invertible on a neigh-
borhood of 0p. The next proposition shows that if T is slowly varying then so is the size of this
neighborhood.

Proposition 4.2. Let T/id be as above. Then there exists a slowly varying function h : X → (0, 1)
such that Tp is well-defined and injective on Ep(h(p)) for each p ∈ X.
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Proof. Let h be a function to be specified shortly. It is easily shown (say, using linear coordinates
on Ep) that there is a constant C, depending only on the rank of E, such that for all j ≥ 2, p ∈ X,
and x, y ∈ Ep(h(p)),

|Tj(x)− Tj(y)| ≤ C(j + 1)kB(p)jh(p)j−1|x− y|,

where k = rank(E). Now

|T (x)− T (y)| =

∣∣∣∣∣∣x− y +
∞∑

j=2

(Tj(x)− Tj(y))

∣∣∣∣∣∣ ≥ |x− y|

1−
∞∑

j=2

C(j + 1)kB(Bh)j−1

 .

Thus h = 1/(2B3) does the trick provided B is bounded from below by a sufficiently large constant.
This completes the proof. �

Contracting linear maps. We say that a linear bundle map A/φ of a bundle E → X is contracting
if there exists λ < 0 such that lim supN→∞

1
N log |ANv| ≤ λ for every v ∈ E. If A is slowly varying,

then this implies that there is a slow variation Rε : X → (1,∞) such that

‖AN
p ‖ ≤ Rε(p)e(λ+ε)N p ∈ X, N ≥ 1. (4.3)

There is a standard way of making this contraction more uniform by changing the metric. To this
end, fix ε > 0 and set

〈v, w〉∗ :=
∞∑

N=0

e−2(λ−ε)N
〈
ANv,ANw

〉
, v, w ∈ E (4.4)

and denote the associated norm by | · |∗ and operator norm by ‖ ·‖∗. Using (4.3) it is straightforward
to verify that the series (4.4) converges, and that the metric thus obtained is a Borel metric on E with
the following properties: ‖A‖∗ ≤ eλ+ε and there exists an ε-slowly varying function C : X → (1,∞)
such that

|v| ≤ |v|∗ ≤ C(p)|v|, v ∈ Ep.

Splittings and flags. Suppose that the vector bundle E → X splits, i.e. there exist subbundles
E1, . . . , El of E such that

E =
l⊕

j=1

Ej .

We say that this splitting is slowly varying if the projection maps E → Ej are all slowly varying. It
is possible to show that the splitting E = ⊕Ej is slowly varying if and only if the angle functions
](Ei, Ej) are slowly varying functions.

To a splitting ⊕Ei there is an associated flag V•, i.e. a sequence V0 = {0} ( V1 ( · · · ( Vl = E
of vector subbundles defined by

Vj =
j⊕

i=1

Ei.

Since this flag comes from a splitting, it is equipped with projections prj : E → Vj . We remark
that the flag V• depends on the ordering of the vector spaces Ei. For our applications, the Ei are
Lyapunov spaces and the Lyapunov exponents provide a natural ordering.
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Pseudo-linear maps. Let E → X be a vector bundle with a splitting E = ⊕Ej . A homogeneous
selfmap Φ of degree m of E can then be further decomposed as

Φ =
l∑

j=1

∑
|α|=m

Φj,α (4.5)

where
Φj,α : E → Ej and Φj,α(c · v) = cαΦj,α(v). (4.6)

Here c = (c1, . . . , cl) ∈ Cl, α = (α1, . . . , αl) ∈ Nl, cα = cα1
1 . . . cαl

l and

c · (v1 ⊕ · · · ⊕ vl) = c1v1 ⊕ · · · ⊕ clvl.

It follows easily from the definition that if Φ is a slowly varying homogeneous map of E, then all of
the summands Φj,α in the decomposition (4.5) are slowly varying.

A selfmap Φ of E is said to be a flag map (with respect to the flag V• associated to ⊕Ej) if prjΦ
is a map of Vj for all j, i.e.

Φ(v1 ⊕ · · · ⊕ vl) = Φ1(v1)⊕ Φ2(v1 ⊕ v2)⊕ · · · ⊕ Φl(v1 ⊕ · · · ⊕ vl).

We shall say that a flag map Φ is pseudo-linear if it is of the form

Φ = A + H,

where A is a linear map which preserves the splitting, and H is a polynomial flag map with no
constant or linear part, such that prjH = prjH|Vj−1 for 2 ≤ j ≤ l. In other words, Φ can be written

Φ(v1 ⊕ · · · ⊕ vl) = Av1 ⊕ (Av2 + H2(v1))⊕ · · · ⊕ (Avl + Hl(v1 ⊕ · · · ⊕ vl−1)).

Notice that if A is invertible, then so is Φ, and its inverse is a pseudo-linear flag map whose degree
is bounded in terms of the degree of Φ.

Contracting pseudo-linear maps. A bundle map Φ/φ of a bundle E → X is said to be contract-
ing if its linear part dΦ|OE is contracting. If Φ is slowly varying, then this implies that for v ∈ E
with |v| small one has |ΦNv| → 0 as N → ∞. On the other hand, if Φ is linear (and contracting),
then this convergence holds locally uniformly for v ∈ E. The next result, which will be a crucial
ingredient in the proof of Theorem 2 shows that the same property carries over to some pseudo-linear
maps Φ.

Proposition 4.3. Let E → X be a measurable bundle with a slowly varying splitting ⊕Ei and
associated flag V•. Let Φ/f be a slowly varying, pseudo-linear, contracting bundle map with respect
to V•. Then ΦN → 0 locally uniformly in the topology on E. More precisely, there exists λ < 0 with
the following property: if p ∈ X and J ⊂⊂ Ep then there exists C = C(J, p) > 0 such that

|ΦNv| ≤ CeλN for all v ∈ J and N ≥ 0. (4.7)

Proof. The statement of the proposition does not change if we replace the metric on E by the
metric given by (4.4), so let us work with that metric. By compactness of J it suffices to show the
estimate (4.7) for large N .

Let Φ = A + H as in the definition of pseudo-linear, and let λ < 0 be the associated exponent of
contraction. Thus we have ‖A‖ ≤ eλ on EfN p for all N ≥ 0. Pick ε > 0 so small that λ + 3ε < 0.

For N ≥ 1 let ΦN = ΦN
1 ⊕ · · ·⊕ΦN

l be the decomposition of ΦN : E → E relative to the splitting
E = E1 ⊕ · · · ⊕ El. Then ΦN

1 = AN so ‖ΦN
1 ‖ ≤ eλN . For 2 ≤ j ≤ l we have

ΦN+1
j = AΦN

j + Hj(ΦN
1 ⊕ · · · ⊕ ΦN

j−1), (4.8)

where the Hj ’s are polynomials with no constant or linear terms. The slowly varying nature of the
Hj ’s implies the existence of constants r0 > 0 and C0 > 0 such that

|Hj(w)| ≤ C0e
εN |w|2 whenever w ∈ EfN p and |w| ≤ r0e

−εN . (4.9)
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We now inductively show the following estimate, which clearly implies the statement of the propo-
sition (with λ replaced by λ + ε): there exists N0 > 0 such that if v ∈ J , 1 ≤ i ≤ l and N ≥ N0

then
|ΦN

i v| ≤ e(λ+ε)N � r0e
−εN . (4.10)

This estimate clearly holds for i = 1. Suppose it holds for 1 ≤ i < j ≤ l and let us show that it then
hold for i = j after possibly increasing N0. Indeed, if N ≥ N0 then (4.8), (4.9) and (4.10) imply
that

|ΦN+1
j v| ≤ eλe(λ+ε)N + C0e

εNe2(λ+ε)N ≤ e(λ+ε)(N+1) (4.11)

if N0 is large enough. Thus (4.10) holds, which completes the proof. �

Regular bundle maps. Consider a bundle E → X with a splitting ⊕Ej . A linear bundle map
A : E → E is said to be regular if it preserves the splitting and if there exist λl < · · · < λ1 such that

lim
N→∞

1
N

log |ANv| = λj for v ∈ Ej

Now suppose, in addition, that the map A and the splitting ⊕Ei are slowly varying. Then one may
show, using standard techniques as in [M], that there exists a slow variation Rε : X → (1,∞) such
that for all p ∈ X, all ε > 0, and all N ∈ Z:

Rε(p)−1e−εN ≤
|AN

p v|
eλjN |v|

≤ Rε(p)eεN whenever v ∈ Ej,p (4.12)

A general bundle map Φ/φ is said to be regular if it is slowly varying and if the linear bundle
map A := dF |0E is regular. The vector λ = (λr, . . . , λ1) is said to be the Lyapunov data associated
to Φ. It is easy to see that a regular bundle map is contracting if and only if its Lyapunov data
satisfies λ1 < 0.

The part of Oseledec’s Theorem that we will use can be stated as follows. There exist invariant
Borel sets K(λ,m) in M , the union of which has total measure. Over each K(λ,m) there is a
measurable bundle Es ⊂ TM with a slowly varying splitting ⊕Eλi such that A := df |Es is a regular
contracting bundle map fibered over f .

The definition of a linear bundle map being regular is asymptotic in nature. The concept of an
adapted metric makes this information easier to work with. For ε > 0 we define

〈v, w〉∗ε :=
∑
N∈Z

〈
ANv,ANw

〉
e2λjN+2ε|N | , v, w ∈ Ej (4.13)

and 〈v, w〉ε = 0 for v ∈ Ei, w ∈ Ej , i 6= j. We denote the associated norm by | · |∗ε and operator
norm by ‖ · ‖∗ε . Often we will drop the subscript and write | · |∗ instead of | · |∗ε .

Using (4.12) and the slow variation of the splitting ⊕Ej it is not too hard to verify that the
series (4.13) converges, and that the metric thus obtained is a Borel metric on E with the following
properties:

eλj−ε|v|∗ε ≤ |Av|∗ε ≤ eλj+ε|v|∗ε for v ∈ Ej ,

and there exists a slow variation Cε : X → (1,∞) such that

|v| ≤ |v|∗ε ≤ Cε(p)|v|, v ∈ Ep. (4.14)

Recall that a bundle map Φ/φ is slowly varying if and only if the function p 7→ supm ‖Φm,p‖1/m is
slowly varying, where

∑
Φm is the homogeneous expansion of Φ. Using (4.14) it is straightforward

to verify that Φ is slowly varying if and only if there exists a slow variation Rε such that

‖Φm.p‖∗ε ≤ R2ε(p)m.

In this sense, working with the given metric | · | or the adapted metric | · |∗ε has no effect on the
definition of slow variation.
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5. Local analytic conjugation

The goal of this section is to establish the main step in the proof of Theorem 2, namely a local
conjugation of regular bundle maps to a pseudo-linear model.

Theorem 5.1. Let E → X be a measurable bundle over an f-invariant Borel set X ⊂ M with
a slowly varying splitting E = ⊕Ej. Let F/f be a slowly varying, contracting, and regular bundle
map of E (with respect to this splitting). Then there exists a polynomial bundle map P/f with
dP |0E = dF |0E and a bundle map T/id with dT |0E = id, so that

TFT−1 = P

holds on a slowly varying neighborhood of the zero section OE in E. Moreover, P and T are slowly
varying, and P is a pseudo-linear, contracting, polynomial automorphism of the flag associated to
the splitting of E.

One should view T as a conjugacy (i.e. change of coordinates) that conjugates F to the simpler
mapping P . The proof of Theorem 5.1 occupies the remainder of this section.

Proof of Theorem 5.1. Write A = dF |OE and recall our notation O(m). We construct a pair of
sequences {Pm/f}m≥1 and {Tm/id}m≥1 of slowly varying polynomial bundle maps such that:

(a) Tm = id + O(2) and Pm = A + O(2);
(b) P−1

m TmF − Tm = O(m + 1);
(c) there exists m0 ≥ 1 such that Pm = Pm0 for all m ≥ m0;
(d) P := Pm0 is a pseudo-linear map of the flag associated to the splitting of E;
(e) Tm converges to an analytic map T .

The construction is inductive, and proceeds as follows. Set P1 = A and T1 = id. Suppose that we
have constructed Tm and Pm. Let

Tm+1 = Tm + Hm+1 and Pm+1 = Pm(id + Qm+1),

with Hm+1 and Qm+1 to be determined. Then a simple calculation shows that

P−1
m+1Tm+1F − Tm+1 = P−1

m TmF − Tm − (Qm+1 + Hm+1 −A−1Hm+1A) + O(m + 2).

Thus, writing Φm+1 := P−1
m TmF −Tm mod O(m+2), we see that (b) holds for m+1 if we can find

homogeneous solutions Hm+1 and Qm+1 for the equation

Φm+1 = Qm+1 + Hm+1 −A−1Hm+1A. (5.1)

The next lemma shows that solutions of (5.1) exist so that (c) and (d) hold as well.

Lemma 5.2. If Φ/id is a homogeneous, slowly varying, polynomial bundle mapping of degree m ≥ 2,
then there exist homogeneous, slowly varying polynomial bundle mappings Q/id and H/id, also of
degree m, such that

Φ = Q + H −A−1HA. (5.2)
Moreover Q can be chosen as follows. If m is sufficiently large, then one can take Q = 0. Otherwise,
Q is a pseudo-linear map of the flag associated to ⊕Ej with no linear part, i.e. Q has the form

Q(v1 ⊕ · · · ⊕ vl) = 0⊕Q2(v1)⊕ · · · ⊕Ql(v1 ⊕ · · · ⊕ vl−1).

Before proving Lemma 5.2, we need to develop a few ideas. First, the homogeneous polynomial
bundle mapping Φ can be decomposed with respect to the splitting ⊕Ei into (j, α)-homogeneous
parts Φj,α as in (4.5). By linearity we only need to solve (5.2) for each summand Φj,α. Recall that
if Φ is slowly varying, then so are these summands.

In order to solve (5.2) we will make crucial use of the fact that A is regular with respect to the
splitting ⊕Ei. Let λ = (λ1, . . . , λl) be the Lyapunov data associated to A and notice that

λl < · · · < λ1 < 0
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since A is contracting. If Φ is (j, α)-homogeneous, then it follows that

‖A−N ◦ Φ ◦AN‖ ∼ e(λ·α−λj)N‖Φ‖ for |N | � 1. (5.3)

This estimate, which is the key to the analysis in this section, will be made more precise below. Here
we only note that the quantity λj − λ · α plays an obvious role in (5.3) and leads to the following
definition. We say that the pair (j, α) is resonant if

λj = λ · α.

It is called non-resonant otherwise, and more specifically, super-resonant or sub-resonant if we have
λj − λ · α < 0 or λj − λ · α > 0, respectively.

Lemma 5.3. There exists m0 ∈ N such that all pairs (j, α) with |α| > m0 are sub-resonant.
Furthermore, if (j, α) is resonant then αj = αj+1 = · · · = αl = 0.

Proof. For the first statement pick m0 ≥ λl/λ1. The second statement is easily verified. �

For the rest of this section we work with a fixed but small ε > 0. Specifically we require that

sup{λ · α− λj + (|α|+ 2)ε} < 0, (5.4)

where the supremum is taken over all sub-resonant pairs (j, α) (it is easy to check that this is
possible), and

min{λ · α− λj − (|α|+ 2)ε} > 0 (5.5)
where the minimum is taken over all sub-resonant pairs (j, α); the latter form a finite set by
Lemma 5.3.

Lemma 5.4. With notation as in Lemma 5.2, if (j, α) is non-resonant and Φ is (j, α)-homogeneous,
then one can find a slowly varying H/id so that

Φ = H −A−1HA.

Further, there exists a constant C, depending only on on the Lyapunov data λ, such that

‖H‖∗ ≤ C‖Φ‖∗, (5.6)

where ‖ · ‖∗ = ‖ · ‖∗ε is the operator norm associated to the adapted metric (4.13).

Proof. The operator Ψ 7→ Ψ−A−1ΨA has the following two formal inverses:

Ψ 7→ G+(Ψ) :=
∞∑

N=0

A−NΨAN and Ψ 7→ G−(Ψ) := −
∞∑

N=1

ANΨA−N . (5.7)

We proceed in two cases.
(i) Sub-resonant case: let H = G+(Φ).
(ii) Super-resonant case: let H = G−(Φ).

We have to show that this makes sense. Let us consider the sub-resonant case (i). We have

‖G+Φ‖∗ ≤
∞∑

N=0

‖A−NΦAN‖∗

≤
∞∑

N=0

e(λ·α−λj+(|α|+2)ε)N‖Φ‖∗

=: C‖Φ‖∗.

It follows from (5.4) that C < ∞ and that C does not depend on j, α or ε. Thus (5.6) holds, and
this implies that H is slowly varying. Notice that the construction of H does not depend on the
choice of ε. The super-resonant case is treated similarly, using (5.5). This completes the proof. �
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Proof of Lemma 5.2. Simply decompose Φ as a sum of resonant, sub-resonant and super-resonant
(j, α)-homogeneous polynomial bundle mappings Φj,α. For the non-resonant terms we get Hj,α from
Lemma 5.4 and set Qj,α = 0. For the resonant terms we set Hj,α = 0 and Qj,α = Φj,α. Then set
H =

∑
Hj,α and Q =

∑
Qj,α. From Lemma 5.4 we get that H and Q are slowly varying. The

remaining statements follow from Lemma 5.3. �

Returning to the proof of Theorem 5.1 we have constructed our sequences of maps Pm and Tm,
and have shown that they satisfy (a)–(d) above. It remains to show that T = lim Tm is analytic
and slowly varying. For this it suffices to show that ‖Hm‖∗ ≤ Bh(m) for some ε-slowly varying
B : X → (1,∞) and some concave function h : N → R+.

Recall that the degree of the inverse of a pseudo-linear map is bounded in terms of the degree of
the map itself. In particular, the degree ν of P−1 is finite, so we may write

P−1 = SA−1 = (S1 + S2 + · · ·+ Sν)A−1,

where S1 = id and Sj is homogeneous of degree j, and all the maps are slowly varying. Finally,
write F = AG, so that G/id is analytic and slowly varying. We denote the homogeneous expansion
of G by

G =
∞∑

j=1

Gj ,

observing that G1 = id.
Keeping ε fixed we now pick an ε-slowly varying B : X → (2,∞) with the following properties:

‖Si‖∗ ≤ Bα for 2 ≤ i ≤ ν (5.8)

‖Hm‖∗ ≤ Bα for 2 ≤ m ≤ m1 (5.9)

‖Gk‖∗ ≤ Bkα for k ≥ 2 (5.10)

‖A−1‖∗ ≤ Bα and ‖A‖∗ ≤ 1. (5.11)

Here α ∈ (0, 1) and m1 > m0 will be chosen later. As before we write ‖·‖∗ = ‖·‖∗ε . That (5.8)–(5.11)
are possible follows from the fact that each Si and each Hm are slowly varying, as are G and A−1,
while A is contracting. We claim that if α is small enough and m1 is large enough, then

‖Hm‖∗ ≤ Bm−
√

m for all m ≥ 2. (5.12)

This is clearly true for m ≤ m1 by our choice of B. Suppose that (5.12) holds for some m. To
establish it for m + 1 it suffices, in view of Lemma 5.4, to prove that

‖Φm+1‖∗ ≤ C−1Bm+1−
√

m+1,

where Φm+1 is given by (5.1). To this end, let us take a look at the quantity P−1TmF −Tm, keeping
in mind that we are only interested in the terms of degree m+1. Thus the terms coming from −Tm

automatically disappear, and we have

Φm+1 = P−1TmF − Tm mod O(m + 2)

=
∑

SiA
−1HjAGk, (5.13)

where the sum is over all i, j and k such that ijk = m + 1, k ≥ 1, 1 ≤ j ≤ (m + 1)/2 and 1 ≤ i ≤ ν.
(The constraint on the index j comes from the fact that (i) 1 ≤ j ≤ m, and (ii) we need only consider
the terms of degree m + 1.)

The sum (5.13) consists of considerably fewer than νm2 terms. We now estimate SiA
−1HjAGk

in all possible cases, using (5.8)-(5.12) and the induction hypothesis, and assuming that α is small
while m1 is large.
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(i) (k ≥ 2, i ≥ 2): then ij ≤ (m + 1)/2 and

‖SiA
−1HjAGk‖∗ ≤ Bα+i(α+(j−

√
j)+jkα) ≤ B(m+1)( 1

2+3α) ≤ 1
Cνm2

Bm+1−
√

m+1.

(ii) (k ≥ 2, i = 1): then j ≤ (m + 1)/2 and

‖A−1HjAGk‖∗ ≤ Bα+(j−
√

j)+jkα ≤ B(m+1)( 1
2+2α) ≤ 1

Cνm2
Bm+1−

√
m+1.

(iii) (k = 1): then i ≥ 2 and ij = (m + 1). Further, a straightforward calculation readily shows
that

√
m + 1(

√
i− 1)− α(1 + i) ≥ α

√
m + 1, so

‖SiA
−1HjA‖∗ ≤ Bα+i(α+(j−

√
j)) = B(m+1−

√
m+1)+(1+i)α−

√
m+1(

√
i−1)

≤ B(m+1−
√

m+1)−α
√

m+1

≤ 1
Cνm2

Bm+1−
√

m+1.

Putting all this together, we have:

‖Φm+1‖∗ ≤
∑
i,j,k

∥∥SiA
−1HjAGk

∥∥∗ < νm2 1
Cνm2

Bm+1−
√

m+1 =
1
C

Bm+1−
√

m+1.

Thus the induction step is complete and (5.12) holds for all m ≥ 2. Theorem 5.1 now follows from
the definition of a slowly varying bundle map. �

6. Proof of Theorem 2

We may replace K(f) by the Borel set K(λ,m). Let us apply Theorem 5.1 to the bundle Es →
K(λ,m) (with its Lyapunov splitting) and the bundle map F = χ−1 ◦ f ◦ χ of Es, where χ is the
exponential map given by Theorem 3.4. By Theorem 3.2 and Theorem 3.4 the map F is slowly
varying, contracting and regular (with respect to the Lyapunov splitting). Thus we may apply
Theorem 5.1 to F .

With P and T as in Theorem 5.1 let

ΨN := P−NTχ−1fN .

Then for each p ∈ K(λ,m) and each compact subset J ⊂⊂ W s
p there exists an integer N0 = N0(J)

such that ΨN is well defined on J whenever N ≥ NJ . Indeed, since fN decays exponentially as
N → ∞, and Tχ−1 is slowly varying, fN will carry J into the (slowly varying) domain of Tχ−1,
provided N is large enough. Then one has

ΨN+1 −ΨN = P−N (P−1TF − T )χ−1fN = 0.

It follows that, locally uniformly in the discrete topology on Ws, ΨN converges as N →∞ to a map
Ψ : Ws → Es. Evidently Ψ is holomorphic on the fibers W s

p of Ws, maps W s
p into Es

p, and satisfies
the functional equation

P−1Ψf = Ψ.

It remains only to show that Ψ is bijective, which it obviously suffices to check on fibers. Thus we
fix from here on a point p ∈ K(λ,m).

First note that, by Proposition 4.2, there exists a slowly varying function h such that Tχ−1|Es(h)
(and thus P−NTχ−1|Es(h)) is injective on fibers. If x1, x2 ∈ W s

p are two points, then for large
enough N , fNxj ∈ Es(h) for j = 1, 2. (Again, this is so because fN decays exponentially, and thus
fNxj eventually enters and remains inside the slowly varying tube Es(h).) But then, if N is large
enough,

Ψx1 = Ψx2 ⇒ P−NTχ−1(fNx1) = P−NTχ−1(fNx2) ⇒ fNx1 = fNx2 ⇒ x1 = x2.
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Thus Ψ is injective.
Next, fix v ∈ Es

p. We want to find x ∈ W s
p with Ψ(x) = v. By Proposition 4.1, there exists a slowly

varying tube Es(g) in the range of Ψ. Further, by Proposition 4.3, |PNv| decays exponentially, so
PN (v) enters and remains inside Es(g) for large enough N . Let y ∈ W s

fN p be such that Ψ(y) = PN (v)
and set x = f−Ny. Then

Ψ(x) = Ψ(f−Ny) = P−NΨ(y) = v,

and thus Ψ is surjective.
Finally, from the fact that (dPp)p = A = dfp|Es and that (dχp)p = id, we see from the definition

of Ψ = ΨN that (dΨp)p = id. This completes the proof of Theorem 2. �

Final remarks. The proof of the existence of the normal form in the stationary case as presented
in [St, RR] does not use the convergence of the formal solution T of the local conjugation problem.
Instead, one shows the existence of a sufficiently large integer m such that P−NTmFN converges.
This relies heavily on the fact that the iterates of a pseudo-linear map grow at most exponentially
(see Lemma 1 in the Appendix of [RR]). This exponential growth seems quite hard to establish in
the slowly varying setting—it would be interesting to know whether it is indeed possible. On the
other hand, our method also provides a new proof in the analytic stationary case.
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