SAMPLING SEQUENCES FOR BERGMAN SPACES FOR $p<1$

Alexander P. Schuster and Dror Varolin

Abstract

We provide a proof of the sufficiency direction of Seip's characterization of sampling sequences for Bergman spaces for $p<1$ based on the methods of Berndtsson and Ortega-Cerdà.

1. Introduction

For $0<p<\infty$ and ϕ a function subharmonic in $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$, define F_{ϕ}^{p} to be the set of functions analytic in \mathbb{D} satisfying

$$
\|f\|_{\phi, p}=\left\{\int_{\mathbb{D}}|f(z)|^{p} \frac{e^{-\phi(z)}}{1-|z|^{2}} d A(z)\right\}^{1 / p}<\infty
$$

where $d A$ denotes Lebesgue area measure.
We say that a sequence $\Gamma=\left\{\gamma_{n}\right\}$ of distinct points in the disk is a sampling sequence for F_{ϕ}^{p} if there exist positive constants K_{1} and K_{2} such that

$$
K_{1}\|f\|_{\phi, p}^{p} \leq \sum_{n}\left|f\left(\gamma_{n}\right)\right|^{p} e^{-\phi\left(\gamma_{n}\right)}\left(1-\left|\gamma_{n}\right|^{2}\right) \leq K_{2}\|f\|_{\phi, p}^{p}
$$

for all $f \in F_{\phi}^{p}$.
Letting $\phi(z)=\log \frac{1}{1-|z|^{2}}$, we obtain the standard Bergman space A^{p} and the corresponding sampling sequences, which were characterized by Seip [5] for $p=2$ using methods that were extended to the case $1 \leq p<\infty$ by the first named author [4]. Berndtsson and Ortega-Cerdà [1] showed, using an altogether different proof, that a variation of Seip's density condition from [5] is actually sufficient to give sampling sequences in F_{ϕ}^{2}. While it does not appear that the arguments of Seip can be modified to work for A^{p} when $0<p<1$, the techniques of [1], as was conjectured in [2], can be adapted to F_{ϕ}^{p} (and hence A^{p}) for $0<p<1$. The purpose of this note is to show how this can be done.

[^0]We introduce the definitions necessary for the statement of the theorem we will prove.

The sequence $\Gamma=\left\{\gamma_{n}\right\}$ is said to be uniformly discrete if

$$
\delta(\Gamma)=\inf _{n \neq m}\left|\phi_{\gamma_{n}}\left(\gamma_{m}\right)\right|>0
$$

where

$$
\phi_{\zeta}(z)=\frac{\zeta-z}{1-\bar{\zeta} z}
$$

is the standard involutive Möbius transformation. The disk of centre ζ and radius r in this metric will be denoted by $\Delta(\zeta, r)$.

In the disk it is useful to consider the invariant Laplacian $\tilde{\Delta}=\left(1-|z|^{2}\right)^{2} \partial^{2} / \partial z \partial \bar{z}$, and for a measure μ and a function g, the invariant convolution $\mu * g$, defined by

$$
(\mu * g)(z)=\frac{1}{\pi} \int_{\mathbb{D}} g\left(\phi_{z}(\zeta)\right) \frac{d \mu(\zeta)}{\left(1-|\zeta|^{2}\right)^{2}}
$$

Consider now the measure $\nu=\pi \sum_{n}\left(1-\left|\gamma_{n}\right|^{2}\right)^{2} \delta_{\gamma_{n}}$, where δ_{z} is the Dirac-delta measure at the point z, and for $1 / 2<r<1$ the function

$$
\xi_{r}(\zeta)= \begin{cases}\frac{1}{c_{r}} \log \frac{1}{|\zeta|^{2}} & \text { if } 1 / 2<|\zeta|<r \\ 0 & \text { otherwise }\end{cases}
$$

where c_{r} is such that $\int_{\mathbb{D}} \xi_{r}(\zeta) \frac{d A(\zeta)}{\pi\left(1-|\zeta|^{2}\right)^{2}}=1$.
We are now in a position to state the main theorem of this note.
Main Theorem. Suppose a sequence Γ is uniformly discrete, and ϕ is a C^{2} subharmonic function with uniformly bounded invariant Laplacian $\tilde{\Delta} \phi$. If there exists $r<1$ and $\delta>0$ such that

$$
\left(\nu * \xi_{r}\right)(z)>\frac{2}{p} \tilde{\Delta} \phi(z)+\delta
$$

for all $z \in \mathbb{D}$, then Γ is a sampling sequence for F_{ϕ}^{p}.
Seip [5] introduces the following definitions. For Γ uniformly discrete, $z \in \mathbb{D}$ and $1 / 2<r<1$, let

$$
D(\Gamma, r)=\frac{\sum_{1 / 2<\left|\gamma_{n}\right|<r} \log \frac{1}{\gamma_{n} \mid}}{\log \frac{1}{1-r}}
$$

and

$$
D^{-}(\Gamma)=\liminf _{r \rightarrow 1} \inf _{z \in \mathbb{D}} D\left(\phi_{z}(\Gamma), r\right)
$$

We then have the following theorem, as stated in [4].

Theorem A. Let $1 \leq p<\infty$. A uniformly discrete sequence Γ is a sampling sequence for A^{p} if and only if $D^{-}(\Gamma)>1 / p$.

A calculation shows that

$$
\frac{D\left(\phi_{z}(\Gamma), r\right)}{\left(\nu * \xi_{r}\right)(z)}=\frac{1}{2} \frac{c_{r}}{\log \frac{1}{1-r}} \rightarrow \frac{1}{2} \quad \text { as } r \rightarrow 1
$$

Moreover, since $\tilde{\Delta} \phi(z)=1$ if $\phi(z)=\log \frac{1}{1-|z|^{2}}$, the sufficiency direction of Theorem A will follow from the Main Theorem, for $0<p<\infty$.

As mentioned above, the proof is based on the techniques used in [1]. Our main interest lies in proving the Main Theorem when $0<p<1$, thus completing Theorem A, but the proof works, without modification, when $1 \leq p<\infty$. With the reader of the paper [1] in mind, we will employ the same notation as in that article.

The paper is organized as follows. In the next section we recall some of the notation from [1] that is necessary to prove the Main Theorem, and we then prove the main theorem given a collection of technical lemmas. Finally, we complete these technicalities, some of which were claimed without proof in [1], so we have included details here for the convenience of the reader.

2. Proof of the Main Theorem

For $0<t, \epsilon<1$, consider the functions

$$
\chi_{\epsilon}=\frac{t}{\epsilon^{2}} \chi_{\Delta(0, \epsilon)} \quad \text { and } \quad \nu_{\epsilon}=\nu * \chi_{\epsilon}
$$

Note that

$$
\nu_{\epsilon} d A * \xi_{r}-\nu * \xi_{r}=\left(\nu * \xi_{r}\right) d A * \chi_{\epsilon}-\nu * \xi_{r}
$$

which approaches 0 as $\epsilon \rightarrow 0$ and $t \rightarrow 1$. Here we have used the fact that $f d A * g=$ $g d A * f$ and

$$
\begin{equation*}
\mu *(h d A * g)=(\mu * h) d A * g \tag{1}
\end{equation*}
$$

whenever h is radial. We can therefore choose r and t close to 1 and ϵ close to 0 so that

$$
\nu_{\epsilon} d A * \xi_{r}(z)>\frac{2}{p} \tilde{\Delta} \phi(z)+\frac{\delta}{2}
$$

for all $z \in \mathbb{D}$. Consider now the function

$$
v=\frac{p}{2}\left(\nu_{\epsilon}-\nu_{\epsilon} d A * \xi_{r}\right) d A * E
$$

where $E(z)=\log |z|^{2}$. Since E is the fundamental solution of the invariant Laplacian (with respect to the invariant convolution), we see that

$$
\tilde{\Delta} v=\frac{p}{2}\left(\nu_{\epsilon}-\nu_{\epsilon} d A * \xi_{r}\right)
$$

so that the function $\psi=\phi+v$ satisfies

$$
\tilde{\Delta} \psi \leq \frac{p}{2} \nu_{\epsilon}-\frac{\delta}{2}
$$

We require the following four lemmas to complete the proof of the theorem.

Lemma 1. There are positive constants C_{r} and C_{ϵ} such that

$$
\begin{equation*}
-C_{\epsilon} \leq v(z) \leq 0 \quad \text { for all } z \in \mathbb{D} \tag{2}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\left|v(z)-t \log \epsilon^{p}\right| \leq C_{r} \tag{3}
\end{equation*}
$$

for all $z \in \mathbb{D}$ with $\rho\left(z, \gamma_{n}\right)<\epsilon$ for some n.

Lemma 2.

$$
\begin{equation*}
\frac{\delta}{2} \int_{\mathbb{D}}|h(z)|^{p} \frac{e^{-\psi(z)}}{\left(1-|z|^{2}\right)} d A(z) \leq \frac{t}{\epsilon^{2}} \sum_{n} \int_{\Delta\left(\gamma_{n}, \epsilon\right)}|h(z)|^{p} \frac{e^{-\psi(z)}}{\left(1-|z|^{2}\right)} d A(z) \tag{4}
\end{equation*}
$$

for all $h \in F_{\phi}^{p}$.

Lemma 3. There is a constant $C>0$ such that for each $h \in F_{\phi}^{p}$ and $a \in \mathbb{D}$, there exists $\tilde{h}_{a} \in F_{\phi}^{p}$ such that $\tilde{h}_{a}(a)=h(a)$ and

$$
\frac{1}{C} e^{-\phi(a)}\left|\tilde{h}_{a}(z)\right|^{p} \leq|h(z)|^{p} e^{-\phi(z)} \leq C e^{-\phi(a)}\left|\tilde{h}_{a}(z)\right|^{p}
$$

for all $z \in \Delta(a, 1 / 2)$.

Lemma 4. There is a constant $C>0$ such that

$$
\frac{1}{\epsilon^{2}} \int_{\Delta(a, \epsilon)}|g(z)|^{p} d A(z) \leq C|g(a)|^{p}\left(1-|a|^{2}\right)^{2}+C \epsilon^{p} \int_{\Delta(a, 1 / 2)}|g(z)|^{p} d A(z)
$$

for all $g \in F_{\phi}^{p}$.

We take these lemmas as given and proceed with the proof. Suppose that $h \in F_{\phi}^{p}$.

Then

$$
\begin{aligned}
& \frac{\delta}{2} \int_{\mathbb{D}}|h(z)|^{p} \frac{e^{-\psi(z)}}{1-|z|^{2}} d A(z) \leq \frac{t}{\epsilon^{2}} \sum_{n} \int_{\Delta\left(\gamma_{n}, \epsilon\right)}|h(z)|^{p} \frac{e^{-\psi(z)}}{1-|z|^{2}} d A(z) \\
& \quad=\frac{t}{\epsilon^{2}} \sum_{n} \int_{\Delta\left(\gamma_{n}, \epsilon\right)}|h(z)|^{p} \frac{e^{-\phi(z)} e^{-v(z)}}{1-|z|^{2}} d A(z) \\
& \quad \leq C t \epsilon^{-p t-2} \sum_{n} \int_{\Delta\left(\gamma_{n}, \epsilon\right)}|h(z)|^{p} \frac{e^{-\phi(z)}}{1-|z|^{2}} d A(z) \\
& \quad \leq C t \epsilon^{-p t-2} \sum_{n} \frac{1}{1-\left|\gamma_{n}\right|^{2}} \int_{\Delta\left(\gamma_{n}, \epsilon\right)}|h(z)|^{p} e^{-\phi(z)} d A(z) \\
& \quad \leq C t \epsilon^{-p t-2} \sum_{n} \frac{e^{-\phi\left(\gamma_{n}\right)}}{1-\left|\gamma_{n}\right|^{2}} \int_{\Delta\left(\gamma_{n}, \epsilon\right)}\left|\tilde{h}_{n}(z)\right|^{p} d A(z) \\
& \quad=C t \epsilon^{-p t} \sum_{n} \frac{e^{-\phi\left(\gamma_{n}\right)}}{1-\left|\gamma_{n}\right|^{2}} \int_{\Delta\left(\gamma_{n}, \epsilon\right)}^{\left|\tilde{h}_{n}(z)\right|^{p} d A(z)} \\
& \quad \leq C t \epsilon^{-p t} \sum_{n} \frac{e^{-\phi\left(\gamma_{n}\right)}}{1-\left|\gamma_{n}\right|^{2}}\left\{C\left|\tilde{h}_{n}\left(\gamma_{n}\right)\right|^{p}\left(1-\left|\gamma_{n}\right|^{2}\right)^{2}+C t \epsilon^{p} \int_{\Delta\left(\gamma_{n}, 1 / 2\right)}\left|\tilde{h}_{n}(z)\right|^{p} d A(z)\right\} \\
& \quad \leq C t \epsilon^{-p t} \sum_{n} e^{-\phi\left(\gamma_{n}\right)}\left(1-\left|\gamma_{n}\right|^{2}\right)\left|h\left(\gamma_{n}\right)\right|^{p}+C t \epsilon^{p-p t} \sum_{n} \int_{\Delta\left(\gamma_{n}, 1 / 2\right)}^{|h(z)|^{p} \frac{e^{-\phi(z)}}{1-|z|^{2}} d A(z)} \\
& \quad \leq C t \epsilon^{-p t} \sum_{n} e^{-\phi\left(\gamma_{n}\right)}\left(1-\left|\gamma_{n}\right|^{2}\right)\left|h\left(\gamma_{n}\right)\right|^{p}+C t \epsilon^{p-p t} \int_{\mathbb{D}}|h(z)|^{p} \frac{e^{-\phi(z)}}{1-|z|^{2}} d A(z) .
\end{aligned}
$$

The first line is Lemma 2, the third follows from Lemma 1, while the fourth follows from the fact that

$$
\frac{1-\left|\gamma_{n}\right|^{2}}{1-|z|^{2}} \leq \frac{4}{1-\epsilon^{2}}
$$

for all $z \in \Delta\left(\gamma_{n}, \epsilon\right)$. The fifth line is a consequence of Lemma 3, where $\tilde{h}_{n}=\tilde{h}_{\gamma_{n}}$, while the seventh follows from Lemma 4 and the eighth from Lemma 3.

If we take ϵ small enough, we arrive at the lower sampling inequality. The upper inequality follows from the fact that Γ is uniformly discrete.

3. Technicalities

We consider now the proofs of the four lemmas.
Proof of Lemma 1. We enumerate Γ once and for all, and let Γ_{N} be the first N terms of Γ. We then set

$$
\nu_{N}=\pi \sum_{\gamma \in \Gamma_{N}}\left(1-|\gamma|^{2}\right)^{2} \delta_{\gamma} \quad \text { and } \quad w_{N}=\nu_{N} * E-\left(\nu_{N} * E\right) d A * \xi_{r}
$$

Several applications of (1) yield

$$
w_{N}(z)=\sum_{\gamma \in \Gamma_{N}}\left(\log \left|\varphi_{z}(\gamma)\right|^{2}-\int_{\mathbb{D}} \xi_{r}\left(\varphi_{\zeta}(\gamma)\right) \log \left|\varphi_{z}(\zeta)\right|^{2} \frac{d A(\zeta)}{\pi\left(1-|\zeta|^{2}\right)^{2}}\right)
$$

Our first claim is that for each compact set $K \subset \mathbb{D}$ there exists an integer $N=N(K)$ such that for all $z \in K$ and $M>N$,

$$
w_{M}(z)=w_{N}(z)
$$

Indeed, fix $\gamma \in \Gamma$ and $z \in \mathbb{D}$ such that $\left|\varphi_{\gamma}(z)\right|>r$. The function $\zeta \mapsto \log \left|\varphi_{\gamma}(\zeta)\right|^{2}$ is harmonic in the domain $V_{r}(\gamma)=\left\{\zeta: \frac{1}{2}<\left|\varphi_{\gamma}(\zeta)\right|<r\right\}$, and thus

$$
\begin{aligned}
& \int_{\mathbb{D}} \xi_{r}\left(\varphi_{\zeta}(\gamma)\right) \log \left|\varphi_{z}(\zeta)\right|^{2} \frac{d A(\zeta)}{\pi\left(1-|\zeta|^{2}\right)^{2}} \\
& =\int_{V_{r}(\gamma)} \xi_{r}\left(\varphi_{\zeta}(\gamma)\right) \log \left|\varphi_{z}(\zeta)\right|^{2} \frac{d A(\zeta)}{\pi\left(1-|\zeta|^{2}\right)^{2}} \\
& =\int_{1 / 2<|u|<r} \xi_{r}(u) \log \left|\varphi_{z} \circ \varphi_{\gamma}(u)\right|^{2} \frac{d A(u)}{\pi\left(1-|u|^{2}\right)^{2}}=\log \left|\varphi_{z}(\gamma)\right|^{2} .
\end{aligned}
$$

The second equality follows from the invariance of the measure $d A(\zeta) /\left(\pi\left(1-|\zeta|^{2}\right)^{2}\right)$, while the third equality comes from the mean value property for harmonic functions and the fact that $\xi_{r}(\zeta) d A(\zeta) /\left(\pi\left(1-|\zeta|^{2}\right)^{2}\right)$ is a radial probability measure. We therefore have that

$$
w_{N}(z)=\sum_{\gamma \in \Gamma_{N} \cap \Delta(z, r)}\left(\log \left|\varphi_{z}(\gamma)\right|^{2}-\int_{\mathbb{D}} \xi_{r}\left(\varphi_{\zeta}(\gamma)\right) \log \left|\varphi_{z}(\zeta)\right|^{2} \frac{d A(\zeta)}{\pi\left(1-|\zeta|^{2}\right)^{2}}\right)
$$

The claim thus follows from the fact that for a given compact set K, there is only a finite number N of points $\gamma \in \Gamma$ such that for some $z \in K,\left|\varphi_{\gamma}(z)\right| \leq r$.

We set

$$
w=\lim _{N \rightarrow \infty} w_{N}
$$

where the limit is taken in the locally uniform topology. In other words, w is the ordered sum

$$
w(z)=\sum_{\gamma \in \Gamma}\left(\log \left|\varphi_{z}(\gamma)\right|^{2}-\int_{\mathbb{D}} \xi_{r}\left(\varphi_{\zeta}(\gamma)\right) \log \left|\varphi_{z}(\zeta)\right|^{2} \frac{d A(\zeta)}{\pi\left(1-|\zeta|^{2}\right)^{2}}\right)
$$

Since $\tilde{\Delta}\left(\nu_{N} * E\right)=\nu_{N}$ is a positive measure, $\nu_{N} * E$ is subharmonic. Therefore, again since $\xi_{r}(\zeta) d A(\zeta) /\left(\pi\left(1-|\zeta|^{2}\right)^{2}\right)$ is a radial probability measure, $\nu_{N} * E \leq$ $\nu_{N} * E * \xi_{r}$, i.e., $w_{N} \leq 0$. It follows that $w \leq 0$. Since $v=\frac{p}{2}\left(w d A * \chi_{\epsilon}\right)$, this implies the right hand side of (2).

Turning our attention now to (3), we wish to show first that there exists a constant $E_{r}>0$ such that for every $\gamma \in \Gamma$,

$$
\left.|w(z)-\log | \varphi_{z}(\gamma)\right|^{2} \mid \leq E_{r}
$$

whenever $z \in \Delta(\gamma, \sigma)$, where $\sigma=\delta(\Gamma) / 2$. By the above remarks, and since Γ is uniformly discrete, there exists an integer N, depending only on r, such that

$$
w(z)=\sum_{j=0}^{N}\left(\log \left|\varphi_{z}\left(\gamma_{j}\right)\right|^{2}-\int_{\mathbb{D}} \xi_{r}\left(\varphi_{\zeta}\left(\gamma_{j}\right)\right) \log \left|\varphi_{z}(\zeta)\right|^{2} \frac{d A(\zeta)}{\pi\left(1-|\zeta|^{2}\right)^{2}}\right)
$$

where $\gamma_{0}=\gamma$ and $\gamma_{1}, \ldots, \gamma_{N}$ are the members of Γ in $\Delta\left(\gamma, \frac{r+\sigma}{1+r \sigma}\right)$. It follows that

$$
\begin{aligned}
w(z)-\log \left|\varphi_{z}(\gamma)\right|^{2}=- & \int_{\mathbb{D}} \xi_{r}\left(\varphi_{\zeta}(\gamma)\right) \log \left|\varphi_{z}(\zeta)\right|^{2} \frac{d A(\zeta)}{\pi\left(1-|\zeta|^{2}\right)^{2}} \\
& +\sum_{j=1}^{N} \log \left|\varphi_{z}\left(\gamma_{j}\right)\right|^{2} \\
& \quad-\sum_{j=1}^{N} \int_{\mathbb{D}} \xi_{r}\left(\varphi_{\zeta}\left(\gamma_{j}\right)\right) \log \left|\varphi_{z}(\zeta)\right|^{2} \frac{d A(\zeta)}{\pi\left(1-|\zeta|^{2}\right)^{2}}
\end{aligned}
$$

Now, for any $t \in \Gamma$ the integral

$$
I_{t}=\int_{\mathbb{D}} \xi_{r}\left(\varphi_{\zeta}(t)\right) \log \left|\varphi_{z}(\zeta)\right|^{-2} \frac{d A(\zeta)}{\pi\left(1-|\zeta|^{2}\right)^{2}}
$$

may be estimated as follows:

$$
\begin{aligned}
I_{t} & \leq \frac{1}{c_{r}} \int_{\frac{1}{2}<\left|\varphi_{\zeta}(t)\right|<r} \log \left|\varphi_{\zeta}(t)\right|^{-2} \log \left|\varphi_{z}(\zeta)\right|^{-2} \frac{d A(\zeta)}{\pi\left(1-|\zeta|^{2}\right)^{2}} \\
& \leq \frac{1}{c_{r}} \log 4 \int_{\Delta(z, 1 / 2)} \log \left|\varphi_{z}(\zeta)\right|^{-2} \frac{d A(\zeta)}{\pi\left(1-|\zeta|^{2}\right)^{2}}+\log 4 \int_{\mathbb{D}} \xi_{r}\left(\varphi_{\zeta}(t)\right) \frac{d A(\zeta)}{\pi\left(1-|\zeta|^{2}\right)^{2}} \\
& =\frac{2}{c_{r}} \log 4 \int_{0}^{1 / 2} \frac{s \log s^{-2}}{\left(1-s^{2}\right)^{2}} d s+\log 4=: D_{r}
\end{aligned}
$$

We thus obtain that

$$
\begin{aligned}
&\left.|w(z)-\log | \varphi_{z}(\gamma)\right|^{2} \mid \leq\left|I_{\gamma}\right|+\sum_{j=1}^{N} \log \left|\varphi_{z}\left(\gamma_{j}\right)\right|^{-2}+\sum_{j=1}^{N}\left|I_{\gamma_{j}}\right| \\
& \leq D_{r}(N+1)+N \log \sigma^{-2}=: E_{r} \\
& 7
\end{aligned}
$$

Next, we need to estimate the convolution product

$$
F_{\epsilon}(z)=\left(\log \left|\varphi_{\gamma}(\cdot)\right|^{2} d A * \chi_{\epsilon}\right)(z)=\frac{t}{\epsilon^{2}} \int_{\Delta(0, \epsilon)} \log \left|\varphi_{\gamma} \circ \varphi_{z}(\zeta)\right|^{2} \frac{d A(\zeta)}{\pi\left(1-|\zeta|^{2}\right)^{2}}
$$

It is easy to verify that, with $u=\varphi_{z}(\gamma)$,

$$
\varphi_{\gamma} \circ \varphi_{z}(\zeta)=\lambda \varphi_{u}(\zeta)
$$

where $|\lambda|=1$. Thus, changing variables, we have

$$
F_{\epsilon}(z)=\frac{t}{\epsilon^{2}} \int_{\Delta(u, \epsilon)} \log |\zeta|^{2} \frac{d A(\zeta)}{\pi\left(1-|\zeta|^{2}\right)^{2}}
$$

Then

$$
\begin{aligned}
F_{\epsilon}(z)-t \log \epsilon^{2} & =\frac{t}{\epsilon^{2}} \int_{\Delta(u, \epsilon)} \log \left|\frac{\zeta}{2 \epsilon}\right|^{2} \frac{d A(\zeta)}{\pi\left(1-|\zeta|^{2}\right)^{2}}+\frac{t}{\epsilon^{2}} \log 4 \epsilon^{2} \int_{\Delta(u, \epsilon)} \frac{d A(\zeta)}{\pi\left(1-|\zeta|^{2}\right)^{2}}-t \log \epsilon^{2} \\
& =4 t \int_{\frac{1}{2 \epsilon} \Delta(u, \epsilon)} \log |\zeta|^{2} \frac{d A(\zeta)}{\pi\left(1-4 \epsilon^{2}|\zeta|^{2}\right)^{2}}+\frac{t}{\epsilon^{2}} \log 4 \epsilon^{2} \frac{\epsilon^{2}}{1-\epsilon^{2}}-t \log \epsilon^{2} \\
& =4 t \int_{\frac{1}{2 \epsilon} \Delta(u, \epsilon)} \log |\zeta|^{2} \frac{d A(\zeta)}{\pi\left(1-4 \epsilon^{2}|\zeta|^{2}\right)^{2}}+t \frac{\log 4}{1-\epsilon^{2}}+t \frac{\epsilon^{2} \log \epsilon^{2}}{1-\epsilon^{2}}
\end{aligned}
$$

The second line follows from a change of variables and the fact that the hyperbolic area of a disk of radius ϵ is $\frac{\epsilon^{2}}{1-\epsilon^{2}}$. Since $|u|<\epsilon, \frac{1}{2 \epsilon} \Delta(u, \epsilon) \subseteq \mathbb{D}$, and so the absolute value of the integral in the last line is bounded by

$$
\frac{1}{1-4 \epsilon^{2}} \int_{\mathbb{D}} \log \frac{1}{|\zeta|^{2}} d A(\zeta)
$$

which is seen to converge. We thus have a constant C such that for sufficiently small ϵ,

$$
\left.|\log | \phi_{\gamma}(\cdot)\right|^{2} d A * \chi_{\epsilon}(z)-t \log \epsilon^{2} \mid \leq C, \quad \text { whenever }\left|\phi_{\gamma}(z)\right|<\epsilon
$$

Therefore, we have that for $\left|\varphi_{\gamma}(z)\right|<\epsilon$,

$$
\begin{aligned}
\left|w d A * \chi_{\epsilon}(z)-t \log \epsilon^{2}\right| \leq & \left.\left|w d A * \chi_{\epsilon}(z)-\log \right| \varphi_{\gamma}(\cdot)\right|^{2} d A * \chi_{\epsilon}(z) \mid \\
& +\left.|\log | \varphi_{\gamma}(\cdot)\right|^{2} d A * \chi_{\epsilon}(z)-t \log \epsilon^{2} \mid \\
\leq & D_{r}+M=: C_{r}
\end{aligned}
$$

Since $v=\frac{p}{2}\left(w d A * \chi_{\epsilon}\right)$, the proof of (3) is complete.

Finally, we wish to prove the left inequality of (2). First, if $\left|\varphi_{z}(\gamma)\right|<\delta(\Gamma) / 2$ for some $\gamma \in \Gamma$, then (3) gives a universal lower bound for $v(z)$. On the other hand, if z is isolated away from Γ, then a look at the way w was estimated above shows that $v(z)$ is bounded from below by a negative number of even smaller modulus. This completes the proof.

Proof of Lemma 2. Let us note that the right hand side of (4) is

$$
\int_{\mathbb{D}} \frac{|h(z)|^{p} e^{-\psi(z)} \nu_{\epsilon}(z)}{1-|z|^{2}} d A(z)
$$

We set $U=|h|^{p} e^{-\psi}$. Then $\log U+\psi=p \log |h|$ is a subharmonic function. Thus

$$
0 \leq \Delta \log U+\Delta \psi=\frac{1}{U} \Delta U-\frac{1}{U^{2}}\left|U_{z}\right|^{2}+\Delta \psi \leq \frac{1}{U} \Delta U+\Delta \psi
$$

It follows from the nonnegativity of U and the estimate (1) on $\tilde{\Delta} \psi$ above, that

$$
\tilde{\Delta} U \geq-U \tilde{\Delta} \psi \geq-\frac{p}{2} U \nu_{\epsilon}+U \frac{\delta}{2}
$$

Dividing by $1-|z|^{2}$ and integrating yields

$$
\frac{\delta}{2} \int_{\mathbb{D}} \frac{U(z)}{1-|z|^{2}} d A(z) \leq \frac{p}{2} \int_{\mathbb{D}} \frac{U(z)}{1-|z|^{2}} \nu_{\epsilon}(z) d A(z)+\int_{\mathbb{D}}\left(1-|z|^{2}\right) \Delta U(z) d A(z)
$$

We would like to show that the second integral on the right is nonpositive. If U were compactly supported, we could use integration by parts to shift the Laplacian to $1-|z|^{2}$. Since $\Delta\left(1-|z|^{2}\right)=-1$ and $U \geq 0$, we would be done. So instead, one "cuts things off" as follows. Let $\chi_{t} \geq 0,0 \ll t<1$ be a function which is identically one on $[0, t]$, supported compactly in $[0,1)$, with additional properties to be described shortly. Then

$$
\int_{\mathbb{D}}\left(1-|z|^{2}\right) \chi_{t}(|z|) \Delta U(z) d A(z)=\int_{\mathbb{D}} \Delta\left(\left(1-|z|^{2}\right) \chi_{t}(|z|)\right) U(z) d A(z)
$$

Recalling that on radial functions,

$$
\Delta=\frac{1}{4}\left(\partial_{r}^{2}+\frac{1}{r} \partial_{r}\right)
$$

one computes that

$$
\Delta\left(\left(1-|z|^{2}\right) \chi_{t}(|z|)\right)=-\chi_{t}(|z|)-|z| \chi_{t}^{\prime}(|z|)+\left(1-|z|^{2}\right) \Delta \chi_{t}(|z|)
$$

One then has

$$
\int_{\mathbb{D}}\left(1-|z|^{2}\right) \chi_{t}(|z|) \Delta U(z) d A(z)=\int_{\mathbb{D}}-\chi_{t}(|z|) U(z) d A+I_{t}
$$

where

$$
J_{t}=-\pi \int_{\mathbb{D}}\left(\left(1-|z|^{2}\right)^{2}|z| \chi_{t}^{\prime}(|z|) U(z)+\left(1-|z|^{2}\right) \tilde{\Delta} \chi_{t}(|z|)\right) \frac{d A(z)}{\pi\left(1-|z|^{2}\right)^{2}}
$$

Now, by Lemma 1 and the hypotheses on h, U is integrable with respect to the Poincaré area, and thus with respect to Euclidean area. Hence as $t \rightarrow 1$,

$$
\int_{\mathbb{D}} \chi_{t}(|z|) U(z) d A(z) \rightarrow \int_{\mathbb{D}} U(z) d A(z) \geq 0
$$

We claim that with a good choice of χ_{t}, the integral $J_{t} \rightarrow 0$ as $t \rightarrow 1$. To see this, simply choose χ_{t} so that it has bounded invariant Laplacian, uniformly in t. (Examples of this are easy enough to construct. For instance, let f be a smooth function on the nonnegative real line, which is supported on $[0,1 / 2]$ and is identically 1 on $[0,1 / 4]$. Then just take

$$
\chi_{t}(|z|):=f\left(\frac{|z|^{2}-t}{1-\frac{1+t}{2}}\right)
$$

The boundedness of the invariant Laplacian is easy to check.) Because χ_{t} is radial, this will also give a bound on the gradient. One can then apply the dominated convergence theorem. This completes the proof.

Proof of Lemma 3. Since ϕ is subharmonic with bounded invariant Laplacian, we may apply the Riesz decomposition theorem. Thus, if G is a fixed Green operator, one has

$$
\phi=G(\tilde{\Delta} \phi)+f_{a}
$$

for some harmonic function f_{a} in a neighborhood of the closed disc $\overline{\Delta(a, 1 / 2)}$. Let g_{a} be a holomorphic function whose real part is f_{a}, and set $q_{a}=g_{a}-g_{a}(a)$. Then

$$
\left|\phi-\phi(a)-2 \Re\left(q_{a}\right)\right| \leq K
$$

Now, let $\tilde{h}_{a}(z)=h(z) e^{-2 p^{-1} q_{a}(z)}$. Then

$$
|h(z)|^{p} e^{-\phi(z)}=\left|\tilde{h}_{a}(z)\right|^{p} e^{-\phi(z)+2 \Re\left(q_{a}(z)\right)} \leq C e^{-\phi(a)}\left|\tilde{h}_{a}(z)\right|^{p}
$$

where $C=e^{K}$. The other inequality in the lemma follows similarly.
Proof of Lemma 4. Let $z \in \Delta(a, \epsilon)$ and write $g(z)-g(a)=\int_{a}^{z} g^{\prime}(u) d u$, so that

$$
\begin{aligned}
|g(z)| & \leq|g(a)|+\left|\int_{a}^{z} g^{\prime}(u) d u\right| \\
& \leq|g(a)|+|z-a| \sup _{u \in \Delta(a, \epsilon)}\left|g^{\prime}(u)\right|
\end{aligned}
$$

which implies that

$$
\begin{aligned}
|g(z)|^{p} & \leq 2^{p}\left\{|g(a)|^{p}+|z-a|^{p} \sup _{u \in \Delta(a, \epsilon)}\left|g^{\prime}(u)\right|^{p}\right\} \\
& \leq 2^{p}\left\{|g(a)|^{p}+C|z-a|^{p} \sup _{u \in \Delta(a, \epsilon)}\left(1-|u|^{2}\right)^{-2-p} \int_{\Delta(u, \epsilon)}|g(\zeta)|^{p} d A(\zeta)\right\} \\
& \leq 2^{p}\left\{|g(a)|^{p}+C|z-a|^{p}\left(1-|a|^{2}\right)^{-2-p} \int_{\Delta(a, 1 / 2)}|g(\zeta)|^{p} d A(\zeta)\right\}
\end{aligned}
$$

The second line follows from the standard estimate (see [3], for example)

$$
\left|g^{\prime}(u)\right|^{p} \leq C\left(1-|u|^{2}\right)^{-2-p} \int_{\Delta(u, \epsilon)}|g(\zeta)|^{p} d A(\zeta)
$$

Therefore,

$$
\begin{aligned}
& \frac{1}{\epsilon^{2}} \int_{\Delta(a, \epsilon)}|g(z)|^{p} d A(z) \\
& \quad \leq C \frac{1}{\epsilon^{2}}|g(a)|^{p} \int_{\Delta(a, \epsilon)} d A(z) \\
& \quad+C \frac{1}{\epsilon^{2}}\left(1-|a|^{2}\right)^{-2-p} \int_{\Delta(a, 1 / 2)}|g(\zeta)|^{p} d A(\zeta) \int_{\Delta(a, \epsilon)}|a-z|^{p} A(z)
\end{aligned}
$$

Since

$$
\begin{aligned}
\int_{\Delta(a, \epsilon)}|a-z|^{p} A(z) & \leq \epsilon^{p} \int_{\Delta(a, \epsilon)}|1-\bar{a} z|^{p} d A(z) \\
& \leq \epsilon^{p+2}\left(1-|a|^{2}\right)^{p+2} \int_{\Delta(0, \epsilon)}|1-\bar{a} z|^{-4-p} d A(z) \\
& \leq C \epsilon^{p+2}\left(1-|a|^{2}\right)^{p+2}
\end{aligned}
$$

the result follows.

References

1. B. Berndtsson and J. Ortega-Cerdà, On interpolation and sampling in Hilbert spaces of analytic functions, J. Reine Angew. Math. 464 (1995), 109-128.
2. H. Hedenmalm, B. Korenblum and K. Zhu, Theory of Bergman spaces, Springer-Verlag, Berlin, 2000.
3. D. Luecking, Forward and reverse Carleson inequalities for functions in Bergman spaces and their derivatives, Amer. J. Math. 107 (1985), 85-111.
4. A. Schuster, On Seip's description of sampling sequences for Bergman spaces, Complex Variables Theory Appl. 42, 347-367.
5. K. Seip, Beurling type density theorems in the unit disk, Invent. Math. 113 (1994), 21-39.

Department of Mathematics, San Francisco State University, San Francisco, CA 94132

E-mail address: schuster@sfsu.edu

Department of Mathematics, University of Michigan, Ann Arbor, Mi 48109
E-mail address: varolin@math.lsa.umich.edu

[^0]: 1991 Mathematics Subject Classification. 30H05, 46E15.
 Key words and phrases. Bergman space, sampling.

