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CHRISTIAN SCHNELL

1. Introduction

Let X be a nonsingular algebraic variety. Suppose Z ⊆ X is a closed subscheme
of X, with ideal sheaf IZ .

When Z has codimension one in X, everything is as nice as it could be: IZ is
a locally free sheaf, in fact a line bundle, and Z can locally be defined by a single
equation. But starting in codimension two, all these pleasant things are usually
false. To begin with, not every closed subscheme Z of codimension r ≥ 2 can
be defined locally by r equations. When this is possible, in other words, if the
ideal sheaf IZ is locally generated by r elements, the subscheme Z is called a local
complete intersection in X (see [1, Definition on p. 185] for details). Since X is
nonsingular, any such Z is automatically Cohen-Macaulay by [1, II.8.23], and as
such has several useful properties.

Now let us suppose that Z ⊆ X is such a local complete intersection of codimen-
sion two. We first look at the local situation near points x ∈ Z. If we let (A,m) be
the local ring of the point x on X, the stalk of the ideal sheaf, I = IZ,x, can be
generated by two elements, say f, g ∈ m. Because Z is Cohen-Macaulay, f and g
form a regular sequence (see [1, II.8.21A]), and so the Koszul complex

0→ A

“−g
f

”
−−−−→ A2 (f,g)−−−→ A

is exact and resolves A/I = A/(f, g)A. Thus

0→ A

“−g
f

”
−−−−→ A2 (f,g)−−−→ I → 0

is also exact. This is the local picture.
Globally (on X), we might therefore hope to find a short exact sequence of the

form

(1) 0→ L → E → IZ → 0,

where L is a line bundle, and E a vector bundle of rank two. The purpose of this
note is to investigate under which conditions such short exact sequences exist; and,
should they fail to exist, whether there are good substitutes.

2. Extensions

One way to approach the above questions is to fix a line bundle L on X, and to
ask whether or not there are extensions of the form (1) with E locally free. There
is, of course, always the trivial extension E = L ⊕IZ ; but it is not locally free at
points of Z. Up to isomorphism, all extensions as in (1) are parametrized by the
group

Ext1(IZ ,L ) = Ext1X(IZ ,L ).
1
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The reader may consult [1, Section II.6] for details about Ext-groups and Ext-
sheaves. Concerning notation, we will typically write Ext instead of ExtX , as well
as Ext instead of ExtOX

, to make diagrams more legible. Since the ambient varietey
X is always the same, this should cause no problems.

The computation of the Ext-group above is helped by the local-to-global spectral
sequence

(2) Ep,q2 = Hp
(
X,Ext1(IZ ,L )

)
⇒ Extp+q(IZ ,L ).

In our special case, the spectral sequence degenerates into a long exact sequence;
before we can see this, however, we need to compute the Ext-sheaves that occur in
(2) and elsewhere.

Lemma 1. Let Z ⊆ X be a locally complete intersection of codimension r ≥ 2. Let
L ′ be the line bundle det NZ|X ⊗ i∗L on Z. For every q ≥ 0, we have

(3) Extq(OZ ,L ) ' Extq(OZ ,OX)⊗L '

{
L ′ if q = r,
0 otherwise;

as well as

(4) Extq(IZ ,L ) ' Extq(IZ ,OX)⊗L '


L if q = 0,
L ′ if q = r − 1,
0 otherwise.

Here NZ|X is the normal bundle to Z in X; since Z is a codimension r local
complete intersection, NZ|X 'HomOZ

(i∗IZ ,OZ) is a vector bundle of rank r on
Z. In the statement of the lemma (and elsewhere), we write OZ instead of the
more correct i∗OZ (if i : Z → X is the inclusion morphism), even when OZ is to be
viewed as a sheaf on X. The same goes for NZ|X and L ′.

Proof. Because tensoring with the line bundle L is exact, we always have the
isomorphism

Extq(F ,L ) ' Extq(F ,OX)⊗L

for any coherent sheaf F on X. The line bundle L is therefore irrelevant for the
computation we have to do.

Let us first consider (3) locally. If x ∈ X is an arbitary point, the local ring OX,x
is regular (since X is nonsingular), and because Z is Cohen-Macaulay by [1, II.8.23],
the stalk IZ,x of its ideal sheaf can be generated by a regular sequence of length r,
according to [1, II.8.21A]. On a suitable affine neighborhood U = SpecA of x in X,
the ideal I = Γ(U,IZ) is therefore generated by a regular sequence f1, . . . , fr ∈ A.
By [1, III.7.10A], the Koszul complex K• = K•(f1, . . . , fr;A) is a free resolution of
A/I = Γ(U,OZ); in other words,

(5) 0→ Kr → · · · → K0 → A/I → 0

is exact.
Since Extq(OZ ,OX)

∣∣
U

is the (coherent) sheaf associated to theA-module ExtqA(A/I,A),
we can use the special resolution (5) to obtain

Γ(U,Extq(OZ ,OX)) = ExtqA(A/I,A) = Hq
(
Hom(K•, A

)
.
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Now the Koszul complex is self-dual, and so

Hq
(
Hom(K•, A

)
' Hr−q(K•) =

{
A/I if q = r,
0 otherwise.

If a different regular sequence g1, . . . , gr generating I is used, we can always write

(g1, . . . , gr) = (f1, . . . , fr) · T

for a suitable r × r-matrix T with entries in A. This matrix induces a map of
complexes K•(f1, . . . , fr;A) → K•(g1, . . . , gr;A), and through it an isomorphism
in cohomology

Hr
(
Hom(K•(g1, . . . , gr;A))

)
→ Hr

(
Hom(K•(f1, . . . , fr;A))

)
which is multiplication by the unit detT .

The local computation shows two things. First, if q 6= r, we have Extq(OZ ,OX)
∣∣
U

=
0 for each open set U as above, and therefore Extq(OZ ,OX) = 0. Secondly, we
see that Extr(OZ ,OX)

∣∣
U

is isomorphic to OU , the isomorphism being determined
through (f1, . . . , fr). If we change to (g1, . . . , gr) = (f1, . . . , fr) ·T , the isomorphism
is changed by a factor of detT . Thus Extr(OZ ,OX) is a certain line bundle on Z
with transition functions given by detT between open sets as above. Noting that
the line bundle det

(
i∗IZ

)
has transition functions (detT )−1 for the same open

sets, we get

Extr(OZ ,OX) 'HomOZ
(det

(
i∗IZ

)
,OZ) ' det NZ|X

which leads to the isomorphism in (3).
Now (4) is a straightforward consequence of (3) and the short exact sequence

0→ IZ → OX → OZ → 0. Indeed, consider the corresponding long exact sequence
obtained by applying the functor Hom( ,L ). Its first four terms are

Hom(OZ ,L )→Hom(OX ,L )→Hom(IZ ,L )→ Ext1(OZ ,L ),

of which the first and last vanish by (3), while the second one is isomorphic to L .
Thus we get Hom(IZ ,L ) ' L as claimed. Further on in the long exact sequence,
we find (for q > 0)

Extq(OX ,L )→ Extq(IZ ,L )→ Extq+1(OZ ,L )→ Extq+1(OX ,L ),

where the first and the fourth term vanish since OX is free. Thus

Extq(IZ ,L ) ' Extq+1(OZ ,L ) '

{
L ′ if q + 1 = r,
0 otherwise,

and (4) is completely proved as well. �

As a consequence of this lemma (in the case r = 2), the spectral sequence in (2)
has only two nonzero rows on the E2-page; we therefore get a long exact sequence
whose first terms are

0→ H1(X,Hom(IZ ,L ))→ Ext1(IZ ,L )

→ H0(X,Ext1(IZ ,L ))→ H2(X,Hom(IZ ,L )),

or, using Lemma 1,

(6) 0→ H1(X,L )→ Ext1(IZ ,L )→ H0(Z,L ′)→ H2(X,L ).
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Note that if i : Z → X is the inclusion morphism, we have

i∗L
′ = i∗

(
det NZ|X ⊗ i∗L

)
' i∗(det NZ|X)⊗L

by the projection formula, which allowed us to write H0(Z,L ′) for H0(X, i∗L ′)
in (6).

Our extension problem thus leads us to sections of the line bundle L ′ = det NZ|X⊗
i∗L on Z; however, only those sections are of interest that lie in the kernel of the
map

c =
def

d0,1
2 : H0(Z,L ′)→ H2(X,L ).

We shall see later what exactly c does.

Global sections of L . For the time being, we investigate more closely the map
in the sequence (6) that associates to an extension 0→ L → E → IZ → 0 a global
section of the line bundle L ′ on Z. This map is actually an edge homomorphism
of the spectral sequence, namely the map

Ext1(IZ ,L )→ H0(X,Ext1(IZ ,L ))

and as such easy to describe explicitly.
Consider the long exact sequence obtained by applying Hom( ,L ) to our short

exact sequence; the first six terms are

0→Hom(IZ ,L )→Hom(E ,L )→Hom(L ,L )

→ Ext1(IZ ,L )→ Ext1(E ,L )→ Ext1(L ,L )

The line bundle L satisfies Hom(L ,L ) ' OX , with the identity corresponding
to the constant section 1; with this, and the results of Lemma 1, we simplify the
six-term sequence to

(7) 0→ L →Hom(E ,L )→ OX
δ−→ L ′ → Ext1(E ,L )→ 0.

Thus we get a distinguished section δX(1) of i∗L ′; as before, we view this as a
global section of L ′ on Z. This is the image of our extension under the edge
homomorphism. (The proof of this assertion is a pleasant exercise.)

A different approach. The sequence in (6) can also be obtained in a different,
more direct way (which is useful for questions of functoriality). In this second
approach, we make the short exact sequence 0 → IZ → OX → OZ → 0 our point
of departure. The corresponding long exact sequence for Ext-groups is, in part,

(8) Ext1(OZ ,L )→ Ext1(OX ,L )

→ Ext1(IZ ,L )→ Ext2(OZ ,L )→ Ext2(OX ,L ).

Using the local-to-global spectral sequence, most of these groups can be computed.
Indeed, we have on the one hand the spectral sequence

Ep,q2 = Hp(X,Extq(OX ,L ))⇒ Extp+q(OX ,L );

since Extq(OX ,L ) = 0 unless q = 0, the edge homomorphism

Extq(OX ,L )→ H0(X,Hom(OX ,L ) = H0(X,L )

is an isomorphism. On the other hand, the spectral sequence

Ep,q2 = Hp(X,Extq(OZ ,L ))⇒ Extp+q(OZ ,L ),
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together with the isomorphisms in Lemma 1, gives

Extq(OZ ,L ) ' Hq−2(X,Ext2(OZ ,L )) ' Hq−2(Z,L ′).

If we substitute into (8) above, we retrieve our previous sequence (6); indeed, since
only Lemma 1 and local-to-global spectral sequences were used in both cases (and
since the latter is functorial), it is easy to believe that the two really are the same.

Thus one possible description of the map c is through the following commutative
diagram,

Ext2(OZ ,L ) H0(X,Ext2(OZ ,L )) H0(Z,L ′)

Ext2(OX ,L ) H2(X,Hom(OX ,L )) H2(X,L )

................................................................................................................... ............' ................................................................................................................................ ............'

......................................................................................................... ............' ........................................................................................................................... ............'

..............................................................................................................
...
.........
...

..............................................................................................................
...
.........
...

c

in which the first vertical arrow is the map induced from OX → OZ .

3. Local freeness of E

Now we return to the main question, namely whether or not in an extension

0→ L → E → IZ → 0

the coherent sheaf E is locally free; or perhaps, more generally, how far E is from
being locally free. Since IZ is the same as OX outside of Z, this is really a question
about points of Z only. Luckily, there is a simple device, called Serre’s criterion,
to decide this question for us.

As before, we first consider the local situation, where Serre’s criterion is the
following algebraic statement.

Lemma 2. Let (A,m) be a regular local ring, and let M be a finitely generated
A-module. The following three statements are equivalent.

(1) M is projective (and hence free, A being a local ring).
(2) ExtqA(M,N) = 0 for every finitely generated A-module N , and all q > 0.
(3) ExtqA(M,A) = 0 for all q > 0.

Proof. The equivalence of (1) and (2) is a basic fact in homological algebra. Since
(2) clearly implies (3), we only have to show that (3) is strong enough to give us
(2) back.

Let N be a finitely generated A-module. To show that ExtqA(M,N) = 0, we take
a finitely generated free module Ak mapping onto N , and let N1 be the kernel,

0→ N1 → Ak → N → 0.

For all q > 0, the associated long exact sequence gives

ExtqA(M,N) ' Extq+1
A (M,N1).

Applying the same procedure to N1, and continuing in like manner, we find that
for all t ≥ 0,

ExtqA(M,N) ' Extq+tA (M,Nt)
for suitably chosen finitely generated modules Nt. But A is a regular local ring and
so, by Serre’s theorem, of finite global projective dimension (equal to dimA). In
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other words, all Ext-groups past dimA vanish; if we chooose t sufficiently large, we
see that ExtqA(M,N) = 0, proving (2). �

If we apply this lemma to all local rings on X (they are without exception regular
because X is nonsingular), we get the following global form of Lemma 2.

Lemma 3. Let F be a coherent sheaf on a nonsingular algebraic variety X. Then
F is locally free at a point x ∈ X if, and only if, the stalk Extq(F ,OX)x = 0 for
all q > 0.

As a consequence, F is locally free exactly on the open set⋂
q>0

(
X − Supp Extq(F ,OX)

)
(since the Ext-sheaves are zero for large q, the intersection is a finite one).

In this form, the criterion fits our situation like a glove. We already obtained,
in (7) above, the sequence

(7) 0→ L →Hom(E ,L )→ OX
δ−→ L ′ → Ext1(E ,L )→ 0.

by applying the functor Extq( ,L ) to the extension 0 → L → E → IZ → 0.
But we also get

Extq(E ,OX) ' Extq(IZ ,OX) = 0

for all q ≥ 2. By the criterion in Lemma 3, then, E fails to be locally free exactly
on the closed subset Supp Ext1(E ,OX) = Supp Ext1(E ,L ) of Z; because of (7),
this is where the section s = δX(1) of the line bundle L ′ on Z vanishes. Turned
around, E is locally free at all those points x ∈ Z where s(x) 6= 0 (and, of course,
on all of X − Z).

Reflexiveness. It should now be apparent that we cannot expect E to be locally
free in general. However, in most cases E will be at least reflexive. If we write
F∨ = Hom(F ,OX) for the dual of a coherent sheaf F , this means that the natural
map E → E ∨∨ is an isomorphism. Let us investigate under which conditions this
is the case.

We first write our extension in the form

0→ L
i−→ E

p−→ OX → OZ → 0;

in (7), we had a similar sequence, namely

0→ L
p∗−→Hom(E ,L ) i∗−→ OX

δ−→ L ′ → Ext1(E ,L )→ 0.

To compare the two, we define a morphism of sheaves φ : E → Hom(E ,L ). If
U ⊆ X is any open set, we have an exact sequence

0→ L (U) iU−→ E (U)
pU−−→ OX(U).

For a section e ∈ E (U), let φU (e) : E
∣∣
U
→ L

∣∣
U

be given by the following rule: If
V ⊆ U is an open subset, then a section e′ ∈ E (V ) is mapped to the unique section
t ∈ L (V ) such that

iV (t) = pV (e
∣∣
V

) · e′ − pV (e′) · e
∣∣
V
.

One verifies that this prescription makes φ a well-defined morphism of sheaves.
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Lemma 4. The following diagram commutes.

0 L E OX OZ 0

0 L Hom(E ,L ) OX L ′

........................................................................................ ............ ...................................................................................................................................................... ............
i ...................................................................................................................................................... ............

p
........................................................................................ ............ ........................................................................................ ............

.....................................................................................
...
.........
...

− id

.....................................................................................
...
.........
...

φ

.....................................................................................
...
.........
...

id

.....................................................................................
...
.........
...

s

........................................................................................ ............ .................................................................................................... ............
p∗

.................................................................................................... ............i∗ ........................................................................................ ............δ

Proof. Concerning the first square in the diagram, we show that for every open set
U ⊆ X,

L (U) E (U)

L (U) Hom(E ,L )(U)

................................................................................................................................................................... ............
iU

..............................................................................................................
...
.........
...

− idU

..............................................................................................................
...
.........
...

φU

....................................................................................................... ............
p∗U

is commutative. Take any section r ∈ L (U). Then p∗U (−r) is the morphism
E
∣∣
U
→ L

∣∣
U

that maps any e′ ∈ E (V ) to −pV (e′) · r
∣∣
V

. On the other hand, by
definition of φ, the morphism φU (iu(r)) sends e′ ∈ E (V ) to the unique t ∈ L (V )
with

iV (t) = −pV (e′) · iU (r)
∣∣
V

+ pV (iU (r)
∣∣
V

) · e′ = −iV (pV (e′) · r
∣∣
V

),

in other words, to t = −pV (e′) · r
∣∣
V

. Thus the square commutes.
For the second square, we similarly show that

E (U) OX(U)

Hom(E ,L )(U) OX(U)

.............................................................................................................................................................. ............
pU

..............................................................................................................
...
.........
...

idU

..............................................................................................................
...
.........
...

φU

.................................................................................................. ............
i∗U

is a commutative diagram. If e ∈ E (U), then φU ◦ iU : L
∣∣
U
→ L

∣∣
U

sends any
r ∈ L (V ) to the unique t ∈ L (V ) for which

iV (t) = pV (e
∣∣
V

) · iV (r)− pV (iV (r)) · e
∣∣
V

= iV (pV (e
∣∣
V

) · r),

and thus to t = −pV (e
∣∣
V

) · r. Thus the map φU ◦ iU is multiplication by pU (e) ∈
OX(U), showing that the second square is also commutative.

As for the third one, it commutes by definition of the section s. �

Now if the section s is such that the corresponding map s : OZ → L ′ =
det NZ|X ⊗ i∗L is injective, a bit of diagram chasing in the above diagram shows
that φ : E →Hom(E ,L ) ' E ∨ ⊗L is an isomorphism. As a consequence,

E ∨∨ '
(
E ∨ ⊗L

)∨ ' E ∨ ⊗L ' E ,

and so E is reflexive.
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Summary. Here is a summary of the results obtained so far. As usual, we write
L ′ = det NZ|X ⊗ i∗L .

(1) For every extension 0→ L → E → IZ → 0, there is a distinguished global
section s ∈ H0(Z,L ′), and s is in the kernel of the map c : H0(Z,L ′) →
H2(X,L ). Conversely, for every section in the kernel of c, there is at least
one extension, unique up to the group H1(X,L ).

(2) The coherent sheaf E is locally free precisely on the open set (X − Z) ∪
Supp s.

(3) If s : OZ → L ′ is injective, then E ' E ∨ ⊗L , and E is reflexive.
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