A CONDITION FOR AN IDEAL IN A POWER SERIES RING TO BE GENERATED BY CONSTANTS

CHRISTIAN SCHNELL

Let A be a Noetherian ring in which every nonzero integer is invertible, meaning that $\mathbb{Q} \subseteq A$. The following lemma gives a necessary and sufficient condition for an ideal in the ring of power series $A \llbracket x \rrbracket$ to be generated by elements of A. This answers a question by Yu-Han Liu.

Lemma. Let $I \subseteq A \llbracket x \rrbracket$ be an arbitrary ideal in the ring of power series over A. Then I is generated by elements of A if, and only if, it is closed under differentiation. In other words, the condition is that $f^{\prime}(x) \in I$ for every power series $f(x)$ in the ideal I.

Proof. The condition in the lemma is clearly necessary. To prove that it is also sufficient, let $I \subseteq A \llbracket x \rrbracket$ be an ideal containing the derivatives of all its members. Since the ring $A \llbracket x \rrbracket$ is Noetherian, we can choose finitely many generators $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ for the ideal I. Let us write

$$
\phi(x)=\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)^{\dagger}
$$

for the column vector determined by these n power series; similarly, we let

$$
\phi^{\prime}(x)=\left(f_{1}^{\prime}(x), f_{2}^{\prime}(x), \ldots, f_{n}^{\prime}(x)\right)^{\dagger}
$$

be the vector of derivatives. By assumption, all components of $\phi^{\prime}(x)$ are again contained in I; we can therefore find an $n \times n$-matrix $B(x)$, with coefficients in the ring $A \llbracket x \rrbracket$, such that

$$
\begin{equation*}
\phi^{\prime}(x)=B(x) \phi(x) \tag{1}
\end{equation*}
$$

We write out the the quantities in this equation in the form

$$
B(x)=B_{0}+x B_{1}+x^{2} B_{2}+\cdots \quad \text { and } \quad \phi(x)=\phi_{0}+x \phi_{1}+x^{2} \phi_{2}+\cdots,
$$

where each B_{i} (resp., each ϕ_{i}) is a matrix (resp., a vector) with entries in the ring A. The identity in (1) can be used to express $\phi_{1}, \phi_{2}, \ldots$ in terms of ϕ_{0} and the matrices B_{i}. Indeed, by equating coefficients at x^{k}, we find that

$$
k \cdot \phi_{k}=B_{0} \phi_{k-1}+B_{1} \phi_{k-2}+\cdots+B_{k-1} \phi_{0} .
$$

When applied recursively, this gives

$$
\phi_{1}=B_{0} \phi_{0}, \quad \phi_{2}=\frac{1}{2}\left(B_{0}^{2}+B_{1}\right) \phi_{0}, \quad \phi_{3}=\frac{1}{6}\left(B_{0}^{3}+2 B_{1} B_{0}+B_{0} B_{1}+2 B_{2}\right) \phi_{0}
$$

and so forth. What we find then is that

$$
\phi(x)=\phi_{0}+x B_{0} \phi_{0}+\frac{1}{2} x^{2}\left(B_{0}^{2}+B_{1}\right) \phi_{0}+\cdots=C(x) \phi_{0}
$$

[^0]for a certain $n \times n$-matrix $C(x)$ whose entries are again power series. The coefficients of $C(x)$ are universal expressions in the matrices B_{i}; their exact shape, of course, does not matter for our purposes.

To finish the proof, we observe that the matrix $C(x)$ is invertible over $A \llbracket x \rrbracket$, because $C(0)=$ id. We thus have both $\phi(x)=C(x) \phi_{0}$ and $\phi_{0}=C(x)^{-1} \phi(x)$. Since the components of the vector $\phi(x)$ generate the ideal I, it follows that the components of $\phi_{0}=\left(f_{1}(0), f_{2}(0), \ldots, f_{n}(0)\right)$ are also generators. We conclude that I is generated by elements of A, which is what we needed to show.

[^0]: Date: August 26, 2008.

