ON COMPUTING PICARD-FUCHS EQUATIONS

CHRISTIAN SCHNELL

This is a short guide to computing the Picard-Fuchs equation for the example
of the elliptic surface

(1) F(z,y,2) =t(z® + y> + 2%) — 3zyz = 0.

I will describe two different methods.

As for notation, E C P? x P! is the elliptic surface defined by this equation, E;
the fiber at t. With B = P!\ {0, 1, u, 4%}, the part of the surface that lies over B
is a fiber bundle whose fibers are smooth elliptic curves.

We know that H':? of each smooth fiber is one-dimensional. Let w = w(t) be a
holomorphic 1-form (with a dependance on t) that is defined in all smooth fibers
of E. A formula for w will be given below. As we know, the homology of nearby
fibers in the family can be identified; thus a 1-cycle < in a single fiber can also be
considered as an 1-cycle in all nearby fibers, and we can study how the periods

w(t) = / w(t),

depend on the parameter t. They satisfy a second-order differential equation, the
Picard-Fuchs equation.

I will show how to obtain this equation, how to solve it, and what the behavior
of its solutions is near ¢t = 0. On the way, I will give an introduction to Griffiths’
theory of residues. The section titled ‘The brute-force approach’ on page 2 gives a
computation assuming no background knowledge. A better method, using residues,
is presented on page 8. In addition, Theorem 2 on page 7 gives a useful formula for
computing Hodge numbers of smooth hypersurfaces in P™.

General remarks about periods. In the example of the elliptic surface (1)
above, what information is contained in the periods? As was said before, the
family of elliptic curves is locally trivial topologically—every smooth fiber is just a
torus. On the other hand, the complex structure changes from torus to torus. It
is determined by knowing the period lattice on each torus (that is, 7), and so this
change can be measured by looking at the periods.

To say this again in a different way: Each fiber E; has a two-dimensional first
cohomology group H'(E;,C) ~ C?; locally on B, these are constant (by Ehres-
mann’s fibration theorem, see p. 23 in Lamotke’s notes) and can be combined into
a rank two vector bundle on B. But inside H!(E;, C), we have the one-dimensional
subspace H':*(E;) determined by the complex structure. We can therefore ask how
this one-dimensional subspace moves around in the fixed two-dimensional space as
t changes (see Fig. 1).

Let a and 8 be the two basic cycles on the torus. The position of a point in
HY(E;,C), i.e. of a cohomology class, is measured exactly by what its values on
these two basic cycles are. Or, representing cohomology by differential forms, by
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FIGURE 1. The subspace H%!'(E;) C H'(E;,C)

its integrals (or periods) over these cycles. Now H1*(E;) is a complex line in the
direction of w(t), and slope of this line is precisely

Tz/aw(t)//ﬂw(t),

Thus knowing the periods tells us how the complex structure changes between
fibers.

We see that the Picard-Fuchs equation, by describing the behavior of the periods,
also gives us information on the complex structures in fibers.

THE BRUTE-FORCE APPROACH

Without using much theory, we can find the Picard-Fuchs equation by a brute-
force computation. This section describes how.

Normal form. The main idea is to put the equation in normal form; this depends
on the fact that each fiber is a cubic. One gets (using Mathematica, say)
1 1 1

2 2=t + —(1—4t*)2® + (P — Vo — —=t(t* - 1)%
) v =t (1= 4027 + S8 — 1o — i — 1)
Since we are interested in the behavior near ¢ = 0, coordinate changes that involve
division by ¢ are excluded. For this reason, we cannot quite get the equation in
Weierstrass form.

The holomorphic 1-form w is then

_dz dz

Yoo Jter R at)a? 4 L — e — (e —1)2

27
’/T:/(/J.
v

As said above, 7 satisfies a second-order differential equation. Thus, we are looking
for an equation of the form

?

we study its periods

&P dm
halARNY - hoidl —
72 + 7 + Cm =0,
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where B and C are rational functions of t. We determine B and C so that the

1-form
d*w dw
=~ 4+B==
=Gt w
is closed, say equal to d¢ for some function ¢. This is sufficient, because Stokes’
theorem gives us

+ Cw

d? d
_72T+B_7T+Cﬂ-=/n:/d¢= ¢ =0.
dt dt -y o By
Because the equation is in normal form, we have a fixed coordinate . We can
therefore compute the derivatives of 7 by differentiating under the integral sign.

For example,
ir_ [ d
), dt’

Computations. Now the question is how to find suitable B and C. I will not
detail the computations—they are long and best done with Mathematica. But the
idea is simple:

(A) Compute the necessary derivatives of w and write out n explicitly. It has

the form

P
0= (;'6) d,
y

with a certain polynomial P(x) of degree six in & (and coefficients in C[t]).
(B) Subtract suitable multiples of exact forms

k

()

for k =4,3,...,0, until the polynomial in the numerator has degree one.
(C) Determine B and C by setting the remaining two coefficients in the numer-
ator equal to zero and solving.

This rather laborious process gives

4¢3 — 1 2t
B=——+ d C=——;
-1 £ 1
the Picard-Fuchs equation is therefore

d27r+4t3—1 d_7r+ 2t
> Tt —1)dt  B-1

T=0.

THE COHOMOLOGY OF A HYPERSURFACE

The aim of this section is to explain how to compute the cohomology of a smooth
projective hypersurface. This will provide us with another method for getting the
Picard-Fuchs equation.

Let X C P™ be a smooth hypersurface, defined by an equation F' = 0, say. From
the Lefschetz theory, we know all of its cohomology groups except for the middle
one, H" 1(X,C). In his papers on periods of rational integrals, Griffiths showed
that the primitive part of this group, Prim™ ™ (X), can be computed using residues
of rational differential forms with poles along X.
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Main result. Let us write A} (X) for the rational p-forms on P" with poles only
along X and of order at most k. Since dA}(X) C Ai]: (X), we can define the
rational de Rham groups,
Kk(X) = AR (X) /dARZH(X).

Note that K (X) C Kgp1(X).

We also need to remember the Hodge filtration

H"YX,C) = F°H" }(X,C) D F*H" Y(X,C) D--- D F" 'H"(X,C) D0
on the complex cohomology of X. One has

FPH"™(X,C) ~ H" (X)) + H"2Y(X) + - + HP"17P(X);
the groups HP'?(X,C) are defined using forms of type (p, q) and satisfy
H??(X,C) = HP9(X,C).

We write FPPrim™ ! (X) for the primitive part of F? H*~1(X,C), i.e. for the kernel
of the Lefschetz map.
The main result is then the following.

Theorem 1. Let X C P"™ be a smooth hypersurface. There are natural residue maps
Res: K(X) — F» FH" 1(X,C). These give isomorphisms between Ki(X) and
the primitive cohomology F™*Prim" ' (X), and the following diagram commutes.

K1 (X) — Ka(X) = Ka(X)
lR,es lRes J,Res
Fr='Prim"~" (X) —— F"?Prim"™}(X) —— --- —— F°Prim""(X)

The next few sections explain this result.

Rational Forms. In his paper, Griffiths gives a general formula for rational forms
on P™. For our purposes, we only need to know what n-forms and (n — 1)-forms
look like.
A rational n-form on A™ has the shape
A(Zl, - .,Zn)
B(z1,...,2n)
for certain polynomials A and B. If we homogenize this expression, replacing z; by
2;/ 20, we obtain something like

dzy N -+ Ndz,.

Q(Zo, .- 'JZTL)
P(z0,---,2n) @

where

Q=Y (~1)zidzo A~ Adzi A Nz
=0

and P, @) are homogeneous polynomials with deg P = deg @ + degQ = deg@ +
(n+1). (To make the entire expression homogeneous of degree 0.)
If we want an n-form with a single pole of order k along X, we need to write

Q

ﬁQ

with deg@ = kdeg F' — (n + 1).
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Similarly, a rational (n — 1)-form on P” with a pole along X has the shape
i 2i A — 2 A —~ —~
o= Z(—l)”]%d%/\“‘/\dzi/\"'/\dzj/\“‘/\dzn
i<j

for Ay, ..., A, homogeneous and such that deg A; = kdeg F' — n.
For later use, we also want da. A short computation gives

Ez’ A; gf- i %ﬁ-i
(3) da = —k TR Q+ Th Q.

Residues. We need to define the residue maps used in Theorem 1. To motivate the
definition, let us consider residues as they appear in one-variable complex analysis.
Let f(z) be a meromorphic function on C, with a pole of some order at a point P.
The residue Resp f(z) of f at P is a certain number; the residue theorem states
that if T is a small loop around P, then

1

3 /Tf(z)dz = Resp f(2).

Concentrating on the 1-form f(z)dz instead of on the function f(z), we could say
that Res takes a meromorphic 1-form with a pole at P, and sends it to a 0-form on
P, which is just a number. If we view P as a hypersurface in C or in P!, we are in
a situation similar to the one above.

Now we generalize to higher dimensions. X is again a smooth hypersurface in P™.
Let w be some rational n-form with a pole along X. We define its residue, which is
a class in H" (X, C), as follows: For any (n —1)-cycle v in X, let T'(7) be a small
tube around v—X has codimension 2, and the tube is locally just v x S'. Choose
the radius of the tube small enough, so that it lies entirely in the complement of
X. We get a map

1

211 T(v)
and this defines an element Resw € Hom(H,,1(X,Z),0) ~ H" }(X,C). By its
very definition, it satisfies

1
— w= / Resw.
270 Jr(y) v

How can residues be found in practice? A simple computation, using the one-
variable residue theorem, shows that if X is defined locally by w = 0, and if w is of
the form a A dw/w + 8, with @ and 8 holomorphic, then Resw = a|x.

In general, we have to reduce the order of the pole first, and we have to glue the
local descriptions together using partitions of unity. To wit:

(A) Let w = 0 be a local equation for X. Write w as dw/w* A p for some number
E> 1.
(B) Use the formula

dw 1 dp p . dp
AL <wk1 d(wk1)> = = Dwr 1

to lower the order of the pole, modulo an exact form, at least if k& > 2.
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(C) Glue these local pieces, dp/(k — 1)w*~1, using a partition of unity, to get
a globally defined form with a pole of smaller order. Note that this form
may not be rational anymore, because the partitions of unity are not. It
can still be written as in (A), though.

(D) When a pole of order one is reached, use the formula given above, namely

Res(a/\%u-i-ﬂ) =olx.

An example to illustrate how this works. Let X C P? be the surface from (1)
(see p. 1). We compute the residue of

~Q  zdyANdz—ydx Ndz+ zdz N dy

YTFET t(@3 +y3 +23) —3wyz
which should give a holomorphic 1-form on X (more correctly, a cohomology class
in H%(X,C)). To find the residue, we need an expression involving dF/F. At
each point of X, at least one partial derivative of F' is non-zero; let us assume that
we are in a neighborhood of a point with 8F/dx # 0 and find the residue there

first. So we compute

OF OF OF

and use it to eliminate dz from w. A short computation gives

_ydz—zdy dF  3dyAdz

= oFjor "F T oFjos
Since the second term is holomorphic near our point, we get
ydz —zdy  ydz — zdy

OF/0z  3(tz® —yz)’

Technically, this gives the residue only on the open set where 0F/0z # 0. On the
other two open sets, one has similar formulas, with z,y, z permuted cyclically, and
to get the global residue, we are supposed to combine all these using a partition of
unity. But as it happens, all three already represent the same (Kéhler) differential,
because one has the relations dF = 0 and F = 0 on X. So the partitions of unity
have no real effect here—the residue is globally given by (4), with the understanding
that we should choose a different representative near points where the denominator
is zero.

(4) Resw =

Combinatorial description. We return to the computation of cohomology. The
isomorphisms in Theorem 1 above actually give a nice combinatorial description of
the middle cohomology of X.

First of all, we have

FPPrim™ (X
Prim”" '"P(X) ~ r1r'n 7& )
FrtlPrim™ *(X)
by definition of the Hodge filtration. Because of Theorem 1, this is in turn isomor-
phic to

Knp(X) AL p(X)
Knp-1(X) ~ dAZZ, (X)) + AR (X)

Now let us try to express this in terms of polynomials. Let d = deg F be
the homogeneous degree of the polynomial F' defining X. We have seen above
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that elements of A7 (X) are of the form Q€2/F"~?, hence can be represented by
homogeneous polynomials @ of degree d(n — p) — (n 4+ 1). This means that we have

an isomorphism

Q
(C[ZOJ RN Zn]d(n—p)—(n-l—l) - Az—p(X)a Q = Fn—pQ'
(The subscript refers to the grading on Clz, ..., 2,].) We can compose this with a

projection and the residue map to get

An_,(X)
v: Clzo, - - -5 2n)a(n—p)— (n+1) = = r ~ Prim?”" ' "?(X).
(=) T g T (X) + A7, ()

I claim that the kernel of this map consists exactly of polynomials from the

Jacobian ideal
OF oF
J(F) _ (8_%7 sy 8—%> .

To see why, look back at (3) on page 5: with degrees adjusted to our situation, we
find that elements of dA”~> | (X) are of the form

n—p—1
2 Ai% i %ﬁi
—(n—p-—1) Tnp Q+ Tnop1 Q,
while elements of A7, (X) are of the form
PF
Fr—p

Together, this says that the kernel of v consists exactly of all polynomials ) that
can be written as

OF 0A4;
Q:‘(”""”;Aia—%”‘; o

+ PF.

Because of Euler’s identity,

" OF
d-F:degF-F=E g_zzi;
i=0 %1

any such @ lies in the Jacobian ideal. But we can in fact get any element (of the
correct degree) from that ideal in this way, by a good choice of A; and P. So the
kernel is as claimed.

We can thus restate Theorem 1 as follows.

Theorem 2. Let X CP" be a smooth hypersurface, defined by an equation F' = 0
of homogeneous degree d. Let R(F) denote the graded ring Clzo,...,2,]/J(F).
Then

Primp’nilip(X) ~ R(F)(n—p)d—(n+1)-

The isomorphism associates to a homogeneous polynomial () the cohomology class
Res QQ/F™P.
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An Example. As an example, we compute the cohomology of the quintic threefold
X C P* defined by
F(20,...,24) = 25 + - + 2.
The only interesting piece of the cohomology is H?(X,C); since X has odd dimen-
sion, all of this group is primitive. We use Theorem 2, with d =5,n =4 and p=3
to get
H*%(X,C) ~ R(F)o ~C.

To compute H%'(X,C), we apply the result again:

H?(X,C) ~ R(F)s.

The dimension is found by counting—there are (514) = 126 homogenous polyno-

mials of degree 5 in 2z, ..., 24; the Jacobian ideal accounts for 5 -5 = 25 of them,
and therefore H?1(X,C) ~ C'°t.

THE RESIDUE APPROACH

Our second method for computing the Picard-Fuchs equation is more general.
Remember that FE is defined by (1) on page 1; we are going to derive the Picard-
Fuchs equation again, this time using residues.

Relevant facts. In our case,
Q = xzdy Ndz — ydz AN dz + zdx A\ dy.
As we have seen on page 6, the residue of Qo(t) = Q/F is a holomorphic 1-form
w(t); it was computed above as
ydz — zdy
= Q = — -
w(t) = Res Qo(t) 30a? —y2)
Let us introduce the additional 3-forms
k
d\k/Q oo (@ Y2+ 27)
= _ o = {— '4
w0 = (z) (7) = COR—Fmr—0
We let

be a period of w(t). The following facts, partly extracted from the general discussion
above, are relevant to our computation.

(A) We have the following identity:

k
d W,Et) _ Qu(t)
dt T(v)

(B) Modulo exact forms,

A%+B%+C%Q Q %+6_B+8_C
Fk (k—1)Fk1 \doxz 90y 0z)°

(C) By Theorem 2,

Hp,lip(Xa (C) = R(F)3(1—p);

where R(F) = Clz,y,2]/J(F). A homogeneous polynomial @) corresponds
to the cohomology class Res QQ1/F?~P.
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We are always going to use (C) in the following way: If we know that Res QQ/F?~?
is zero (for example because it lands in a cohomology group that is zero), then
Q € J(F).

As for proving these statements, (C) is an immediate consequence of Theorem 2.
(B) is obtained by a simple, if somewhat tedious, computation. (A) follows from
the definition of residues: We have, by definition,

(t) = [yw(t) =[yResw(t) - %/T(y)ﬂo(t).

Since T'(vy) can, locally, be chosen independent of ¢, we can now differentiate under
the integral sign to obtain (A).

Computations. To get the Picard-Fuchs equation, it is therefore sufficient to find
a relation of the form

M (t) + B(t)(t) + C (1) (t) = 0,
modulo exact forms. Then (A) shows that w(t) satisfies the differential equation

2w dm
et gt
T

+ Cnw =0.
We begin with

2(a® + 9% + 2%)°
By (D), with p = —1, its residue would land in H ~1:2(X, C), which is zero. There-
fore the numerator has to lie in the Jacobian ideal. We know that it can be written
as a combination of partial derivatives of F'; a Grobner basis calculation (for exam-
ple) shows that

3 3 3 2
3 3 312 2 +y’ +z 3xyz 3z°y [ 2z OF xOF OF
= F4 22 [ 220 L 250 g2 .
(° +9° +2°) ( : + 3 te_1\2or Tty Vo

If we substitute into the expression for 2(¢) and use (B) above, we get

6tzyz 33 Q
#_1 HB-1)F

Qu(t) = (%(aﬁ +yP+2%) +

This form has a pole of order two, and so does
z® +y° +2°
—
As H®'(X,C) is one-dimensional, (D) shows that there has to exist some B = B(t)
such that if B - Q(t) is added to the above, we get something of the form QQ/F?

with Q € J(F). We try to determine B accordingly.
Substituting, one finds that for arbitrary B,

() = Q.

2 3 6t
(2 _B) (BB rsd) 5 .3 .
Q <t )(m +y +z)+t(t3_1)m + 5Ty

After some replacements, one arrives at

2 - Bt x OF 3 4P -1
= F — - ——— — B -
C=—% Itom-nos 1 (t ) )myz
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this lies in the Jacobian ideal precisely when

3 _
B 4¢° — 1 7
t(t3 — 1)
and for this choice of B, we have
23 +1 Q x OF Q

Q2(t) +BQ1(t) = —tz(tg — I)F + t2(t3 — I)Eﬁ

Using (B) again, then replacing Q/F by Qo(t), we finally arrive at

2t
QQ(t) -+ BQl(t) = _t3 — lﬂo(t),
that is, we determined the values
43 — 1 2t
B=—— d = —.
won wd C=Ey

Of course, the result is the same as before!

SOLVING THE PICARD-FUCHS EQUATION

Now that we have found the equation
&’ N 4 — 1 dm L
a2 Tt -1 dt -1
let us solve it. We note first that it is of second-order and of the form
&Pr P(t)dr t
L, P@dr Q)

0,

a2 Tt dt P
for functions 5 5
4° — 1 2t
P=—— and = —
-1 @ t3-1
that are holomorphic near ¢ = 0. This means that the equation has a regular
singular point at t = 0. We can compute the indicial equation, which is

r(r — 1)+ P(0)r + Q(0) = r?;

the fact that it has a double root at »r = 0 means the following, according to
the general theory of such equations: The two-dimensional space of solutions is
spanned by 7 (t), which is holomorphic near ¢t = 0, and 75 (¢), which is of the form
m1(t)-logt+p(t) for some holomorphic function p(t). Note that m2(t) is multi-valued
because of the logarithmic term.

The holomorphic solution can be found as a power series; if we try

oo
m(t) =) ant",
n=0

then a short computation gives the recursive relation
ant3(n +3)% = an(n +2)(n +1).
From this, one finds that
m(t) =3 33n(n!)3t
n=0
is the holomorphic solution with value 1 at ¢ = 0.
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FiGURE 2. The position of o on the usual two-sheeted cover of E;

Geometric Interpretation. Now, using our knowledge about the monodromy
near t = 0, let us try to interpret this result. The two cycles that generate Hy (Ey, Z)
in a smooth fiber behave differently as ¢ — 0. One of them, say a, is a vanishing
cycle and invariant under the monodromy action. The other one, 8, does not vanish
and is mapped to # + 3a when ¢ moves around 0 once.

It follows that the period of w(t) corresponding to « is single-valued around
t = 0, because there is no monodromy. It therefore has to be a certain multiple
of m1(¢). On the other hand, the period for § has monodromy and must contain a
logarithmic term.

To find out what multiple of 7 (t) gives the period for a, we need to do a small
residue computation. We take a look at the normal form of F' derived in (2) on
page 2, especially at its right-hand side. As ¢t — 0, it converges to z2/4, and so one
of its zeroes moves off to infinity whereas the other two approach the origin. We
will call these zeroes a(t), b(t) and ¢(t). Note that, together with oo, they give the
four points of order two on each curve.

If we let « be the (negatively oriented) unit circle in one of the two sheets of E,
then for sufficiently small ¢, only a(t) and b(t) lie inside that circle. Fig. 2 shows
that « (which circles a(t) and b(¢)) is in fact the vanishing cycle. Computing the
integral of w(t) along a will thus give us the required period

/w(t) _/ dz
o -t \/tx3 + (1 —43)2? + 2(3 — 1)z — -t (83 — 1)2

27

In this expression, we now let ¢ — 0 to see what value the period should have at

t = 0. We obtain
2d
/ 2T 9. omi = —dnmi
st T
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by the residue theorem. It follows that the period of the vanishing cycle is given by
(3n)!
. _ . . 3n
—A4mimy () = —4mi nEZO FEn(ul) t

near t = 0.



