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Let X be the elliptic surface obtained from a general pencil of cubic curves in
P2. In other words, X is the blow-up of P2 along the nine points that form the base
locus of the pencil. A (−1)-curve on X is by definition a smooth rational curve
C ⊆ X with self-intersection C ·C = −1. In this short note, we shall determine all
such curves. We shall be using the following two maps:

X
f- P2

P1

p

?

For a point u ∈ P1, we shall let Fu = p−1(u) be the corresponding fiber of the map
p. All but twelve of the fibers are smooth cubic curves in P2; the other twelve are
cubic curves with a single node.

Classes of curves. Let Pi, for i = 1, 2, . . . , 9, be the nine points in the base locus;
the corresponding exceptional divisors in X will be denoted by Ei. The Neron-
Severi group of the surface X has rank ten; it is generated by λ = f∗[L], and the
nine classes εi = [Ei]. Thus the class of any irreducible curve C in the surface can
be uniquely written in the form

[C] = b · λ−
9∑

i=1

ai · εi,

with integer coefficients b, a1, . . . , a9. Note that b is the degree of the image f(C),
hence nonnegative; also, we have ai ≥ 0, unless C = Ei.

Conditions on (−1)-curves. Since X is a blow-up of P2, its canonical class is
given by the formula

(1) KX = f∗KP2 +
9∑

i=1

[Ei] = −3λ+
9∑

i=1

εi.

Now let C ⊆ X be a (−1)-curve; we then have C ·C = −1. Moreover, C is a smooth
rational curve, hence isomorphic to P1, and so

−2 = degKC = (KX + C) · C = KX · C + C · C = KX · C − 1

by adjunction. Thus KX · C = −1, too. Consequently, an irreducible and nonsin-
gular curve C ⊆ X is a (−1)-curve precisely when KX · C = −1 and C · C = −1.
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This translates into the following two numerical conditions:

(2)
9∑

i=1

ai = 3b− 1 and
9∑

i=1

a2
i = b2 + 1

Since every (−1)-curve can be contracted smoothly (by Castelnuovo’s criterion),
it has to be the only curve in its class; thus C is uniquely determined by the ten
parameters b, a1, . . . , a9. (But, of course, not all possible values of these actually
correspond to curves.)

Another useful fact is that every (−1)-curve on X is a section of p : X → P1.
Indeed, the class of any fiber of p is precisely equal to −KX by (1), and if C is a
(−1)-curve, then KX ·C = −1, and so C has intersection number 1 with the fibers
of p. Since it can obviously not be contained in any fiber, it has to meet every fiber
in exactly one point, and thus has to be the image of a section. (Note that each of
the twelve nodal fibers, while being rational, has self-intersection 0.)

A transformation. The general fiber of the pencil is a smooth cubic curve in P2,
and can be made into an abelian group by choosing a point (to represent the unit
element in the group). Even without such a choice, it is possible to assign to any
two points P and Q on the curve a third, by seeing where the line through the first
two meets the curve a third time. (If P = Q, the tangent line to the curve has to
be used.) We shall call this third point the composition of P and Q, and denote
it by P ∗Q. The operation ∗ is not associative, but when applied twice, it can be
expressed in terms of the group law on the cubic curve. Indeed, take any three
points P , Q, and R on a fiber, and let A = P ∗Q, and B = A ∗R. Then P , Q, and
A lie on a line, as do A, R, and B, and so we have P +Q+A = A+R+B in the
group law on the curve. Thus

B = (P ∗Q) ∗R = P + (Q−R),

independently of the choice of unit element.
This operation also allows one to compose (−1)-curves on X. Indeed, suppose

C1, C2, and C3 are three such curves; say Ci is the image of a section si : P1 → X.
Then we can form a new section s = s1 ∗ s2 by the fiberwise rule

s(u) = s1(u) ∗ s2(u).

Of course, this works just on smooth fibers, but since P1 is a smooth curve, the
resulting rational section naturally extends over the twelve points where Fu is sin-
gular. The image of s is then another (−1)-curve, and we shall denote it by the
symbol C1 ∗ C2. By applying this operation twice, we obtain a new rational curve(

C1 ∗ C2) ∗ C3 = C1 + (C2 − C3)

from any three given ones.

Formulas. Now let C be a (−1)-curve, with coefficients as in (2), and fix any
number j between 1 and 9. We shall work out the class of the curve C ′ = C ∗ Ej ,
which we write as

[C ′] = b′ · λ−
9∑

i=1

a′i · εi.

Say C is the image of a section s : P1 → X; also let us assume, to make things sim-
pler, that C is not equal to any of the exceptional divisors Ei. Then the coefficient
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ai = C ′ ·Ei is the number of points in the intersection of the two curves C ′ and Ei.
We get such a point in one of the cubic curves Fu precisely when the line through
s(u) = C ∩ Fu and Pj = C ∩ Ej meets Fu a third time in the point Pi. In other
words, we have

a′i = #
{
u ∈ P1

∣∣ Pi, Pj , and f(C ∩ Fu) are collinear in P2
}
,

at least when i 6= j. This implies that

a′i = b− ai − aj .

Indeed, the image curve f(C) in P2 is a curve of degree b, and thus intersects the
line L through Pi and Pj in exactly b points. Since C ·Ei = ai, and C ·Ej = aj , the
curve f(C) already has ai + aj points of intersection with the line L at Pi and Pj ;
thus a′i, being the number of other points of intersection, has to equal b− ai − aj .

On the other hand, the coefficients b′, a′1, . . . , a
′
9 of the curve C ′ also have to

satisfy the two conditions in (2). This allows us to determine a′j and b′ as well.
A somewhat tedious computation gives their values as a′j = 1 + b − 2aj , and b′ =
1+2b−3aj . (There is a second solution to the two equations; but as it has fractional
coefficients, it is not relevant here.) We thus have

(3) a′i = b− ai − aj +
[
i = j

]
and b′ = 2b− 3aj + 1,

where we define
[
i = j

]
to equal 1 if i = j, and to equal 0 otherwise.

Reducing the degree. We are now ready to determine all (−1)-curves on the
surface X. To begin with, there are the nine exceptional divisors E1, . . . , E9. In
addition, for each j 6= k, we can take the strict transform of the line connecting
Pj and Pk, and get a (−1)-curve. (Altogether, there are 36 of these.) In fact, this
curve is nothing but Ej ∗ Ek, as can easily be seen; numerically, this also follows
from the equations in (3) (which, however, were derived under the assumption that
C is not one of the exceptional divisors).

The question we want to investigate, is whether all (−1)-curves can be obtained
from these by the operations introduced above. As we shall see in a minute, this
is almost the case. The most transparent method is to work backwards—we start
with an arbitrary (−1)-curve C, and try to express it as a sum of various Ej .

For j 6= k, consider the new curve C ′′ = C + (Ej − Ek). Letting

[C ′′] = b′′ · λ−
9∑

i=1

a′′i · εi,

and using (3) twice, we find that

a′′i = ai +
(
aj − ak

)
+ 1 +

[
i = j

]
−
[
i = k

]
,

while the new degree is given by

b′′ = b+ 3
(
aj − ak + 1

)
.

Now we observe that the value of b′′ can be reduced by this operation, unless
|aj − ak| ≤ 1 for all j and k. We can thus do induction on the degree b′′; all that
remains to do is classify those curves C for which all |aj − ak| ≤ 1.

But this is easily done. Say m of the coefficients ai are equal to a + 1, and the
remaining 9−m are equal to a. Then (2) gives us the two conditions

m(a+ 1) + (9−m)a = 3b− 1 and m(a+ 1)2 + (9−m)a2 = b2 + 1.
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The first condition shows that m ≡ −1 modulo 3. It is then easy to solve both
equations for a and b; there are exactly three possibilities: (1) Either m = 2, in
which case a = 0 and b = 1; this means that C is the strict transform of a line
through two of the points. (2) Or m = 5, and then a = 0 and b = 2; such a C is
the strict transform of a conic through five of the points. (3) Or, again, m = 8,
and then a = −1 and b = 0, and C is one of the exceptional divisors. With a little
bit of extra work, one sees that any two curves in the same category are related to
each other by a sequence of transformations as above (for suitable choices of j and
k), but that it is not possible to pass from one of the three categories to the other.
(This follows by looking at the formula for b′′ modulo 3.)

In summary, we have proved the following result.

Proposition. Let C be an arbitrary (−1)-curve on the elliptic surface X. Then C
can be written in the form

C = C0 +
(
Ej1 − Ek1

)
+ · · ·+

(
EjN
− EkN

)
,

where C0 is one of three possible curves: (1) The strict transform of a line through
two of the nine points; (2) the strict transform of a conic through five of the nine
points; (3) one of the exceptional divisors.


