
COMPUTING COHOMOLOGY OF LOCAL SYSTEMS

CHRISTIAN SCHNELL

1. Statement of the result

Let V be a holomorphic vector bundle on a complex manifold M , with a flat
connection ∇. We shall make the following three assumptions:

(1) M is an open subset of a bigger complex manifold M .
(2) The boundary D = M \M is a divisor with normal crossing singularities.
(3) The connection ∇ is unipotent along D.

Under these assumptions, V has a canonical extension to a vector bundle V on M .
Since ∇ has at worst logarithmic poles along D, it extends to a map

∇ : V → V ⊗ Ω1
M

(logD).

Moreover, the residue of ∇ along each component of D is a nilpotent operator.
In this note, we study the cohomology of the local system H = ker∇ of flat

sections. In particular, we shall look at four complexes of quasi-coherent analytic
sheaves on M that are built from the canonical extension, and that compute co-
homology groups related to H. The simplest one is the de Rham complex for V
itself,

V
∇- V ⊗ Ω1

M

∇- V ⊗ Ω2
M

∇- · · · ∇- V ⊗ ΩnM ,

n being the dimension of M . This is a complex of vector bundles on M ; pushed
forward via the inclusion i : M → M , it becomes a complex of quasi-coherent
sheaves on M . To save space, we shall abbreviate its terms as

(1) E p = i∗

(
V ⊗ ΩpM

)
for all p ≥ 0.

Sections of E p are allowed to have essential singularities along D, and so we shall
also consider subcomplexes with better behavior. In the subcomplex with terms

(2) E p(∞D) = V ⊗ Ωp
M

(∞D),

only poles along D are allowed; in the subcomplex with terms

(3) E p(logD) = V ⊗ Ωp
M

(logD),

this is further restricted to just logarithmic poles.
Finally, the smallest complex that will be used has terms

(4) E p
hol ⊆ V ⊗ Ωp

M
,

where a section ω of V ⊗Ωp
M

is in E p
hol whenever both ω and ∇ω are holomorphic.

Each of (1)–(4) defines a complex of quasi-coherent sheaves, with the differential
given by the connection ∇. The terms in the complex (3) are actually holomorphic
vector bundles, while those in (4) are coherent sheaves. (This is immediate, since
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the condition that ω and ∇ω be holomorphic is stable under multiplication by
holomorphic functions.)

The following two theorems explain the usefulness of the four complexes.

Theorem 1. The hypercohomology of E •, of E •(∞D), and of E •(logD) computes
the cohomology of the local system H on M ; in other words,

Hp(M,H) ' Hp
(
M,E •(logD)

)
' Hp

(
M,E •(∞D)

)
' Hp

(
M,E •

)
.

Theorem 2. Let i : M →M be the inclusion map. The complex E •hol is a resolution
of the sheaf i∗H on M ; in particular, we have

Hp
(
M, i∗H

)
' Hp

(
M,E •hol

)
for all p ≥ 0.

The proof of both theorems naturally falls into two parts—the first one a local
computation of the cohomology of each complex; the second one formal arguments
with hypercohomology. We shall carry out the local computations in the next
section, and complete the proofs in Section 3.

2. Local computations

We begin our proof of Theorems 1 and 2 by doing some computations in local
coordinates. Let n = dimM be the dimension of the complex manifold M . At an
arbitrary point of M , we choose a small open neighborhood isomorphic to ∆n, with
holomorphic coordinates t1, t2, . . . , tn. Since D = M \M is a divisor with normal
crossings, this may be done in such a way that D ∩ ∆n is given by the equation
t1 · · · tr = 0. Thus we have

M ∩∆n = (∆∗)r ×∆n−r.

To simplify the exposition, we shall only consider the case when r = n; the general
case is no different from this special one, except for more cumbersome notation.

Canonical extension. Over ∆n, the canonical extension V is generated by a class
of “distinguished” sections, whose construction is as follows. Let V be a general
fiber of the vector bundle V ; it is a finite-dimensional complex vector space. The
local system H has monodromy operators T1, . . . , Tn, with Tj given by moving in a
counter-clockwise direction around the hyperplane tj = 0. By assumption, each Tj
is a unipotent endomorphism of V , and so we can define its (nilpotent) logarithm

Nj = − log Tj =
∞∑
m=1

1
m

(id−Tj)m.

On the universal cover

Hn → (∆∗)n, (z1, . . . , zn) 7→
(
e2πiz1 , . . . , e2πizn

)
,

every element v ∈ V now defines a holomorphic map s̃ : Hn → V by the rule

s̃(z) = e
P
zjNjv.

Each s̃ descends to a holomorphic section s of V on (∆∗)n, and these generate the
vector bundle V over ∆n.
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A formula for ∇s is easily obtained from this description. Indeed, we have

∇s̃ =
n∑
k=1

Nke
zjNjv ⊗ dzk,

and since 2πi · dzk = d log tk, we find that

(5) ∇s =
1

2πi

n∑
k=1

Nks⊗ d log tk.

Of course, Nks is the section corresponding to the vector Nkv.

Sections and differential. An arbitrary section σ of the quasi-coherent sheaf E p

can now be written in the form

(6) σ =
∑
I,α

σI(α) · tα ⊗
(
d log t

)
I

for a suitable choice of distinguished sections σI(α). In the summation, α =
(α1, . . . , αn) runs over all multi-indices in Zn, and I over all subsets of {1, . . . , n}
of size |I| = p. Moreover, we are using the convenient abbreviations

tα =
n∏
i=1

tαi
i

and (
d log t

)
I

=
∏
i∈I

d log ti =
∏
i∈I

dti
ti
.

Evidently, σ is a section of E p(∞D) whenever σI(α) = 0 for |α| � 0; it is a
section of the smaller bundle E p(logD), if σI(α) = 0 unless α ≥ 0. We shall see
later the condition for being a section of E p

hol .
From (5), we now get a formula for the differential ∇ in the complex. Namely,

if σ is as in (6), then

∇σ =
∑
I,α,k

(
αk +

1
2πi

Nk

)
σI(α) · tα ⊗

(
d log tk ∧

(
d log t

)
I

)
.

Thus we can write
∇σ =

∑
J,α

τJ(α) · tα ⊗
(
d log t

)
J
,

the summation being over subsets J ⊆ {1, 2, . . . , n} of size (p+ 1). The coefficients
are given by the formula1

(7) τJ(α) =
∑
k∈J

(
αk +

1
2πi

Nk

)
σJ\{k}(α) · (−1)pos(k,J).

A nice feature of (7) is that the index α is unchanged by the differential, allowing
us to treat each value of α by itself. Also note that, Nk being nilpotent, the operator

Bk = αk +
1

2πi
Nk

is invertible if, and only if, αk 6= 0.

1The symbol pos(k, J) denotes the position of k in the set J ; if J = {j0 < j1 < · · · < jp}, then

we have jpos(k,J) = k.
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Exactness. To compute the cohomology of the complexes in question, it is best
to abstract slightly. Thus we consider, in general, a complex of the form

M0 ∇- M1 ∇- M2 ∇- · · · ∇- Mn.

We shall assume that elements of Mp are given by

σ =
(
σI
)
|I|=p,

indexed by subsets I ⊆ {1, 2, . . . , n} of size p, and that the differential ∇ is given
by the formula

∇σ =
(
τJ
)
|J|=p+1

with
τJ =

∑
k∈J

(−1)pos(k,J)BkσJ\{k}.

In this general setting, Bk is allowed to be an arbitrary operator. The following
lemma gives the condition for the complex M• to be exact.

Lemma 3. If at least one of the operators Bk is invertible, then
(
M•,∇

)
is an

exact complex.

Proof. Renumbering, if necessary, we may assume that B1 is invertible. We are
going to prove that the complex is, in fact, contractible. A contracting homotopy
ε : Mp →Mp−1 may be defined2 by the following rule, for p ≥ 1:

ε(σ) =
([

1 6∈ J
]
·B−1

1 σJ∪{1}

)
|J|=p−1

A short computation shows that

∇ε(σ) =

(∑
k∈J

(−1)pos(k,J)
[
1 6∈ J \ {k}

]
·BkB−1

1 σJ∪{1}\{k}

)
|J|=p

=

([
1 ∈ J

]
· σJ +

[
1 6∈ J

]∑
k∈J

(−1)pos(k,J)BkB
−1
1 σJ∪{1}\{k}

)
|J|=p

,

while

ε(∇σ) =

[1 6∈ J] ·B−1
1

∑
k∈J∪{1}

(−1)pos(k,J)BkσJ∪{1}\{k}


|J|=p

=

([
1 6∈ J

]
· σJ −

[
1 6∈ J

]∑
k∈J

(−1)pos(k,J)BkB
−1
1 σJ∪{1}\{k}

)
|J|=p

.

It follows that ∇ε+ε∇ = id, and this shows that the complex is contractible, hence
exact. �

In the case of our complexes, with differential given by (7), the operator Bk is
invertible precisely when αk 6= 0. Applying Lemma 3 to this situation, it follows

2We are using the notation
ˆ
〈condition〉

˜
, which is defined as 1 if 〈condition〉 is true, and as 0

if 〈condition〉 is false.
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that each complex is exact whenever α 6= 0. For α = 0, we get a complex with
terms

Mp =
⊕
|I|=p

V

and differential

(8) ∇
(
σI
)
|I|=p =

(
1

2πi

∑
k∈J

(−1)pos(k,J)NkσJ\{k}

)
|J|=p+1

from the description above. Therefore, the cohomology on ∆n of E •, of E •(∞D),
and of E •(logD) is the same, and agrees with that of the complex for α = 0 just
given.

Group cohomology. We shall now compute the cohomology of the complex for
α = 0; it will turn out to be equal to the group cohomology H∗(G,V ), where
G = Zn is the fundamental group of (∆∗)n, acting by the monodromy operators
T1, . . . , Tn on the vector space V .

Lemma 4. The cohomology of the complex (8) is the group cohomology H∗(G,V ).

Proof. The group cohomology is easy to describe in this case; by definition,

H∗(G,V ) = Ext∗ZG(Z, V ),

and since ZG ' Z[T1, . . . , Tn], a free resolution of Z as a ZG-module is given by
the Koszul complex for

(
T1 − 1, . . . , Tn − 1

)
. Thus H∗(G,V ) is the cohomology of

the complex with terms
M̂p =

⊕
|I|=p

V

and differential

(9) ∇̂
(
σI
)
|I|=p =

(∑
k∈J

(−1)pos(k,J)(Tk − id)σJ\{k}

)
|J|=p+1

similar to (8). Noting that we have

Tk − id =
1

2πi
Nk ·Rk

with Rk invertible, we can define an isomorphism Mp → M̂p between the two
complexes by

σI 7→
∏
i∈I

Ri · σI .

It is easily seen to be compatible with ∇ and ∇̂, proving our claim. �

Conclusion. To conclude the local computations, we need to know the cohomology
of the local system H on (∆∗)n.

Lemma 5. We have Hp
(
(∆∗)n,H

)
' Hp(G,V ) for all p ≥ 0.

Proof. Since the universal covering space Hn of (∆∗)n is contractible, the spectral
sequence

Ep,q2 = ExtpZG
(
Hq

(
Hn,Z

)
, V
)

=⇒ Hp+q
(
(∆∗)n,H

)
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degenerates at the E2-page. This gives isomorphisms

Hp
(
(∆∗)n,H

)
' ExtpZG(Z, V ) = Hp(G,V ),

and thus proves the lemma. �

Combining the results of Lemma 4 and of Lemma 5, we get the following state-
ment.

Proposition 6. On a suitable neighborhood ∆n of each point in M , the cohomology
of each of the three complexes in (1)–(3) is isomorphic to H∗

(
M ∩∆n,H

)
.

3. Proof of the two theorems

Theorem 1 follows from the local analysis in the previous section, with just a
small dose of formal arguments about hypercohomology.

Proof of Theorem 1. Let us write A p
M for the sheaf of smooth differential p-forms

on the complex manifold M . It is a fine sheaf, and in consequence, has trivial higher
cohomology groups. Since ∇ is flat, it is a well-known result that the complex

V
∇- V ⊗A 1

M

∇- V ⊗A 2
M

∇- · · · ∇- V ⊗A n
M

is a fine resolution of the local system H = ker∇ of flat sections.
Now consider the push-forward of that complex to M , with terms

E p
A = i∗

(
V ⊗A p

M

)
;

this is a complex of fine sheaves on M . On each neighborhood ∆n considered in
the previous section, its cohomology clearly equals H∗

(
M ∩∆n,H

)
; it follows from

Proposition 6 that the complex is quasi-isomorphic to each of the three subcom-
plexes in (1)–(3). Thus we have

Hp
(
M,E •(logD)

)
' Hp

(
M,E •(∞D)

)
' Hp

(
M,E •

)
' Hp

(
M,E •A

)
.

But, at the same time,

Hp
(
M,E •A

)
' Hp

(
H0
(
M,V ⊗A •M

)
,∇
)
' Hp

(
M,H

)
,

since the complex consists of fine sheaves. Combining both isomorphisms now gives
the desired result. �

Finally, we give the proof of Theorem 2.

Proof of Theorem 2. We need to show that the complex with terms E p
hol is a reso-

lution of the sheaf i∗H on M . This is clearly a local question, and so we consider
a neighborhood ∆n of an arbitrary point of M , as above. A section σ as in (6)
belongs to E p

hol if, and only if, both σ and ∇σ are holomorphic. The first condition
means that σI(α) = 0, unless each αk ≥ 0, and αk ≥ 1 for all k ∈ I. By our
analysis in Lemma 3, the complex in question is therefore always exact if I 6= ∅,
and hence in all positive degrees.

In degree zero, on the other hand, the complex can only fail to be exact for α = 0,
which means that cohomology can only occur when σ is itself a distinguished sec-
tion, associated to some element v ∈ V . In that case, ∇σ can only be holomorphic
if Nkv = 0 for all k, and so the cohomology in degree zero is precisely the subspace
V G ⊆ V of G-invariants. Since we also have

H0
(
∆n, i∗H

)
= H0

(
(∆∗)n,H

)
= V G,
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it follows that the complex E •hol is indeed a resolution of i∗H. The assertion about
hypercohomology follows from this. �


