LECTURE 1: JANUARY 28

Overview. The purpose of this course is to give an introduction to the theory of
algebraic Z-modules. I plan to cover roughly the following topics:

— modules over the Weyl algebra A,

— Z-modules on smooth algebraic varieties

— functors on Z-modules (and how they relate to PDE)

— holonomic Z-modules, regularity (with a focus on what it means)

— b-functions, localization along a hypersurface

— 9-modules of normal crossing type (as a class of examples)

— Riemann-Hilbert correspondence (with proofs in the normal crossing case)
— some applications, either to representation theory or to algebraic geometry

The website for the course,
http://www.math.stonybrook.edu/~cschnell/mat615,

contains a list of useful references.

Introduction. Very briefly, Z-modules were invented in Japan (by Mikio Sato,
Masaki Kashiwara, and others) and France (by Alexander Grothendieck, Zogman
Mebkhout, and others). It has its origins in the field of “algebraic analysis”, which
means the study of partial differential equations with algebraic tools. The theory
of algebraic Z-modules was further developed by Joseph Bernstein.

Systems of linear equations. Z-modules arise naturally from systems of linear
partial differential equations. To get a better understanding of how this works, let
us first look at the example of a system of linear equations

q
(1.1) D aijx;=0, i=1,...p,
j=1

with coefficients a; ; in a field K (such as R or C). In linear algebra, one usually
transforms such a system in various ways, for example by making a substitution in
the unknowns z1,..., x4, or by taking linear combinations of the equations. One
can associate to the system in (1.1) a single K-vector space that is invariant under
such transformations. Consider the linear mapping

p p
Y2 Kp — Kq; So(ylv"'ayp) = <Zyiai,17"‘7zyiai,q> )
=1 i=1

built from the coefficient matrix of the system in (1.1), and define the K-vector
space V = kerp = K7/p(KP). It sits in the exact sequence

K? —* K1 "V 0,
and the solution space to (1.1) can be recovered from V as
Homg(V,K)={f: K> K | fop=0}.

Indeed, a linear mapping from V to K is the same thing as a linear mapping
f: K9 — K whose composition with ¢ is equal to zero.

Kr ¥ K1 T,V
xlf/
K
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Now f is uniquely determined by the ¢ scalars z; = f(e;) € K, where e; denotes
the j-th coordinate vector in K?. Since f o ¢ = 0, we get

E yiaijx; =0
4,J

for every (y1,...,yp) € KP. This means exactly that (x1,...,24) € K9 is a solution
to the system of linear equations in (1.1).

The same construction can be applied to systems of linear equations with coef-
ficients in other rings. For example, let R = K[x1,...,2,] be the polynomial ring
in n variables, and consider the system of linear equations

q
(1.2) > figuj =0, i=1,..,p,
j=1

with polynomial coefficients f; ; € R. As before, we can associate to the system an
R-module M = coker ¢, defined as the cokernel of the morphism of R-modules

p p
2 RV — Rq? @(Ula"va) = (Zvifi,la"'7zvifi,q> )
i=1 i=1

and the space of solutions (ui,...,us) € R? to the system in (1.2) can be recov-
ered from M as Hompg (M, R). This formulation has the advantage that we can
describe solutions over other R-algebras S, such as the ring of formal power series
K{[[z1,...,x,]], in the same way, by taking Homp (M, S).

Note. The polynomial ring R is noetherian, meaning that every ideal of R is finitely
generated. This implies that every submodule of a finitely generated R-module
is again finitely generated. In particular, every finitely generated R-module is
isomorphic to the cokernel of ¢: RP — RY for some p,q € N. Studying systems
of linear equations with coefficients in R is therefore the same thing as studying
finitely generated R-modules.

Systems of linear partial differential equations. We now apply the same
construction to systems of linear partial differential equations with coefficients in
the polynomial ring. The role of the polynomial ring R = K|[z1,...,x,] is played
by the Weyl algebra A,, = A, (K). The elements of A,, are linear partial differential
operators of the form

i oin
P = Z filw,in(;vl,...,x ) .. s

n T b
oryt Oz

1s-esln

where f;, ;. € R, and the sum is finite. To simplify the notation, we put 9; =
0/0x;, and write the above sum in multi-index notation as

P = Z Ca,,gl‘aaﬁ,
a,B

where % = 281 ... 29 and 8% = 87" ... 95", We can multiply two differential

operators in the obvious way, using the relations
(1.3) [zi,25] =0, [0;,0;] =0, [0;,2;] = bi 5,

where 0; ; = 1 if i = j, and ¢; ; = 0 otherwise. The relation [0;,9;] = 0 expresses
the equality of mixed partial derivatives; the relation [0;, z;] = d; ; is a consequence
of the product rule:

0 - aJJ]‘ .
%(xjf) = szf +z;

of P
%j = 6Z,Jf +x]%f



Multiplication of differential operators turns A4,, into a non-commutative ring. Dif-
ferential operators naturally act on polynomials, by the usual (algebraic) rules for
computing derivatives of polynomials; if we denote the action of a differential op-
erator P on a polynomial f by the symbol Pf, we obtain a linear mapping

A, xR— R, (P f)— Pf.

This makes the polynomial ring R into a left module over the Weyl algebra A,,.
The action on polynomials leads to the following more intrinsic description of
the Weyl algebra: A,, is the smallest subring of the ring of K-linear endomorphisms

HomK(K[xl, coy Zn), K21, . . ,xn])
that contains K|x1,...,x,] and the partial derivative operators 0y, ...,0,. Alge-
braically, one can also describe the Weyl algebra by generators and relations: A,, is
the non-commutative K-algebra generated by the 2n symbols z1,...,x,,01,..., 0,

subject to the relations in (1.3).
Now suppose that we have a system of linear partial differential equations

q
(1.4) > Piju;=0, i=1,...,p,
j=1

with differential operators P; ; € A,. As before, we consider the morphism of left
A,,-modules

14 14
P Az;L - Ag},? @(Qla"'aQP) = (ZQiPi,la~~'7ZQiPi,q> )
i=1 i=1

and associate to the system in (1.4) the left A,-module
M = coker ¢ = AL /p(AP).

Note that it becomes necessary to distinguish between left and right A,-modules,
because A, is non-commutative. We can again recover the solutions to the system
in (1.4) directly from M, as follows. Let S be any commutative K-algebra with
an action by differential operators, meaning that S is a left A,-module. Exam-
ples are the polynomial ring R = Klx1,...,x,], the ring of formal power series
K([[z1,...,2,]], etc. For K = R or K = C, we might also be interested in the ring
of convergent power series, the ring of C*°-functions, etc. In any of these examples,
the solutions in S are given by the formula

Homy, (M,S) ={f: A% =S| fop=0}

Indeed, a morphism of left A,,-modules from M to S is the same thing as a morphism
of left A,-modules f: A? — A,, whose composition with ¢ is equal to zero.

Ar 2 A1 T M
le/
S

Once again, f is uniquely determined by the ¢ functions u; = f(e;) € S, where ¢;
denotes the j-th coordinate vector in A?. Since f o =0, we get

Z QP ju; =0
%,

for every (Q1,...,Qp) € AP, and so (ug,...,us) € S? solves the system of linear

n’

partial differential equations in (1.4).



Note. The Weyl algebra A,, is again left noetherian, meaning that every left ideal
of A, is finitely generated. (We will prove this next time.) This implies that
every submodule of a finitely generated left A,-module is again finitely generated.
Studying systems of linear partial differential equations with coefficients in R is
therefore the same thing as studying finitely generated left A,-modules.

One advantage of this point of view is that we can describe the solutions to
the system in a uniform way, by applying the solution functor Hom 4, (M, —). We
shall see later on that the solution functor is not exact (in the sense of homological
algebra), and that it is natural to consider its derived functors. We shall also see
that for so-called “regular holonomic” systems, one can recover the system up to
isomorphism from its solutions (in the derived sense); this is the content of the
famous Riemann-Hilbert correspondence.

Example 1.5. The exponential function u = e® solves the ordinary differential
equation ' = u, which we can write in the form (9—1)u = 0. The corresponding left
Aj-module is A;/A;(9 — 1). The function v = €'/ solves the ordinary differential
equation —z%v’ = v, whose associated Aj-module is A;/A;(2%0 + 1). Later on,
when we discuss regularity, we shall see how the essential singularity of v at the
point z = 0 affects the properties of the A;-module A;/A; (220 + 1).

Another advantage is that we can transform the system in (1.4) without changing
the isomorphism class of the A,-module M.

Ezample 1.6. Consider the second-order equation a(z)u’” + b(z)u’ + c¢(z)u = 0,
where a,b,¢ € K[z]. A standard trick is to transform this into a system of two
first-order equations uj — ug = 0 and auf + bus + cu; = 0, by setting u; = u and
uy = u'. The first-order system leads to the left A;-module

o —1
M, = coker (A? M A%)

and the second-order system to the left A;-module
Mg = Al/Al(aﬁz + bo + C)
Can you find an isomorphism between M7 and M as left A;-modules?

Left and right A,-modules. I already mentioned that it is necessary to distin-
guish between left A,,-modules and right A,,-modules, due to the non-commutativity
of the Weyl algebra. Left A,,-modules naturally arise from functions, whereas right
A,-modules arise naturally from distributions. Let us look at the example of dis-
tributions in more detail. The R-algebra C5°(R™) of all compactly supported C°-
functions on R™ is naturally a left A, (R)-module; as before, we denote the action
of a differential operator P € A, on a test function ¢ € C§°(R™) by the symbol
Py. With the topology of uniform convergence of all derivatives on compact sub-
sets, C5°(R™) becomes a topological R-vector space, and we denote by Db(R™) its
topological dual. In other words, a distribution D € Db(R") is a continuous linear
functional from C§°(R"™) to R. We write the natural pairing between distributions
and test functions as

Db(R™) x C°(R™) = R, (D, ) — (D, ).

In analysis, it is also common to use the more suggestive notation

(D, p) = A Dy dy,
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where dy is Lebesgue measure. Using formal integration by parts, Db(R™) naturally
becomes a right A,-module, by defining

(DP,¢) = (D, Py)
for D € Db(R"), P € A,,, and ¢ € C§°(R"™). For example, D0; is the distribution

obtained by applying D to the test function dy/dx;. If we take any distribution,
and act on it by differential operators, we obtain a right A,,-module inside Db(R™).

Ezample 1.7. Counsider the delta function §; € Db(R"™), defined by (dg, ¢) = (0).
Clearly, dpx1 = -+ = dpx,, = 0, and in fact, one can show that the right A,-module
generated by Jg is isomorphic to

Anf(x1, ..., x0)A,.
As an R-vector space, this is just R[04, ..., 0], but the A,-action is nontrivial.
Exercises.

Ezxercise 1.1. Construct an isomorphism between the two left A;-modules M; and
M in Example 1.6.

FEzercise 1.2. Show that if P € A, (R) satisfies (Py)(0) = 0 for every test function
v € C(R™), then P € (z1,...,2n)An.
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Recall that the Weyl algebra A,, = A, (K) is generated by x1,...,x,,01,. .., 0,
subject to the relations

[:17771']} :07 [61,8‘7} :07 [alax]] :6i,ja
Today, we begin studying A,-modules in detail. One interesting difference between

modules over A, and modules over the polynomial ring R = Klz1,...,x,] is the
absence of nilpotents.

Ezample 2.1. As a K[r]-module, K[z]/(2?) is not isomorphic to two copies of K,
because the action by x is nilpotent but not trivial. On the other hand, it is a fun
exercise to show that the left A;-module A;/A;2? is actually isomorphic to two
copies of Ay /A;x.

Left and right A,,-modules. The crucial difference between the Weyl algebra and
the polynomial ring is that A, (K) is non-commutative. This means that we need
to distinguish between left and right A,,-modules. In fact, there are no interesting
two-sided A,,-modules.

Proposition 2.2. A,(K) is a simple algebra, meaning that the only two-sided
ideals of An(K) are the zero ideal and A, (K).

Proof. This follows from the commutator relations in A,,. We can write any P € A,,

in multi-index notation as
P= an,ﬁxaaﬁ.
a,B

One can easily show by induction that

0;,2°0°] = ;z® "% 9% and [x,2°0°] = —B;20° %,
where e; € N” is the j-th coordinate vector. Now suppose that I C A,, is a nonzero
two-sided ideal. Choose any nonzero P € I, and write it as P = 3" cq gz*0”. Let

m =max{ o | cap #0}
be the largest power of x1 that appears in P. If m > 1, then by the formulas from
above, the commutator
[01,P) = 1P — POy
is nonzero, and the maximal power of x; that appears is now m — 1. Because I is
a two-sided ideal, we still have [0y, P] € I. After repeating this operation m times,
we obtain a nonzero element P; € I in which z; does not appear. Continuing

in this way, we can successively eliminate z1,...,x, by taking commutators with
01, ...,0n, and then eliminate 01, ...,0d, by taking commutators with z1,...,x,,
until we arrive at a non-zero constant contained in I. But then I = A,,(K). (]

For reasons of notation, we usually work with left A,-modules. This is no loss
of generality, because one can convert left modules into right modules and vice
versa. Before I explain this, let me first show you how to describe left (or right)
A,-modules in very simple terms.

Ezample 2.3. A left A,,-module is the same thing as a K[z, ..., z,]-module M, to-
gether with a family of commuting K-linear endomorphisms ds, ..., d, € Endg (M),
subject to the condition that

dl(xjm) — xjdz(m) = 5i7jm

for every m € M and every i,j = 1,...,n. From this data, we can reconstruct the
left A,-module structure using the generators and relations for the Weyl algebra.
Indeed, if we define 9;m = d;(m) for m € M, then the condition on di, ..., d, says



e

exactly that [0;,0;] and [0;,x;] — J; ; act trivially on M, and so we obtain a left
A, -module.

Ezample 2.4. A right A,-module is a K[x1,...,z,]-module M, together with a

family of commuting K-linear endomorphisms dy, ..., d, € Endg (M), such that
dz(x]m) — x]dz(m) = —5i’jm

for every m € M and every i,j = 1,...,n. From this data, we can reconstruct

the right A,-module structure by setting md; = d;(m) for m € M. As before, the

condition on di,...,d, says that [0;,9;] and [0;, z;] — 0; ; act trivially on M, and

so we obtain a right A,-module.

Since the only difference in the two descriptions is the minus sign, we can easily
convert left A,-modules into right A,-modules (and back) by changing the sign.

Ezample 2.5. Suppose that M is a left A,-module. Define dy,...,d, € Endg (M)
by setting d;(m) = —9;m for m € M. The sign change means that

dz(xjm) — :cjdl(m) = 781(1‘]771) -+ zjé)im = 7[81',1']‘} = fém-m,

and so this defines a right A,-module structure on M. Concretely, a differential
operator P =Y ¢, g2*0” now acts on an element m € M as

mP = o(P)m,

where o(P) = 3" (~1)1lc, s2%9” and |8| = B1 + - - - + B,. The resulting involution
o: A, = A, also swaps the left and right module structure on A, itself.

Filtrations on algebras. Recall that the order of a partial differential operator
P =Y cqpr*0” € A,(K) is the maximal number of partial derivatives that appear
in P; in symbols,

ord(P) :max{51 +--+ By | Ca.B 7&0}

Because of the relation [0;, z;] = d; j, the commutator between a differential opera-
tor of order d and a differential operator of order e is a differential operator of order
at most d + e — 1. In this sense, the Weyl algebra is only mildly non-commutative.
In fact, A, is an example of a filtered algebra, in the following sense.

Definition 2.6. Let R be a K-algebra, not necessarily commutative. A filtration
F, = F,R on R is a sequence of linear subspaces

{0}=F,1CFRCF C---CR,
such that Fj - Fj, C Fji, and R = J Fj.

In particular, FyR is a subalgebra of R, and each Fi R is a left (and right) module
over FyR. In many cases of interest, the Fj, R are finitely generated as Fjy R-modules.

Example 2.7. The order filtration on A, is defined by
Foia, = {P =3 o 20’ ‘ ord(P) = || < j}

In this case, F$™A,, = Klz1,...,7,], and each Fj’-"rdAn is a finitely generated
K[x1,...,x,]-module. Note that we have F;’rd CFerd = F;’f}c for every j, k > 0.

Example 2.8. The Bernstein filtration on A, is defined by
FBA, = {p =3 o patd” ‘ o] + 18] < j }

In this case, FP A, = K, and each F jB A, is a K-vector space of finite dimension.
Note that we have FJB CFP = Fﬁ_k for every j, k > 0.



The advantage of the Bernstein filtration is that each F jB is finite dimensional.
The advantage of the order filtration is that it generalizes to the case of Z-modules
on arbitrary smooth algebraic varieties (whereas the Bernstein filtration only makes
sense on affine space).

Definition 2.9. Given a filtration FyR on a K-algebra R, the associated graded
algebra is defined as

ng R = @Fj/ijb
§=0
It inherits a multiplication from R in the natural way: for r € F}; and s € F}, the
product (r+ Fj_1) - (s + Fx—1) =15+ Fj1x_1 is well-defined.

For both the order filtration and the Bernstein filtration, the associated graded
algebra of A, is simply the polynomial ring in 2n variables. In particular, the
associated graded algebra is commutative.

Proposition 2.10. Let A, = A, (K).
(a) If FoA, is the Bernstein filtration, then

grf A, 2 K[zy,...,2,,01,...,04],
with the usual grading by the total degree in x1,...,2p,01,...,0p.
(b) If F A, is the order filtration, then
grf A, 2 Klzy,...,2,,01,...,0,],
with the grading by the total degree in 01, ..., 0.

Proof. We prove this only for the Bernstein filtration, the other case being similar.
From the definition of the Bernstein filtration as

Fy={P=3capz®® | la|+18/ < j },

it is obvious that 1, ..., 2y, 01,...,0, € F,. For clarity, we use Z1,...,Zn,01,...,0p
to denote their images in F1/Fp. It is also obvious that Fj/F;_; is generated by all
monomials of degree j in T1, ..., Ty, 01,...,0,. It remains to analyze the relations.

Obviously, Z1,...,Z, commute, and 01, ...,J, commute. Since
&-xj — xjé)l- = [&,ycj} = 51'7j € Iy,

we have {Z:Ej —T; 0; = 0 as elements of Fy /Fy. Therefore, all 2n elements commute
with each other; as there are no further relations, we obtain the desired isomorphism
with the polynomial ring. U

Filtrations on A,-modules. For the time being, we only consider left A,-modules.
Let F,A,, be either the Bernstein filtration or the order filtration.

Definition 2.11. Let M be a left A,-module. A compatible filtration FqM on M
is a sequence of linear subspaces

{0 F-{MCFRMCFMC---CM,
with F;A, - FyM C Fj1 ;M and M = |JF,M, such that each FpM is finitely

generated as an FyA,-module.

Given a compatible filtration on M, one forms the associated graded module

gr’ M = @ F,M/F,,_1 M,
k=0
which again inherits the structure of a graded module over grf’4, by defining
(r+Fj_1A,) - (m+ Fy_1M) =rm+ Fj,_1M. Since grf’ A,, is a polynomial ring



in 2n-variables, this puts us back in the world of commutative algebra. At least for
finitely generated modules, one can use this device to transfer properties of modules
over the polynomial ring to modules over the Weyl algebra.

Definition 2.12. A compatible filtration F,M is called good if grf M is finitely
generated over gri’ A,,.

The following proposition gives a useful necessary and sufficient criterion for a
filtration to be good.

Proposition 2.13. Let M be a left A,-module. A compatible filtration FeM is
good if, and only if, there exists jo > 0 such that F}A, - F;M = F;1 ;M for every
1 >0 and every j > jo.

Proof. To simplify the notation, we put
gri Ay = FjA,/F; 1A, and  gry M = FxM/F,_1 M.

Let us first prove that the condition is sufficient. Taking j = jg and i = j — jg, we
see that F;M = F;_; Ay, - Fj, M for every j > jo. This implies almost immediately
that gr’’ M is generated, over gr’”A,,, by the direct sum of all gr;F M with j < jg.
Now each F; M is finitely generated over FyA,,, which means that grf M is finitely
generated over grf’ A,. In total, we therefore get a finite number of elements that
generate gr’” M as a gr¥” A,,-module.

The more interesting part is to show that the condition is sufficient. Here it is
enough to prove the existence of an integer jo > 0 such that F;M = F;_; A, - F;, M
for every j > jo; the general case follows from this by 1nduct10n on j > jo. Slnce
everything is graded, the fact that gr’ M is finitely generated over grf’A,, implies
that it can be generated by finitely many homogeneous elements; let jo be the
maximum of their degrees. For every j > jo, we then have

grfM = igrf_iAn ~grf M,
i=0
which translates into the relation
F,M=F;,_ 1M+ jZOFj,iAn -FM =F;_ M+ Fy_ Ay - Fjy M,
i=0
using the fact that Fj_ ZA = Fj_ ]OA - Fj,—iAy,. At this point, we can prove the

desired equality F;M = Fj_ jOA oM by induction on j > jo. O

We can now show that the existence of a good filtration characterizes finitely
generated A,-modules.

Corollary 2.14. Let M be a left A,-module. Then M admits a good filtration if,
and only if, it is finitely generated over A,.

Proof. Suppose that M is generated, over A,,, by finitely many elements my, . .., mg.
Then we can define a compatible filtration FeM by setting

FJM:FjAnml—i——i—FjAnmk

Note that each F;M is finitely generated over FyA,, due to the fact that F}A, is
finitely generated over FyA,,. With this definition, we have F; M = F}A,, - FuM for
every j > 0, and therefore the filtration is good by Proposition 2.13.

Conversely, suppose that M admits a g‘ood ﬁltration F,M. By Proposition 2.13,
there is an integer jo > 0 such that F;M = F;_; A, - Fj, M for every j > jo. Since
M = \JF;M, and since F; M is finitely generated over FyA,, it follows pretty
directly that M is finitely generated over A,. U



10

The following result is useful for comparing different good filtrations.

Corollary 2.15. Let M be a left A,-module with a good filtration FeM. Then for
every compatible filtration G4 M, there exists some j1 > 0 such that F;M C G4, M
for all 7 > 0.

Proof. As before, choose jo > 0 with the property that F;M = F;_; A, - Fj, M for
every j > jo. Since Fj, M is finitely generated over the commutative noetherian
ring FyA,, and since G, M is an exhaustive filtration of M by finitely generated
FyAp-modules, there is some j; > 0 such that F;,M C G, M. But then

F;M C FyyjoM = FjA, - Fj,M C Fj Ay, -G, M C Gy, M,
as claimed. 0

Let us conclude the discussion of good filtrations by proving that the Weyl al-
gebra is left noetherian. Notice how, during the proof, passing to the associated
graded algebra/module allows us to transfer the noetherian property from the com-
mutative ring gr” A, to the non-commutative ring A,,.

Proposition 2.16. Let M be a finitely generated left A, -module. Then every sub-
module of M is again finitely generated. In particular, A, itself is left noetherian.

Proof. Let N C M be a left A,,-submodule. Since M is finitely generated, it admits
a good filtration FeM. If we define
F;N=NnNF;M,

then it is easy to see that F;A, - F;N C F;1;N. Moreover, each F;N is finitely
generated over FyA,: this follows from the fact that F;M is finitely generated
over FyA, because FyA, is commutative and noetherian. Therefore FyN is a good
filtration. By construction, we have

grfN - grfM,

which says that gr’ N is a submodule of gr’ M. Since the original filtration was
good, grf’M is a finitely generated module over the commutative noetherian ring
gr” A, and so grf' N is also finitely generated over grf’A,,. This proves that N is
finitely generated over A,. O

Exercises.

Ezercise 2.1. Consider the left A;-module M = A;/A;x. As a K-vector space, M
is isomorphic to K[J]. Write down a formula for the resulting A;-action on K[J].

Exercise 2.2. Show that the left A;-module A;/A;z? is isomorphic to the direct
sum of two copies of Aj/A;z.

Ezercise 2.3. M = K|z, 27 '] is a left Aj-module, with the usual differentiation rule
0 - z¥ = kx¥=1. Show that M is generated, as an A;-module, by z~!. What does
the associated graded module for the good filtration F;M = F;A; - 71 look like?
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Dimension and multiplicity. We are going to introduce two important invari-
ants of modules over the Weyl algebra, namely dimension and multiplicity. They
are defined using good filtrations. For this, we need to work with the Bernstein fil-
tration on A, so in today’s lecture, FyA,, = FP A, will always mean the Bernstein
filtration. Recall that each F ]B A,, has finite dimension over K.

Let M be a finitely generated A,-module, where 4,, = A,,(K) and K is a field.
Choose a good filtration Fg M on M, compatible with the Bernstein filtration Fy A,,.
We saw last time that the existence of such a filtration is equivalent to M being
finitely generated. Since FyA, = K, each subspace F; M in the good filtration is a
K-vector space of finite dimension. Consider its dimension

J
dimg F;M =Y dimg F;M/F,_yM
i=0
as a function of j > 0. Here are some examples:
(1) For M = A,, with the Bernstein filtration, we have

Fidp ={) capz®d | |o| + |8/ <j}

and therefore

dim F A, — <2n+]) 1

[ ’2n P
on ) (271)!‘7 -
is a polynomial of degree 2n in the variable j, at least for j > 0.
(2) For M = Klx1,...,2,], with the usual filtration by degree, we have

N1
dim F; M = (”ﬂ) =
n n:

is a polynomial of degree n in the variable j.

(3) Consider M = A, /A, (z1,...,zy), with the filtration induced by the Bern-
stein filtration on A4,,. Asa K-vector space, M is isomorphic to K0y, ..., 0],
and the filtration is just the filtration by degree. So again,

' 1
dim F;M = ("“) = — "
n n!

(4) Consider the Aj-module M = K|z, z '], with the filtration F;M = F;A,, -
. Clearly, FoM is spanned by z~!, and it is easy to see that F; M is
spanned by /=1, 2772, ... 777! for every j > 0. So

dim F; M = 2j + 1
for j > 0, which is again a polynomial of degree 1.

In fact, at least for sufficiently large values of j, the function dimg F;M always
grows like a polynomial.
Proposition 3.1. There is a polynomial x(M,FeM,t) € Q[t], called the Hilbert
polynomial of (M, FeM), with the property that

dimg F;M = x(M, FoM, j)

for all sufficiently large values of j.
Proof. The point is that gr’”A,, is a polynomial ring in 2n variables, and so we
can use the theory of Hilbert functions for finitely generated modules over the
polynomial ring. (This is explained very well in Eisenbud’s book Commutative

Algebra.) Let me sketch the proof. Set S = grf’A4,,, and recall that this is isomorphic
to the polynomial ring in 2n variables, with the usual grading by degree. The fact
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that Fy M is a good filtration means that grf’ M is a finitely generated graded S-
module. By Hilbert’s syzygy theorem, every finitely generated graded S-module
admits a finite resolution by graded free S-modules; the length of such a resolution
is at most the number of variables in the polynomial ring, so 2n in our case. Choose
such a resolution

0— Fop — Fop_q1 — -+ — E1 = Ey — gr’' M — 0.
Denoting by S(q) the graded S-module with S(¢); = Sy+i, we have
E, = P S(—q)*r
qeN

for certain natural numbers b, , € N, all but finitely many of which are of course
zero. By counting monomials, we have

1+2n—1
dim S; =
lm ( o — 1 )
for ¢ > 0, and so if we take dimensions in the resolution from above, we get
on on i—g+2n—1
dim F;M/F; M = 1;)(—1)P Eq: b dim S; 4 = ;0(—1)1’ Eq: b,,,q< o1 )

At least for ¢ > 0, this is a polynomial of degree at most 2n — 1 in the variable 4,
whose coefficients are rational numbers. It follows that

J
dim F; M = Z dim F;M/F;_y M
=0

is a polynomial of degree at most 2n in the variable j, at least for j > 0. O

If M # 0, then the Hilbert polynomial is not the zero polynomial; let d > 0 be
its degree. The proof shows that d < 2n. Since dim F;M is of course always a non-

negative integer, it is not hard to see that the leading coefficient of the polynomial

X(M, FeM,t) must be of the form
m

d!
for some integer m > 1. (See the exercises.) Both d and m are actually invariants
of the module M itself.

Lemma 3.2. The two numbers d and m only depend on M, but they do not depend
on the choice of good filtration on M.

Proof. Let xp(t) = x(M,FoM,t) be the Hilbert polynomial for the good filtra-
tion FeM. Suppose that G¢M is another good filtration, with Hilbert polynomial
Xa(t) = x(M,GeM,t). By Corollary 2.15, there is an integer k > 0 such that

F;_xM CG;M C Fj M
for every j > 0. This gives
dim Fj_, M < dim G;M < dim Fj M,
and therefore we obtain the inequality
Xr(t—k) < xa(t) < xr(t+k)

for the Hilbert polynomials. Since yp(t=+ k) has the same leading term as xr(¢), it
follows that x¢(¢) is also a polynomial of degree d with leading coefficient m/d!l. O
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The number d = d(M) is called the dimension of the A,-module M, and the
number m = m(M) is called the multiplicity. As long as M # 0, we have d(M) > 0
and m(M) > 1. If M = 0, we use the convention that m(M) = 0. We will see later
what the geometric significance of these two numbers is. Going back to the four
examples from above, we see that A, has dimension 2n and multiplicity 1; both
K[zy,...,2,) and A, /A, (21, ..., 2,) have dimension n and multiplicity 1; and the
Aj-module K[z, z7!] has dimension 1 and multiplicity 2.

Let us investigate the behavior of dimension and multiplicity for submodules and
quotient modules. Recall that a short exact sequence of A,-modules

0—>M —-M-—M"—0

means that M’ is a submodule of M, and that M" is isomorphic to the quotient
module M/M’'. Given a filtration FeM, we can induce filtrations on M’ and M"
by setting

F,M'=M'NF;M and F;M" =im(F;M — M").
With this definition, the associated graded modules form a short exact sequence
0— grf' M — grf M — gr" M" — 0,
now in the category of grf’ A,,-modules.

Proposition 3.3. Let M be a finitely generated A,-module, and FeM a good fil-
tration. Suppose that

0O-M —-M-—->M'—0

18 a short exact sequence of A,-modules. Then the induced filtration FoM' and
F,M" are both good, and

0—grf M — gt M — gt M" >0
is a short exact sequence of finitely generated graded gr” A, -modules. Moreover:
(a) One has x(M, FeM,t) = x(M', Fe M’ t) + x(M",FoM"  t).

(b) One has d(M) = max{d(M"),d(M")}.
(c) If d(M') = d(M"), then m(M) =m(M') + m(M").

Proof. The short exact sequence follows from the definition of the filtrations on
M’ and M". Since F,M is a good filtration, grf"M is finitely generated over the
polynomial ring gr’ 4,,. The polynomial ring is commutative and noetherian, and
so both the submodule grf M’ and the quotient module grf M” are again finitely
generated, which means that FoM’ and F,M" are also good filtrations. Taking
dimensions in the short exact sequence, we get the relation

(M, FoM,t) = x(M', FM',t) + x(M", F,M" 1)

among the three Hilbert polynomials. The other two assertions are obvious conse-
quences. 0

Example 3.4. The calculation in the proposition explains for example why the
multiplicity of the Aj-module K[z, r~!] should be 2. Indeed, we have a short exact
sequence

0 — Klz] = K[z,27'] = K[z,27']/K[z] — 0.

The class of 2! generates the quotient module, but since x - z=! = 1, it is also
annihilated by z, and so the quotient module is actually isomorphic to A;/A;(x).
Both the submodule and the quotient module have multiplicity 1, and therefore
K|z, 2~ must have multiplicity 2.
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Bernstein’s inequality. In our discussion of Hilbert functions, we have only used
properties of the polynomial ring grf’A,,. Now comes the first place where A,,-
modules are genuinely different from modules over the polynomial ring. The fol-
lowing important result is due to Joseph Bernstein.

Theorem 3.5 (Bernstein’s inequality). Let M # 0 be a finitely generated A, -
module. Then d(M) > n.

Choose a filtration FqM, compatible with the Bernstein filtration on A,,; after
a shift in the indexing, we can assume that FyM # 0.

Lemma 3.6. The multiplication map
FP A, — Homg (F;M,Fy;M), P+ (m+ Pm),
is injective for every j > 0.

Proof. We argue by induction on j > 0. For j = 0, the statement is clearly true:
FPA, = K, and since FyM # 0, the multiplication map K — Hom g (FoM, FoM)
is obviously injective. Now suppose that the result is known for j —1 > 0. Assume
for the sake of contradiction that there is a nonzero differential operator P € F jB A,
that lies in the kernel of the multiplication map, so that Pm = 0 for every m € F; M.
Clearly, P cannot be constant (because F;M is nonzero), and so P has to contain
x; or 0; for some i = 1,...,n. If z; appears in P, then by a calculation we did in
Lecture 1, the commutator [P, ;] € F}? | A, is still nonzero. But then

for every m € F;_1 M; indeed, both m and 9;m belong to F; M, and P annihilates
F;M by assumption. This contradicts the inductive hypothesis. If 0; appears in
P, then we use the same argument with [P, z;] instead. O

Now suppose that FeM is a good filtration, and let x(t) = x(M, FeM,t) be the
Hilbert polynomial. The lemma gives

(75.2) =ty x2

for all sufficiently large values of j. Since x(¢) is a polynomial of degree d(M), we
conclude that 2n < 2d(M), or n < d(M). This proves Bernstein’s inequality.

and therefore

Holonomic modules. Bernstein’s inequality suggests the following definition.

Definition 3.7. A finitely generated A,-module M is called holonomic if either
M #0 and d(M) =n, or if M = 0.

Holonomic modules are those for which the dimension takes the minimal value
allowed by Bernstein’s inequality. We also consider the zero module to be holonomic
for convenience. In the special case of holonomic modules, Proposition 3.3 has many
nice consequences. The following result would be cumbersome to state if we did
not consider the zero module to be holonomic.

Corollary 3.8. Suppose that
0—->M —-M-—-M" -0

18 a short ezact sequence of A, -modules. Then M is holonomic if and only if M’ and
M" are holonomic. In particular, submodules and quotient modules of holonomic
modules are again holonomic.
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Proof. This follows from the fact that d(M) = max{d(M"),d(M")} and Bernstein’s
inequality. t

Now suppose that M is a nonzero holonomic module, with a certain multiplicity
m(M) > 1. If we have any chain of submodules

My CM; CMsC---C M CM,
then each M, is again holonomic, hence of dimension n. By Proposition 3.3, the
multiplicities add, and so
m(M) = m(Ml) + m(M/Ml) = m(Ml) + m(Mg/Ml) + -+ m(Mz/Mgfl).

If the chain is strictly increasing, then each term in the sum is > 1, and so we get
¢ < m(M). In other words, the length of any strictly increasing (or decreasing)
chain of submodules is bounded by m(M).

Corollary 3.9. Let M be a holonomic A,-module.
(a) M is both noetherian and artininian, meaning that every increasing or de-
creasing chain of submodules stabilizes.
(b) M has finite length, meaning that it admits a finite filtration whose subquo-
tients are simple A,,-modules.

Proof. The first assertion follows from the calculation we just did. For the second
assertion, see the exercises. O

We have already seen a few simple examples of holonomic modules; for instance,
Klx1,...,2y,] is a holonomic A,-module, and K[z, 2] is a holonomic A;-module.
Here is a more interesting class of holonomic A,-modules.

Proposition 3.10. Let p € K[zy,...,x,] be a nonzero polynomial. Then

M =Kl[zy,...,z,,p 1],
with the structure of left A,-module given by formal differentiation, is a holonomic
A, -module.
Unlike the example of K[z, 1], it is not even obvious that M is finitely gener-
ated. Fortunately, we can use the following numerical criterion for holonomicity.

Lemma 3.11. Let M be a A,-module, and FeM a filtration compatible with the
Bernstein filtration on A,,. If

. c . . .
dlmKFjMSEJ +a(+1) L

for some constants ¢,c; > 1, then M is holonomic and m(M) < c. In particular,
M is finitely generated.

Proof. The idea is to study finitely generated submodules of M. These are easy to
construct: simply take any finite number of elements of M and look at the sub-
module they generate. Let N C M be any nonzero finitely generated submodule,
and FoN a good filtration of N. The filtration N N Fy M is compatible with the
Bernstein filtration, but of course not necessarily good. Still, according to Corol-
lary 2.15, there is an integer £ > 0 such that

F;NCNNOFj M C Fjp M
for every j > 0. Taking dimensions, we get
dim FjN < dim Fj M < S+ k)" + 1+ k + 1),
n!

and therefore d(N) < m. Since d(N) > n by Bernstein’s inequality, we see that
d(N) =n, and so N is holonomic. It also follows that m(N) < ¢, by looking at the
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leading terms on both sides. Therefore any finitely generated submodule of M is
holonomic and has multiplicity at most c.

This implies now that M itself must be finitely generated, hence holonomic.
To see this, choose any nonzero element m; € M, and let N; be the submodule
generated by my. If Ny = M, then we are done; otherwise, choose an element
ms € M \ Ny, and let Ny be the submodule generated by m; and ms. If No = M,
then we are done; otherwise, choose an element msz € M \ Na, and let N3 be
the submodule generated by mq,mo, m3. Continuing in this way, we produce an
chain of submodules Ny C N C N3 C ---. Because each INV; is holonomic with
m(N;) < ¢, this chain has to stabilize after at most ¢ steps, and so M is in fact
generated by at most ¢ elements. In particular, M is holonomic and m(M) <ec. O

Note that the filtration FeM is not necessarily good. The lemma is quite re-
markable: it allows us to prove that M is finitely generated simply by computing
the dimensions of F; M.

Now we apply this to study the A,-module M = K|[z1,...,x,,p !]. The action
by A, is by formal differentiation:

_ op _ af _ Op of \ _
O £ ) ad (4+1) I =L ~J (Z+1).
i(fp™") faxjp +axjp faxj +pamj P
Let m = degp, and consider the filtration
;M ={fp"| degf<(m+1)}.

Each F;M is a finite-dimensional K-vector space. If fp=¢ € F; M, then deg f <

(m + 1)¢, and so z; fp~¢ and 9;(fp~*) again belong to Fj+1M (by the above for-

mula). In other words, the filtration is compatible with the Bernstein filtration on

A,,. Lastly, we have M = |J F;M; indeed, given any element fp—* € M, we have

fomt = (fph )=,

and since deg(fp*) = degf + km < (m + 1)({ + k) for sufficiently large k, the

element eventually belongs to Fy, ;M. Taking dimensions, we have
i

dim F; M = <(m i+ ”)

n

which is a polynomial of degree n in j with leading coefficient (m + 1) /n!. So the
lemma shows that M is holonomic with m(M) < (m +1)".

Exercises.

FEzercise 3.1. Suppose that x(t) € Q[t] has the property that x(j) € Z for all suffi-
ciently large values of j € Z. Show that x(¢) can be written as a linear combination,
with integer coefficients, of the polynomials

= =Dt

n!
for n > 0. Conclude that the leading coefficient of x(¢) has the form m/d! for some
m € Z, where d is the degree of x(¢).

Ezercise 3.2. Show that A;/A; P is holonomic for every nonzero P € A;.

Ezercise 3.3. Recall that a (left) A,-module M is said to be simple if it does not
have any A,-submodules besides {0} and M. Show that every simple A,,-module
is cyclic, meaning that it be generated by a single element.

Exercise 3.4. The goal of this exercise is to prove that every holonomic A,-module
is cyclic. This phenomenon is very different from the case of modules over the
polynomial ring.
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Let M be a nonzero holonomic A,-module. Show that M has finite length,
meaning that it admits a filtration by A,-submodules whose subquotients
are simple modules. Let ¢ > 1 be the length of such a filtration.

Show that the result is true if £ = 1.

If£>2 let N C M be a simple submodule, generated by some mg € N.
By induction, M/N is cyclic, so let m € M be any element that maps to
a generator of M/N. Show that the left ideal I = { P € A, ‘ Pm=0}is
nonzero.

Show that there is some @ € A,, such that I(Q is not contained in the left
ideal { P € A, | Pmo=0}. (Hint: A, is a simple algebra.)

Now choose P € I such that PQmg # 0. Show that the element m + Qmyq
generates M as a left A,-module.
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LECTURE 4: FEBRUARY 13

Last time, somebody asked what happens to chains of submodules when the
dimension is greater than n. Here is an example to show that there can be infinite
descending chains. (Since A,, is noetherian, there are no infinite ascending chains
in finitely generated A,-modules.)

Ezxample 4.1. Consider the chain of submodules
A1 DA1£EDA1£L'2 Do

All modules in this chain are isomorphic to A1, and all subquotients are isomorphic
to A1/Ajz. What happens is that, in the short exact sequence

0—>A1£>A1—>A1/A1.’L‘—>0,

the first two modules have dimension 2 and multiplicity 1, whereas the third module
has dimension 1 and multiplicity 1.

Distributions and polynomials. Today, we are going to look at an application
of holonomic A,-modules to the study of certain integrals. This was in fact one of
the reasons why the theory was developed in the first place. For the time being,
we take K = R. Let p € R[z1,...,z,] be a nonzero polynomial with the property
that p(z1,...,z,) > 0 for every (z1,...,z,) € R". (We can always achieve this by
replacing p by its square.)

Let S(R™) be the Schwartz space of all rapidly decreasing functions. A complex-
valued function ¢ € C*°(R") is rapidly decreasing if the quantity

Pas(f) = sup [z20%p(z)]
z€R™

is finite for every pair of multi-indices «, 5 € N™. Then S(R™) is a topological vector
space, with the topology defined by the family of semi-norms p, g. A tempered
distribution T is a continuous linear functional T: S(R"™) — C.

Now fix a rapidly decreasing function ¢ € S(R™), and consider the integral

T.(0) = [ @)oo due).

as a function of the complex parameter s € C. For Res > 0, the integral makes
sense and has a finite value, due to the fact that ¢ is rapidly decreasing (and p only
takes nonnegative real values). Differentiation under the integral sign shows that
T5(¢) is actually a holomorphic function of s for Res > 0.

Ezxample 4.2. The Gamma function

is a typical example of such an integral. The integral only makes sense for Re s > 0,
but in fact, I'(s) can be analytically continued to a meromorphic function on C with
simple poles along {0, —1,—2,...}. This is done step by step, using integration by
parts. One has

and therefore
o0

sI'(s) =z%e™®

o0
—|—/ z’e Pdr =T(s+1)
0 0

for Res > 0; now the identity I'(s) = I'(s + 1)/s provides an extension of the
Gamma function to Res > —1, with a simple pole at s = 0.
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Now the question is whether Ts(¢) can always be extended to a meromorphic
function on the entire complex plane. Bernstein discovered that the answer is yes.
The reason is that one always has a functional equation of the form

(4.3) D(s)p(x)*™ = b(s)p(x)",

where b(s) € R[s] is a monic polynomial, and D(s) € A, (R[s]) is a differential
operator with coefficients in the ring R[s]. This sort of relation gives the desired
meromorphic extension, again step by step. Indeed, after substituting into the
integral and integrating by parts, we get

WoIT(e) = [ DOslpla) o) dn = [ ple) o (D)) pla) d
where o (D(s)) is the differential operator obtained from D(s) by the left-to-right
transformation in Lecture 2. (The reason is that each time we integrate by parts
to move 9; from the first to the second factor, we get an additional minus sign.)
The new integral is again holomorphic for Res > —1, and after dividing by b(s),
we obtain a meromorphic extension of Ts(¢) to the half plane Res > —1, possibly
with poles along the zero set of b(s). Continuing in this manner, we can extend
Ts(p) to a meromorphic function on the entire complex plane, with poles contained
in the set

{seC|b(s+k)=0for some k>0 }.

For this reason, we obviously want to choose the polynomial b(s) in (4.3) to be of
minimal degree.

Ezample 4.4. In the case of the Gamma function, we have p(z) = x, and the desired
relation is simply that z*tt = (s + 1)z°.

Bernstein polynomials. Let us now investigate the existence of the relation in
(4.3). This works over any field K, and so we relax the assumptions and allow
p € Klxy,...,2,] to be any nonzero polynomial. Set m = degp. Since we are
going to work algebraically, we let s be an independent variable, and consider the
field of rational functions K (s), and the Weyl algebra A, (K(s)) with coefficients
in K(s). We now endow the K (s)-vector space

M = K(8)[z1, ..., 20, p "]

with the structure of a left A, (K (s))—module, as follows. Multiplication by poly-
nomials with coefficients in K (s) is defined as usual; and
_ of _ op _
9. e Y ¢ A (erl)’
i (fp) ot (s )faxjp
One can check, based on the discussion in Lecture 2, that this defines a left action
by the Weyl algebra with coeflicients in K (s). The formulas are easier to remember
if we introduce a formal symbol p®, with the property that
s_oo19p
Ojp" = sp~ 5=

J

s—{

and write elements of Mp® in the form fp Then the formula from above is

simply the (formally correct) differentiation rule

(4.5) 9;(fr™") = if,ps" T (s — O f L2,

O0x; Oz
The same calculation as in Lecture 3 shows that the filtration

FM={fp"| degf<(m+1)}
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is compatible with the Bernstein filtration on A, (K(s)), and

1)¢

According to Lemma 3.11, M is therefore a holonomic module, of multiplicity at
most (m + 1)™.
Now consider, for k > 0, the submodule M; C M generated by p*; concretely,
My, = A, (K(s)) - p* C M.

Clearly My O M; O Ms O, and because M is holonomic, each M}, is holonomic,
and the chain has to stabilize after at most m(M) many steps. So there exists some
k > 0 such that Mjy41 = Mj. This means concretely that there is a differential
operator Q(s) € A,,(K(s)) with the property that Q(s)p*** = p*. Note that Q(s)
has coefficients in the field of rational functions K (s), so there may be denominators.
Let d(s) € K[s] be a nonzero polynomial such that R(s) = d(s)Q(s) has coefficients
in K[s]. Then we get R(s)p**! = d(s)p*, which we can write symbolically as
R(s)p™Ht = d(s)p***.

After replacing s by s — k everywhere (which is compatible with the differentiation
rule in (4.5), and therefore okay), we obtain the identity

R(s — k)p**t = d(s — k)p®,

which has the same shape as (4.3). Now let b(s) € K[s] be the monic polynomial
of minimal degree that satisfies a relation of the form

D(s)p*™" = b(s)p°®
for some differential operator D(s) € A, (K[s]).

Definition 4.6. The polynomial b(s) € K[s| is called the Bernstein polynomial of
p€ Klzy,...,x,), and D(s) € A, (K|[s]) is called a Bernstein operator for p.

In fact, the set of all polynomials for which such a relation holds is closed under
addition and multiplication by elements of K[s|, and therefore an ideal in KJs].
The Bernstein polynomial is then simply the unique monic generator of this ideal,
keeping in mind that K|[s] is a principal ideal domain.

Note. The relation D(s)p = b(s) in the module M implies (by induction on the
exponent of p in the denominator) that My = M, in the notation from above. Here
is another way of looking at the Bernstein polynomial: Multiplication by s defines
an endomorphism of the quotient module

M(]/M1 = M/An(K(S))p,
and b(s) is the minimal polynomial for this endomorphism.
Let us finish by computing a few examples of Bernstein polynomials.

Ezample 4.7. In one variable, let p = . Here d2°T! = (s + 1)z®, and so we have
b(s) =s+1and D(s) = 0.

Ezample 4.8. Still in one variable, take p = 2. Now Op*T! = (s + 1)2xp*, and
?ptt = (s+1) (2p° + 49:251)5*1) = (s+ 1)(2p° + 4sp®) = (s + 1)(4s + 2)p°,
and therefore b(s) = (s + 1)(s + 3).

Example 4.9. The previous example generalizes to p = z"*; after applying 0™, one
finds that b(s) = (s + 1)(s + Z=1) - (s 4+ L).
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Ezample 4.10. In n variables, we can take p = 7"* -+ - 2"~ and after applying the
differential operator 9]"* - - - 9", we get

n mj k
) =TT (s~ )
j=1k=1
Ezample 4.11. Another case that can be computed by hand is p = 2% + -+ + 22.
Here we again have
8?1)5“ =(s+1)(2p° + 4%?8}9571)
by the calculation in the second example, and therefore
(OF ++ -+ )P = (s +1)(2n + ds)p™.
So the Bernstein polynomial in this case is b(s) = (s + 1)(s + 5).

These examples suggest that s = —1 is always a root of the Bernstein polynomial.
It can be proved (using resolution of singularities) that all roots of the Berstein
polynomial are negative rational numbers. In general, the Bernstein polynomial
can be found using computer algebra systems (such as Macaulay 2); except when
p is homogeneous, the shape of the Bernstein operator D(s) is not easy to guess in
advance, however. Here is a more complicated example for algebraic geometers.

Ezample 4.12. Consider the polynomial p = x? + z3; this has a so-called cusp
singularity at the origin. One can show that

1
708+ 2080+ 0T p = (s 4 D) (s + 1) (s + D',
27 6 8

and so the Bernstein polynomial is b(s) = (s + 3)(s + 1)(s + 2).

The Bernstein polynomial is of interest in the study of hypersurface singularities.
Indeed, the zero set of the polynomial p defines a hypersurface in affine space, to use
the terminology from algebraic geometry, and many invariants of its singularities
are related to the roots of the Bernsteint polynomial. For example, the largest root
of the Bernstein polynomial is the so-called “log canonical threshold” of p.
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LECTURE 5: FEBRUARY 18

Basic facts about algebraic geometry. The goal of today’s class is to give a
geometric interpretation for the dimension d(M) from last time. Suppose for the
time being that K is an algebraically closed field (such as C). We can then think
of the polynomial ring K[z1,...,2,]| as being the ring of algebraic functions on
the affine space K. If A, = A,(K) is the Weyl algebra, and F, A,, is either the
Bernstein filtration or the degree filtration, then grf’ A,, = K|xy,..., 2., &1, .., &),
where ; is the class of 9;. We can think of this polynomial ring in 2n variables
as the ring of algebraic functions on K2" = K™ x K", viewed as the cotangent
bundle of K™. The additional variables £, ..., &,, are linear functions on the fibers
of the cotangent bundle. We will see below that d(M) can be interpreted as the
“dimension” of a certain subset of K2", called the characteristic variety of M.

Since algebraic geometry language will be useful for this, we start with a brief
review of the basic correspondence between closed algebraic subsets of K™ and
ideals in the polynomial ring K|z1,...,z,]. To any ideal I C K|[z1,...,x,], we can
associate a closed subset

Z(I)={(a1,...,an) € K" | f(a1,...,an) =0 for every f €I}

Since the polynomial ring is noetherian, every ideal is finitely generated, and so
every closed subset of this type can in fact be defined by finitely many polynomial
equations. Conversely, to a closed subset Z C K™ defined by polynomial equations,
we can associate the ideal

IZ:{fEK[zl,...,:cn] | f(ay,...,a,) =0 for every (al,...,an)GZ}

of all polynomials that vanish on Z. If f™ € I for some m > 1, then of course
also f € Iy (because K is a field), and so Iz is always a radical ideal. Here the
radical of an ideal [ is defined as

VI={f€K[zi,...,2,) | f™ €1 for some m > 1},
and an ideal is called a radical ideal if I = /1. One can show that
Z(IZ):Z and IZ(I):\/Y

The second assertion is usually called the Nullstellensatz. One can summarize this
by saying that I — Z(I) and Z — I sets up a one-to-one correspondence

(closed algebraic subsets of K™) «— (radical ideals in K[z1,...,2y,))

This correspondence reverses the order, meaning that I; C I, iff Z(Iy) C Z(I4).
The quotient ring K[z1,...,z,]/Iz can be viewed as the ring of algebraic functions
on the algebraic variety Z, where a polynomial determines a function on Z by
restriction (and Iz is the ideal of functions whose restriction to Z is zero).

Since K is algebraically closed, every maximal ideal in K{[z1,...,z,] is of the
form (z1 — ay,...,2, — a,) for some (ay,...,a,) € K", and so under the above
correspondence, maximal ideals in the polynomial ring correspond to points of K.
More generally, prime ideals correspond to irreducible algebraic subsets, where
irreducible means that the set cannot be written as a union of two strictly smaller
algebraic sets. One can define the dimension of a closed algebraic subset Z C K™ in
two equivalent ways: geometrically, as the length of the longest strictly decreasing
chain of irreducible closed algebraic subsets

LDy D L1 DD Ly

contained in Z; algebraically, as the length of the longest strictly increasing chain
of prime ideals
I, CPhCPC---CPFPy
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containing Iz. This notion of dimension is known as the Krull dimension, and is
denoted by dim Z. The geometric picture of the chain is that Z; has dimension
d, Z; has dimension d — 1, and so on, down to Z4, which has dimension 0 (and
hence is a point). Since ideals in KJzi,...,z,] containing Iz are in one-to-one
correspondence with ideals in the quotient ring K|[z1,...,z,]/Iz, one also has

dim Z = dim(K[z1, ..., 2,]/17),

where the dimension dim R of a commutative ring R is by definition the length
of the longest strictly increasing chain of prime ideals in R. The polynomial ring
K[zq,...,x,] has dimension n, of course.

We shall also need the notion of the support of a module. Let M be a finitely

generated module over K[x1,...,z,]. Then

Supp M C K"
is the set of all points (ay,...,a,) € K™ such that the localization of M at the
maximal ideal (x; — aq,...,2, — ay,) is nontrivial. The geometric picture is that

M corresponds to a (coherent) sheaf on K™, and the support of M is the set of
points where the stalk of this sheaf is nontrivial. (In other words, the complement
of Supp M is the largest open set on which the sheaf is trivial.) The support of M
is a closed algebraic subset, defined by the annihilator ideal

Ann M = Amngpy, o M ={f € Klzy,...,zn] | fm =0 for every m € M }.
We have dim Supp M = dim K|[z1,...,2,]/ Ann M.

Characteristic varieties. Now we return to modules over the Weyl algebra. Let
M be a finitely generated left A,-module. If we choose a good filtration F¢M,
compatible with the Bernstein filtration on A,, then the associated graded module
grf’M is finitely generated over grf’A,,, the polynomial ring in 2n variables. One
of the basic facts about Hilbert polynomials is that the degree d(M) of the Hilbert
polynomial of gr’" M is equal to the dimension of Supp grf’ M; in symbols,

dB(M) = dim Supp(grf M) = dim gr’ A,,/ Ann(gr? M).

I have added the superscript B to indicate that this notion of dimension is related to
the Bernstein filtration on A,,. We would now like to have an analogous definition
for the degree filtration on the Weyl algebra, since that is the case that generalizes
to arbitrary Z-modules.

From now on, we use the notation F,A, for the filtration by the degree of
differential operators. Let M be a finitely generated left A,-module, and choose a
good filtration FeM compatible with the degree filtration on A,,. We define

I(M,F,) = Anng,r 4, (gr" M)
as the annihilator of grf' M, and use the notation
J(M) =+/I(M,F,M)

for the radical ideal. We will see in a moment that J(M) only depends on M, but
not on the particular good filtration chosen, justifying the notation. As we said
earlier, the closed subset of K?" corresponding to the radical ideal J(M) is the
support of the module grf’ M.

Definition 5.1. The characteristic variety Ch(M) is the closed algebraic subset
of K2 corresponding to the radical ideal J(M). Let

d'°8(M) = dim Ch(M) = dim(gr” 4,,/J(M))

be the dimension of the characteristic variety.
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Examples show that the ideal I(M, Fe M) depends on the filtration. Nevertheless,
the radical ideal J(M) and the characteristic variety Ch(M) only depend on M.

Proposition 5.2. The ideal J(M) only depends on M, but not on the choice of
good filtration FeM. The same is therefore true for Ch(M).

Proof. We first need to describe the annihilator of grf’M more concretely. For a
differential operator P € F} A, of order exactly k, we denote by [P] its image in
gri” A,,; this is usually called the (principal) symbol of P. Likewise, if m € F; M,
we write [m] € grf M for its image in the associated graded module. The module
structure on grf’M is then defined by setting

[P] - [m] = [Pm] € gri; M

for [P] € gry Ay, and [m] € grf’ M. Thus [P] - [m] = 0 means that Pm € Fyy ;1M
(but it does not mean that Pm = 0). Since grf" M is a graded module, the annihila-
tor ideal Ann(grf” M) is a homogeneous ideal; by what we just said, it is generated
by all those homogeneous elements [P] € grf’ A,, with the property that

P-F;M C Fyyj1 M
for every j > 0. The radical ideal /I(M, FyM) is therefore generated by those
homogeneous elements [P] € grf’ A,, such that, for some m > 1, one has
(5.3) P F;M C Frjyja M

for every j > 0.
Now let G¢M be another good filtration. By Corollary 2.15, the two good
filtrations are comparable, and so there is some jo > 0 such that

F;M C Gjtj0M and G;M C Fjp;0M
for every j > 0. Suppose that [P] € grf” A,, belongs to the radical of I(M, F4M),
hence that we have (5.3) for some m > 1. Let £ > 1 be any integer. We have
P GiM C P'™ - Fj oM C Fomprjyjo—eM C Gempjt2jo—eM.
If we take £ = 2j9 + 1 and m’ = ¢m, then we have
P™ GiM C Gy M

for every 7 > 0, and so P belongs to the radical of I(M,G,M). Since the situation
is symmetric, we conclude that \/I(M,G,) = \/I(M, F,M), and hence that J(M)
is independent of the choice of good filtration. O

Ezxample 5.4. One can tell from the characteristic variety whether or not a finitely
generated A,-module M is actually finitely generated over the polynomial ring
K[zy,...,2,]. Suppose that M is finitely generated over K|[zy,...,x,]. Then
setting F_1 M = {0} and F;M = M for j > 0 defines a good filtration, and since
grj-P M =0 for j # 0, every element in grf’ A,, of strictly positive degree annihilates
grf’ M. This means that Ch(M) is defined by the ideal (&1, ..., &,) in the polynomial
ring g’ A, = K[x1,...,2n,&1, . .., &]; in other words, Ch(M) is the “zero section”.

Conversely, if Ch(M) is the zero section, then M is actually finitely generated
over K[z1,...,z,]. Here is the reason. Choose a good filtration FeM, so that
grf’M is finitely generated over gr’A,, = K[z1,...,2,&1,- .., &,]. By assumption,
some power of each &; belongs to the annihilator, which means that £7* - - - &5 acts
trivially on grf’ M as long as e; + --- + e, is sufficiently large. Thus the finitely
many generators of gr” M over grf'A,,, together with their finitely many images
under the elements &' - -- £ for e € N”, generate grf'M over K[zy,...,z,]. But
this implies that M itself is finitely generated over K|[z1,...,zy].
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Equality of dimensions. In the next few lectures, we are going to prove that the
two notions of dimension (with respect to the Bernstein filtration and with respect
to the degree filtration) agree: for any finitely generated A,-module, one has

dB(M) = d°s(M).

This will tell us in particular that the Bernstein inequality d(M) > n also holds
with respect to the degree filtration. The geometric interpretation is that the
characteristic variety Ch(M) always has dimension at least n. The strategy for
proving this is to relate two kinds of dimension to a third invariant of M, which is of
a more homological nature and can be defined without reference to good filtrations.
The invariant is defined in terms of the Ext-modules Ext’, (M, R), namely

§(M) =min{j >0 | Extl(M,R)#0}.

The precise result that we are going to prove is that

dB(M) =2n — j(M) = d**&(M).
Let me end with a brief reminder about Ext-modules. Recall that if R is any ring,
and if M and N are two left R-modules, we can form the group

Hompg (M, N)

of all left R-linear morphisms from M to R. This defines a contravariant functor
Homp(—, N) from left R-modules to groups, and Ext},(M, N) is by definition the j-
th derived functor. Concretely, one computes Ext’, (M, N) by choosing a resolution
of M by free left R-modules,

o= Lo =Ly -+ Log—M—0,

and then applying the functor Hompg(—, N) to this resolution. Thus Extfa(M ,N)
is the j-th cohomology group of the complex

0 — Hompg(Lg, N) - Hompg(L;, N) = Hompg(La, N) — - -

In particular, Ext%(M, N) = Homg(M, N). Note that unless R is commutative,
Hompg (M, N) typically no longer has the structure of a left or right R-module. But
in the special case where N = R, we can use the right R-module structure on the
ring R to endow Hompg(M, R) with the structure of a right R-module. Concretely,
for f € Homg(M, R), and for r € R, we define f-r € Homg(M, R) by the formula

(f-r)(@) = flz)r.
Since the multiplication in R is associative, f - r is again left R-linear. Using a

resolution as above, it follows that each Ext% (M, R) is naturally a right R-module.
(Similar comments apply if we work with right R-modules.)

Exercises.

Ezercise 5.1. Let M = A;/A;1(x) be the left Aj-module related to the §-function.
Show that the image of 1 € A; and the image of 9 € A; both generate M, but that
the two resulting good filtrations Fe M and G¢M give rise to different annihilator
ideals: I(M, FoM) # I(M,G¢M).

Ezercise 5.2. Let I C A, be a left ideal, and let F;I = I N F;A, be the induced
filtration. Describe the ideal Ann(grf'I) inside grf’4,, in concrete terms.
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LECTURE 6: FEBRUARY 20

General setup. We start working on the proof of the theorem from last time,
comparing the two notions of dimension d®(M) (with respect to the Bernstein
filtration) and d9°&(M) (with respect to the degree filtration). In order to make
the result more useful, and to simplify the notation, we are going to work in the
following more general setting.

Let R be a ring with 1. We assume that R is filtered; as before, this means that
R comes with an exhaustive increasing filtration Fy R, with

{0}=F RCFRRCFRC---,

such that 1 € FyR and F;R-F; R C Fi ;R for all 4,5 > 0. This makes FyR a subring
of R. We define S = gr’’ R to be the associated graded ring, with S; = F;R/F;_1 R,
and with the product defined by (r + F;R) - (r' + F;R) = (rr’ + F;+;R); note that
FyR = Sy is also a subring of S. Generalizing from what happens in the case
R = A,,, we make the following two assumptions about S:

(A) S is a commutative noetherian ring.
(B) S is regular of dimension dim .S = 2n.

As in Lecture 2, the assumption (A) implies that R is left noetherian; moreover,
the subring FyR = Sy is also commutative and noetherian. The condition in (B)
means concretely that for every maximal ideal m C S, the localization S, is a
regular local ring of dimension 2n, in the sense that

dimg/m m/m? = dim Sy, = 2n.

This implies that every finitely generated Sy,-module has a free resolution of length
at most 2n; in fact, by a theorem of Serre, the two things are equivalent to each
other. The geometric meaning of the condition in (B) is of course that the scheme
Spec S is nonsingular of dimension 2n.

Ezample 6.1. Take R = A, either with the Bernstein filtration FZ A,, or the degree
filtration Fa°®A,,. In both cases, S is the polynomial ring in 2n variables.

Now let M be a finitely generated left R-module. As in Lecture 3, we have
the notion of a compatible filtration FeM. Recall that this means that FoM is
an exhaustive increasing filtration of M, such that F;R - F;M C F; ;M for every
i,7 > 0, and such that each F;M is finitely generated over the commutative ring
FyR. As before, the filtration is called good if the associated graded module grf M
is finitely generated over S = grf” R. Every finitely generated R-module has a good
filtration. As in the case of A,,, one shows that the ideal

J(M) = +/Anng(grf" M)

is independent of the choice of good filtration FyM. It is easy to see that a prime
ideal P C S contains J(M) if and only if the localized module Mp = Sp ®s M
is nonzero. The geometric interpretation is that the finitely generated S-module
grf’ M defines a coherent sheaf on the scheme Spec S, and the closed subscheme
defined by the ideal J(M) is the support of this sheaf.

Definition 6.2. Let M be a finitely generated left R-module. We set
d(M) = dim S/J(M) = dim Supp(gr’ M)
§(M) =min{j >0 | Exth(M,R)#0}

The theorem I stated last time holds in this generality.
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Theorem 6.3. Let (R, FoR) be a filtered ring satisfying the two conditions in (A)
and (B). Then one has

d(M)+ j(M) =dim S
for every finitely generated left R-module M .

This immediately implies the result I stated last time. Take R = A,,, and suppose
that M is a finitely generated left A,,-module. The definition of the invariant j(M)
does not mention any filtrations, and so it is the same no matter what filtration on
R we consider. If we take F,R = FPA,,, we get

d”(M) + j(M) = 2n,
and if we take FoR = FI®® A, we get
d¥8(M) + j(M) = 2n.
The two equations together give us the desired equality d” (M) = dd°s(M).

The commutative case. The proof of Theorem 6.3 is going to take some time.
Let us first consider what happens in the commutative case. In the general setting
from above, R is of course allowed to be commutative; but to avoid any confusion,
let me stick to the notation S for the commutative noetherian ring.

Proposition 6.4. Let S be a commutative noetherian ring, reqular of dimension
2n. For any finitely generated S-module M, set J(M) = /Anng M and define

d(M) = dim S/J(M) and j(M)=min{j >0 | ExtL(M,S)#0}
Then the following is true:
(a) If Exti(M,S) #0, then 2n —d(M) < j < 2n.
(b) One has d(Exty(M,S)) < 2n—j for every j > 0.

(c) One has d(Extf,‘;(M)(M7 S)) =d(M).
(d) The identity d(M) + j(M) = 2n holds.

Proof. Let me try to give at least an idea of the proof (without dotting all the i’s).
The first step is to reduce to the case where S is a regular local ring. We can test
whether or not Ext’ (M, S) is zero by localizing at all maximal ideals of M. Let
m C S be any maximal ideal containing J(M); in terms of the scheme Spec S, we
are choosing a closed point on the support of M. Then one has

S @ Extl (M, S) =2 Extl, (Sm ®s M, Sm).

After replacing S by its localization, and M by Sy, ®s M, we can therefore assume
that S is a regular local ring of dimension 2n. Geometrically, this means that we
are working locally near a point of Supp M.

We prove (a) and (b) by induction on d = dim S/J(M) > 0. When d = 0, the
fact that S is local implies that J(M) = m. Since M is finitely generated, one has
mfM = 0 for some ¢ > 0. By considering the chain of submodules M O mM DO
m2M D - DmiM = {0} and the long exact sequence for Ext-modules, we reduce
to the case where mM = 0. Now M is finitely generated over the field S/m, and
so we further reduce to the case where M = S/m is the residue field of the local
ring. Since S is regular, the Koszul complex (for any system of 2n generators for
the maximal ideal) resolves S/m; from this resolution, one obtains

S/m if j = 2n,

Ext’(S/m,S) =
xts(S/m, 5) {0 if j £ 2n.
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This establishes (a) and (b) in the case d = 0. For the inductive step, it suffices
(with a little bit of extra work) to consider the case where there is an element f € m
that is not a zero-divisor on M. We then have a short exact sequence

0= ML M- M/FM 0,

and d(M/fM) = d — 1. The geometric picture is that Supp M is a closed subset
of dimension d, and that the hypersurface defined by f intersects it in a subset of
dimension d — 1; the S-module M/fM is of course representing the restriction of
M to the hypersurface. Define
EJ = ExtL(M,S) and FJ =ExtL(M/fM,S).
By induction, we have F7 = 0 unless 2n —d — 1 < j < 2n, and d(F7) < 2n — j.
The long exact cohomology sequence for Ext-modules gives
s P g g it
If j ¢ {2n —d,...,2n}, then we have F/ = FiT1 =0, and so multiplication by f is
an isomorphism from E7 to itself. Since E7 is a finitely generated S-module, and
f € m, this implies £/ = 0 by Nakayama’s lemma. This proves (a). Also from the
exact sequence, EJ/fE7 is isomorphic to a submodule of F/*! and therefore
2n—(j+1) > d(F’*) > d(E’/fE?) > d(E7) — 1,

which proves (b).
Now we turn to (c¢). From (a), we get j(M) > 2n — d(M). Combined with (b),
this gives
d(E7) < 2n—j < 2n— j(M) < d(M),
with strict inequality for j > j(M). Assume for the sake of contradiction that
d(EIM)Y < d(M). Then d(E7) < d(M) for every j > 0. Setting

2n
E= & £,

j=2n—d(M)

this gives d(E) < d(M), and therefore the ideal J(E) must be strictly bigger than
J(M). After localizing at an element f € J(E)\ J(M), we achieve that M # 0
but Exté(M ,5) = 0 for every j > 0. Now one can show (as an exercise) that this
contradicts the fact that M is finitely generated.

It remains to deduce (d). We have already seen that j(M) < 2n — d(M). The
reverse inequality follows from (c) and (b), because

d(M) = d(E?™M)Y < 2n — j(M).
This completes the proof. O

Filtered resolutions. Now we return to the case where M is a finitely generated
left R-module. Choose a good filtration FeM. Proposition 6.4, applied to the
finitely generated S-module gr” M, gives

d(gr? M) + j(gr™ M) = 2n.
Obviously, we have J(M) = \/Anng(grf M) = J(gr” M), and therefore
d( ) = dim §/J(M) = d(gr" M).
The identity d(M) + j(M) = 2n in Theorem 6.3 is therefore equivalent to
J(M) = j(@x" M).
In order to prove the theorem, we therefore need to understand the relationship

between EXt%(M, R) and ExtérFM(ngM, grf’ R). We will see next time that this
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involves a spectral sequence. To set it up, we need a resolution of M by free
R-modules that takes into account the good filtration Fq M.

Proposition 6.5. Let (M,F,M) be a finitely generated R-module with a good
filtration. Then there exists a free resolution

oo =>Lo— L1 —+Lo—M—=0
where each (Lj, FyL;) is a free R-module with a good filtration, and the differentials
in the resolution respect the filtrations. Moreover,
(a) each gr™ L; is free over S, of the same rank as L;, and
(b) the complex of S-modules
coo s gt Ly 5 o' Ly » gt Ly — gt M — 0

15 exact.

Proof. For any e € Z, define R(e) = R, but with the good filtration F;R(e) =
FjicR. We are going to construct a resolution in which each L; is a direct sum of
copies of R(e) for various values of e.

We start by building Lo. Since grf”M is a finitely generated graded S-module, we
can choose homogeneous generators [m1], ..., [m,], of degrees ey, ..., e,, meaning
that m; € F., M. Then

grfM = Z Si—e,[mil,

i=1
and an easy argument shows that therefore

FjM = iFj—eq‘,R MMy
i=1

for every j > 0. This means exactly that we have a surjective morphism of left
R-modules

Lo=EDR(—e;) » M
i=1

compatible with the good filtrations on both terms, such that grf Ly — grf’ M is
also surjective. Let M’ be the kernel of Lg — M, with the induced filtration. Then
the sequence
0—grf’ M — grf' Ly — grf'M — 0

is short exact, and since S is noetherian, it follows that gr” M’ is finitely generated;
in other words, M’ is finitely generated, and F, M’ is a good filtration. Now apply
the same argument to (M', FeM') to construct Li, and continue step by step to
create the desired free resolution for M. O

Let --- — Ly — L1 — Lg be a filtered free resolution of M with the properties in
the proposition. If we set L7 = Hom r(Lj, R), then the complex of right R-modules

0= Ly—Li—Ls—---

can be used to compute Extfé(M , R). In fact, each term in this complex again has
a natural compatible filtration (in the sense of right R-modules).

Definition 6.6. Let L be a finitely generated left R-module with a good filtration
FoL. On the right R-module L* = Hompg(L, R), we define

F;L* ={¢eL"| ¢(F,L) C Fyy;R for every i >0}
for every j € Z.
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Lemma 6.7. Suppose that L is a finitely generated left R-module with a good
filtration FoL. Then L* is a finitely generated right R-module, and the filtration
F,L* is again good.

Proof. Since L is finitely generated, L* is clearly again finitely generated. It is easy
to see that F;L* - FyR C Fj ,L*. Indeed, if ¢ € F;L* and r € F R, then we have

(¢-r)(z) = o(x) -7
and this belongs to Fi;R - FxR C Fij(j4r)R. We also need to prove that the
filtration on L* is exhaustive. Let ¢ € Hompg (L, R) be arbitrary. Since the filtration
on L is good, there exists some jo > 0 such that F;,; L = F;R - F; L for every
j > 0. Since ¢ is left R-linear, we get
P(Fjjol) C FiR - o(Fj,L).
Now Fj, L is finitely generated over FyR, and therefore ¢(F;,L) C Fj, R for some
71 > 0. We now obtain
¢(Fjtjol) C FiR-Fj, RC Fjyj R,

which is enough to conclude that ¢ € Fj L*. The proof that the filtration F,L" is
good is left as an exercise. O

Exercises.

Ezercise 6.1. Let S be a local ring, M a finitely generated S-module. Suppose that
Ext% (M, S) = 0 for every j > 0. Prove that M = 0.

FEzercise 6.2. Let L = R({), as a left R-module. Show that L* is isomorphic to
R(—Y) as a right R-module (with the filtration defined in class).

Ezercise 6.3. Let L be a finitely generated left R-module with a good filtration
F,L. Show that the natural morphism

gr’’ L* — Homg (gr" L, 5)

is injective, and use this to prove that grf' L* is finitely generated over S.
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LECTURE 7: FEBRUARY 25

Review from last time. Let me briefly recall where we are at. The general setting
is that R is a (non-commutative) ring with 1, endowed with a filtration Fy R, such
that the associated graded ring S = grf’ R is commutative and nonsingular of
dimension dim S = 2n. The prototypical example is of course R = A, (K), with S
being the polynomial ring in 2n variables. Given a finitely generated left R-module
M, together with a good filtration Fy M, we are trying to compare
Ext},(M,R) and Ext%(gr? M, S).
More precisely, we want to show that the two integers
§(M) =min{j >0 | Ext}(M,R) #0}
jlgrf M) = min{j >0 | Extfg(ngM, S)#0}
are always equal to each other. To this end, we had constructed a resolution
(7.1) oo Lo— L1 —Log—>M—=0
of M by free left R-modules, such that (1) each L; has a good filtration; (2) the

morphisms in the resolution respect the filtrations; (3) the induced complex
(7.2) v gLy 5 gLy — gt Ly - e M — 0

is still exact, and therefore gives a resolution of grf' M by free S-modules. In fact,
each L; was a direct sum of copies of R(e), for different values of e € Z, where
R(e) = R as a left R-module, but with the good filtration F;R(e) = F.1;R.

Now each L7 = Hompg(Lj, R) is a right R-module, and the j-th cohomology of
the complex of right R-modules

0—-Ly—Li—>Li— -
is equal to EXt%(M , ). We further showed that each L} again has a good filtration
(as a right R-module) — in fact, each L7 is again a direct sum of copies of R(e),
viewed as a right R-module, by one of the exercises from Lecture 6. One has

ngL; = Homg (ngL, S),
and because of the exactness of (7.2), it follows that the j-th cohomology of the
complex of graded S-modules

0— grf'Ly — grf' L} — gLy — -

is equal to Extjé(ng M, S). So our problem comes down to comparing the coho-
mology of a filtered complex to the cohomology of the associated graded complex.
This can be done using the formalism of spectral sequences.

The spectral sequence of a filtered complex. Generally speaking, a spectral
sequence is a sequence of complexes

(El,v dl) )
indexed by £ € N. Here each E} is a complex of vector spaces, modules, or whatever,
and the differentials do: E} — E;H are morphisms in the appropriate category.
The complex E} is often called the “l-th page” of the spectral sequence. What
makes a sequence of complexes into a spectral sequence is that each E7, , is obtained
from the previous complex E} by taking cohomology:
ker(de: Ep — E}T)
im(de: B}~ — E})
Of course, taking cohomology kills the differentials, and so the new differential dy 1
has to come from somewhere else.

By P (E]) =
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Typically, there is some quantity that one would like to compute, and the initial
page of the spectral sequence is a known (or easily obtained) “approximation” to
this quantity. As ¢ gets larger, the approximation gets better and better, and things
eventually “converge” to the quantity one is trying to compute. This is of course
just a rough description; I am going to make it more precise later on.

In my opinion, the best example for understanding spectral sequences is the
spectral sequence of a filtered complex. Suppose then that we have a complex
(K*,d), consisting of vector spaces, modules, or whatever:

N Y NG G
We are interested in computing the cohomology
ker(d: K™ — K"t
HTL(K.) — - ( )
1m(d: Kn—1 - K”)

of this complex. Suppose also that the complex is filtered, meaning that each K™
has an increasing filtration Fy K™, possibly infinite in both directions,

- CFK"CFj K"C--.
that is compatible with the differentials in the complex, meaning that d(F;K"™) C
F; K™ We also assume that
(7.3) |JFEE"=EK" and F;K, =0for j <0.
JEL
The compatibility with the differential means that each F;K*® is a subcomplex of
K*, and so we obtain a filtration on the cohomology of K*® by setting
FH"(K*) = im(H”(FjK’) = H”(K‘)).
In fact, it is not hard to see that
F;K"Nkerd+ d(K"1) F;K" Nkerd

B HI(EE) = d(KT) T K nd(Knh)

and hence that that the associated graded object is given by
F; K™ Nkerd
F;_1K"Nkerd+ F; K" Nd(K"1)

gri H"(K*) =

The spectral sequence is going to let us compute not H™(K*) itself, but the graded
pieces for the above filtration. The first approximation to this — and the starting
point for the spectral sequence — is the associated graded complex gr” K'*, with the
induced differential, and terms

%ngan i> ngKn gngKnH ...
Again, it is not hard to show that

ker(d: ger" — ger"“) . FiEK" N d=Y(F;_1 K"t

H"(g@rf K*) = =
(g1 ) im(d: grf Kn1 = grf Kn) F1 K"+ d(F;K™)

Note that this is usually not the same as gri H"(K*).

Ezample 7.4. Here is a typical example of a filtered complex. Let (A, m) be a local
ring, and suppose that K*® is a complex of free A-modules of finite rank. We can
filter each K™ by powers of the maximal ideal,

K"Z_)mK"Z_)mZK"Qn-

)
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which amounts to setting FoK™ = K™ and F_;K™ = m/K" for j > 0. Here the
second condition in (7.3) does not hold, but it turns out that one can weaken this
to the condition that

(VK" +L)=L

JEZ
for every submodule L C K,, which does hold in this example (by Krull’s theorem).
In particular, the intersection of all F; K™ equals zero, which makes sense if we think
of elements of m’/ as functions that vanish to order j; going further down in the
filtration on K™ therefore means getting closer to zero.

Example 7.5. The long exact sequence in cohomology is a toy example of a spectral
sequence. Suppose that we just have one subcomplex K§ C K°®. Together with the
quotient complex, this makes a short exact sequence
0K —-K*—>K; =0
and so we get a long exact sequence in cohomology:
o H"Y(KY) —» HY(KS) — H"(K*) — H"(K}) — H" ™ (K$) — -+

This tells us how the cohomology of K*® is related to the cohomology of the subcom-
plex and the quotient complex: there are additional maps H"(K}) — H"TY(K}),
and the two graded pieces of H"(K*®) are the cokernel respectively kernel of these
maps. If the filtration is longer, then the picture is still similar, but it takes more
steps to get from the cohomology of the associated graded complex to the associated
graded of the cohomology of K*°.

As explained above, we may think of elements of F; K™ as being “close to zero”
when j < 0. The idea behind the spectral sequence is to “approximate” the
condition x € F; K" and dx = 0 by the weaker condition dx € F;_,K"™, and then
increasing the value of £ > 0. In other words, we are approximating F; K" Nkerd
by the decreasing sequence of submodules F; K™ Nd~!(F;_,K™T') for £ > 0; this
makes sense because of the condition in (7.3). With this in mind, we can now give
the precise definition of the spectral sequence of a filtered complex.

For each n,j € Z and each ¢ € N, we define

Z}; = F;K"Nd ' (Fj_K"*").
In other words, an element z € F; K™ belongs to Z;'; iff do € Fj,gK"“. By
construction, the differential d: K™ — K™*! induces a morphism
de: Zy)'; — ZZ}'}E, T dz.
Similarly, for each n,j € Z and each £ € N, we define
B = 20,0 (B )
=F 1 K"Nd ' (Fj_K"™) + ;K" Nd(Fjpe—1 K"
L n—1
=Zf ;1 + d(Zlfl,jJerl)'
We can then form the quotient
Eij = Zi;/Bi;,
and observe that d; maps By’ ; into Bg;‘_le, and therefore induces a morphism

. mn n+1

with the property that dy o dy = 0.
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To obtain a complex (Ef,d,), we consider the graded modules
B} =D E;;
JEZ
By construction, the differential do: E} — E;"H reduces the degree by /.

Ezxample 7.6. For ¢ = 0, we have

7y, =FK" and By, =Fj_ K",
since d(F; K™) C F; K" by assumption. Consequently,
FK
Ero= _—J70n P gn
0,7 Fj—lKn gr] )

with differential dy induced by d. Given (7.3), it also makes sense to set
Z%;=F;K"Nkerd and Bf ;=F;1K"Nkerd+ F;K" N d(K" ),
which extends the above notation (formally) to £ = oco. Then
F;K™
E" = J o FHn K*
~i = TR nkerd+ R nage Ty - & HTED,

according to our earlier calculation.

Now let us show that the complexes (E}, d;) really form a spectral sequence.
Proposition 7.7. For each n,j € Z and each £ € N, one has
Efiry = H" (B, de).
Proof. Set H}'; = H ”(EZ j)7 and recall that this is the cohomology of the complex

Zy5 L Bl S 2y By s 2y By,
We start by defining a function
¢: Efyy = Hyplj.
Suppose that z € Zj',, ;. Then also z € Z}; and
dex = dw € d(Z},, ;) € Byt

and so z defines a class ¢(z) € H, ¢;- This class does not depend on the choice of
representative, because

Bii; = 2N (BZj + d(ZZj_ien
by the lemma below. Indeed, we see that z € By, ; if and only if its image in Hp,

is zero, and so ¢ is well-defined and injective.

It remains to argue that ¢ is also surjective. Any class in H, ¢ can be represented
n+1

by an element x € ZZj with dpx € Bé,j—é' After unwinding the definitions, this is
saying that x € F; K™ and dx € F;_K"™! and
dr =dz’ +y
for some 2’ € F;_1 K™ with d2’ € F;_,K"*! and some y € F;_,_1K™"!. Thus
v—a' € FEK"Nd " (Fj_ K™ =77, 5,

and after replacing x by x — 2’, we can assume from the beginning that x € 2y
But this means exactly that the given class is in the image of ¢.

Lemma 7.8. One has
Bl ;=2 ;N (B?,j + d(Z?j_-‘ié)>

for every j,n € Z and every £ € N.
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Proof. Unwinding the definitions shows that
By +d(Z) L) = Fia K" nd  (Fj_ K™ + F; K" N d(Fj K" )

IR ED4
and so the intersection with Z&_lj =F;K"N d-t (F',g,lK”H) equals
Jo K N d N (Fj_eo K™Y + Fy K" N d(Fip K™Y = By - O

In what sense does the spectral sequence of a filtered complex “converge”? Note
that the Zj'; form a decreasing chain of submodules of F; K™ with

ﬂ ‘67]

LeN

Proposition 7.7 shows that E7,, ; is a subquotient of E7;, but there is in general
no natural morphism from one to the other, which means that one cannot take a
(direct or inverse) limit in the algebraic sense. Fortunately, what happens almost
always in practice is that, for each fixed j,n € Z, the modules Ej'; stabilize for
sufficiently large £. In fact, one has the following necessary and sufﬁment condition
for stabilization, in terms of the filtration on the complex.

Proposition 7.9. Fiz some n € Z. The differential d;: E} — E;H'l vanishes for
every £ >l if, and only if, the filtration satisfies

F;K" M Nd(K™) = ;K" N d(Fjyg,-1K™)
for every j € Z.

Proof. The differential d,: B} — EZLH vanishes for every ¢ > {; exactly when
d(Zy;) < lejle for every ¢ > ¢y and every j € Z. After replacing j by j + ¢, this
translates into the condition that

FiK™ N d(Fj0K™)
CFj 1 K" nd N (Fj_oK™?) + K" N d(Fjpe-1K™),
or after intersecting with d(F;,K™),
F; K" N d(FjK™) = F; 1 K" 0 d(Fj0K™) + F; K™ N d(Fjp e K™).

Recursively applying this identity (for £ > ¢y), and using the fact that the filtration
on K™ is exhaustive, we can rewrite this in the equivalent form

FK" M Nd(K") = F;1 K" nd(K™) + F, K" N d(Fjp1 K").
According to (7.3), there is some jo € Z with Fj;, K"*! = 0. We now get the desired
conclusion by recursively applying the identity above (for j > jo). O
Corollary 7.10. If there is some £y € N with the property that

F,K"'Nd(K") = F; K" N d(Fjye,-1K")
F;K"Nd(K"™ ") = F;K" Nd(Fjpe-1K"")
for every j € Z, then one has E}, = EZ,.

For example, one has ET = E7. exactly when the differential d is strictly com-
patible with the filtration, in the sense that F; K™ Nd(K"™!) = d(F; K" ') (and
the same condition with n + 1 in place of n).

Note. 1 have been using the “natural” indexing for the spectral sequence, where n
is the position in the complex K*®, and j the degree with respect to the filtration on
K™. For historical reasons, people usually index their spectral sequences differently,
and our Ey'; is usually denoted by £, ULars (This looks more natural in the special
case of a double complex.)
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Application to our problem. Now we return to the case of a finitely generated
left R-module M, endowed with a good filtration FeM. If we apply the spectral
sequence formalism to the complex of right R-modules
0—>Ly—Li—L;— -,

with the good filtration F.L} constructed earlier, we obtain a spectral sequence
with Eg = grl’ L% and with differential dy induced by the differential in the original
complex. It follows that

E{ = Ext}(gr" M, 5),
because the complex in (7.2) is a free resolution of grf’ M. On the other hand, the
complex in (7.1) is a free resolution of M, and so we get

B’ = grExt],(M, R).

Recall that we are trying to prove the identity j(M) = j(grf M). The first thing
we should do is check that the spectral sequence converges, in the sense that each
E} stabilizes for £ > 0. This is a consequence of the following lemma about good
filtrations.

Lemma 7.11. Let (K*,d) be a complex of left (or right) R-modules, and suppose
that each K™ has a good filtration FoK™ such that d(F;K™) C F; K™ for every
j,n € Z. Then for every n € Z, there is some jo € N such that

F; K" nd(K") = ;K" N d(Fj4,K").

Proof. On the submodule d(K™) C K™, we have two good filtrations, one induced
by the good filtration on K"t the other by the good filtration on K™. Let us
denote these by

Fjd(K™) = F;K"™ Nd(K™) and G;d(K")=d(F;K").

The first filtration is good because grf’d(K™) is a submodule of the finitely generated
S-module grf” K™*+1; the second filtration is good because gréd(K"™) is a quotient
module of the finitely generated S-module gr K™. In both cases, we are using the
fact that S is noetherian. By Corollary 2.15, there is an integer jo > 0 such that

Fjd(K") € Gjyj,d(K™)
for every j € Z. We get the result by intersecting both sides with F; K ntl U

Together with the convergence criterion in Corollary 7.10, this shows that E} =
E7. for £ > 0, and so our spectral sequence does indeed converge. Now recall that

E] = Ext’(gr" M, S).
We can use the results about E{ from Proposition 6.4, plus the spectral sequence,
to prove the following theorem.
Theorem 7.12. Let M be a finitely generated R-module with a good filtration FeM .
(a) One has j(ngM) = j(M), and thus Extl, (M, R) =0 for j < j(gr’"M).
(b) One has d(Extf‘%(M7 R)) <2n—j for every j > 0.
(c) One has d(EXt%M)(M, R)) =2n—j(M).

Proof. To simplify the notation, let me set jo = j(grf M), which means that E{ =0
for all j < jg. According to Proposition 6.4, we have

d(E]) < 2n—j

for every j > 0, with equality for j = jo. Here d(M) = dim S/J(M) is the dimension
of the support.
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Since EZH is a subquotient of Eg, it follows that Eg =0 for j < jo and £ > 1.
But EJ = E} for £>> 0, and so EJ =0 for j < jo. Remembering that
EY = grf Ext),(M, R),
we deduce that Extg%(M, R) =0 for j < jg, and hence that j(M) > jo. This gives
us one half of (a), namely
. . Ia
J(M) = (g M),
By the same reasoning, d(E7) < 2n — j implies that d(EZ ) < 2n — j, and therefore
d(Extl (M, R)) < 2n — j
for every j > 0, which is (b). Lastly, we have d(E{“) = 2n — jo, but E{"’*l =0 and
d(EPT") < 2n — jo — 1. Therefore
EJ® = ker(dy: EJ* — EP**Y),
and since d(E{DJr_l) < 2n— jo — 1, we see that d(EL) = 2n — jo. Continuing in this
way, we get d(E}") = 2n — jo for every £ > 1, and therefore
d(Ext)y (M, R)) = 2n — jo.
In particular, Extg’ (M, R) # 0, and so jo > j(M). This gives us the other inequality
j(gr M) > (M),
and so (a) and (c¢) are proved. d

Exercises.

Ezxercise 7.1. Generalize the proof of Proposition 7.9 to the case where the filtration
on each module K™ in the complex satisfies

(VK" +L)=L

JEZL
for every submodule L C K.
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LECTURE 8: FEBRUARY 27

Holonomic modules and duality. Recall that R is a filtered ring, whose as-
sociated graded ring S = gr’’R is commutative, noetherian, and nonsingular of
dimension dim S = 2n. Last time, we proved the following theorem about finitely
generated (left or right) R-modules.

Theorem. Let M be a finitely generated R-module with a good filtration FeM .
(a) One has j(gr™ M) = j(M), and thus Ext}(M, R) = 0 for j < j(gr™ M).
(b) One has d(Extﬁ(M, R)) <2n —j for every j > 0.
(c) One has d(Ext%M)(M, R)) =2n — j(M).

As T explained before, the fact that j(grf” M) = j(M), together with the identity
d(grf’ M) + j(M) = 2n, implies that

d(M)+j(M) =2n
for every finitely generated R-module.

Example 8.1. In the case of the Weyl algebra A,,, this says that the two notions
of dimension (with respect to the Bernstein filtration and the degree filtration) are
the same. Since we know from Bernstein’s inequality that d®(M) > n for every
nonzero finitely generated A,-module M, it follows that also di&(M) > n.

Let us now assume that Bernstein’s inequality holds: Every finitely generated
left or right R-module M satisfies d(M) > n, provided that M # 0. We saw earlier
that this holds when R = A,. An equivalent formulation is that every finitely
generated left or right R-module satisfies j(M) < n, meaning that Ext’, (M, R) # 0
for some j < n, again provided that M # 0. Bernstein’s inequality, together with
the above theorem, has some remarkable consequences.

Corollary 8.2. If M is a finitely generated R-module, then Extg%(M, R) =0 for
J>n.

Proof. Let M be a finitely generated left (or right) R-module. Then each EJ =
Eth%(M , R) is a finitely generated right (or left) R-module, and the theorem gives
d(E?) < 2n — j. But Bernstein’s inequality says that d(E7) > n whenever E7 # 0,
and so the conclusion is that £ = 0 for j > n. (]

Note that this is completely false for finitely generated S-modules, where Ext?
can be nonzero in the range 0 < j < 2n.

The most interesting R-modules are clearly those for which the dimension d(M)
is minimal (or where the quantity j(M) = 2n — d(M) is maximal). By analogy
with the case R = A,,, we call such modules holonomic.

Definition 8.3. A finitely generated left (or right) R-module M is called holonomic
if either M =0, or M # 0 and d(M) = n.

An equivalent definition is that M is holonomic if either M = 0, or M # 0 and

§(M) = n. Since Ext}(M, R) = 0 for j > n, we obtain the following alternative
characterization of holonomic R-modules.

Corollary 8.4. A finitely generated R-module M is holonomic if and only if
Ext, (M, R) =0 for every j # n.

Given any holonomic left (or right) R-module M, we therefore get another right
(or left) R-module
M* = Ext},(M, R).
This is called the holonomic dual. Let us investigate the properties of M*.
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Lemma 8.5. If M is holonomic, then M* is also holonomic.
Proof. Since j(M) = n, the theorem from last time shows that
d(M*) = d(Ext)™ (M, R)) = 2n — j(M) = n.
This says that M* is again holonomic. O

The association M +— M* is contravariant functor from the category of holo-
nomic left (or right) R-modules to the category of holonomic right (or left) R-
modules. Indeed, given a morphism of left R-modules f: M — N between two
holonomic R-modules M and N, the functoriality of Ext shows that we have a
morphism of right R-modules

f: Exti(N, R) — Exti(M, R)

in the opposite direction, and it is not hard to see that (f o g)* = g* o f*. As a
contravariant functor, the holonomic dual is also exact: if

0—>M1—)M2—)M3—)0

is a short exact sequence of holonomic left (or right) R-modules, then the long exact
sequence for Ext},(—, R) becomes a short exact sequence

0 — Extk(Ms, R) — Exti(Ma, R) — Extk (M1, R) — 0,
due to the vanishing of Extg%(Mi, R) for j # n. In other words,
0—M;— M;— M —0
is again a short exact sequence.

Proposition 8.6. We have M = M** for every holonomic left (or right) R-module
M, and hence the holonomic dual gives an equivalence of categories

(holonomic left R-modules) = (holonomic right R-modules)°P.

Proof. Let M be a holonomic left R-module. Choose a free resolution
o= Lo =Ly Lo+ M—=0
by free left R-modules of finite rank. The complex of right R-modules
0—Ly— LT —L5— -

is then exact except in degree n, where the cohomology is M* = Extf(M, R).
Choose another free resolution

o> Ko Ky - Kg—> M*—0

by free right R-modules of finite rank. By a general lemma in homological algebra,
there is a morphism of complexes of right R-modules

K, —% 5 K, 0
J{fl J{fo J{
Ly~ Ly —4 Lh, —

that induces an isomorphism on cohomology. (Such morphisms are called quasi-
isomorphisms.) Let me briefly recall the construction. Since M* is the cohomology

in degree n of the complex, we have M* = kerd/imd, and so the submodule
kerd C L} maps onto M*. Because Ky is a free R-module, we can find a lifting
Ko
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indicated by the dashed arrow, and we denote by fo: Ko — L}, the composition.
By construction, do fy = 0, and so the first square in the diagram below commutes:

K —4— K, 0
o]
* d * d *
Ln—l Ln Ln-i—l e

Since the composition K1 — Ky — M™ is zero, the morphism fy o d maps K3
into the submodule imd C kerd C L. This submodule is the image of L} _;, and
because K is a free R-module, and so we can again find a lifting

1 f1
<+
Ly, —%% imd

which now makes the second square in the diagram commute:

K, —% 5 K, 0
J{fl J{fo J{
Ly, E Ly, ! Ly —

Continuing in this manner produces the desired morphism of complexes. If we now
apply the functor Hompg(—, R) a second time, we obtain a morphism of complexes
of left R-modules

Ln+1 Ln Ln—l —_—
0 K¢ K

One can show that this morphism still induces an isomorphism on cohomology.
Now the complex in the first row is a resolution of M, and therefore only has
cohomology at Lg. Likewise, because M™ is holonomic, the complex in the second
row only has cohomology at K, where the cohomology is M**. In this way, we

obtain a morphism of left R-modules M — M**, which is an isomorphism by the
comment above. U

We can use this result to compare the characteristic varieties of M and M™*.
Corollary 8.7. If M is holonomic, then Ch(M) = Ch(M*).

Proof. Choose a good filtration FeM and recall that Ch(M) is the closed subset
of Spec S defined by the radical of Anng(grf’ M), or equivalently, the support of
the finitely generated S-module gr” M. The filtered free resolution from last time
induces a good filtration on M* = Ext's(M, R); in fact, using the spectral sequence
from last time, B = grf'Ext%(M,R) = gr’ M*. Since the spectral sequence
converges, E™ is a subquotient of ET = Ext%(grf" M, S), and therefore

Ch(M*) = Supp E™. C Supp E}* C Supp(gr’’ M) = Ch(M).

But then we also have Ch(M) = Ch(M**) C Ch(M*), and so the two characteristic
varieties are in fact equal. O

The existence of the holonomic dual gives another explanation for the fact that
the category of holonomic A,-modules is both artinian and noetherian. In fact,
recall that we showed earlier, using the notion of multiplicity, that every ascending
or descending chain of submodules of a holonomic A,,-module M has finite length
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(bounded by the multiplicity of M). Since the holonomic dual takes ascending
chains of submodules of M to descending chains of submodules of M*, both chain
conditions are equivalent in this case. This is again unlike the commutative case.

Exercises.

Ezercise 8.1. Let R be a ring with 1. Let A, and B, be two complexes of free
R-modules of finite rank. Suppose that we have a morphism of complexes

Anfl An An+1 —_—
J/fn—l lfn J/fn-%—l
anl Bn Bn+1 —_—

that induces isomorphisms on cohomology. Show that the same thing is true after
applying the functor (—)* = Homp(—, R): the induced morphism of complexes

Z+1 B;kL ;+1 T
[ s =
* * *

Ajga A Ay —

is again a quasi-isomorphism. (Hint: Use the mapping cone. Show that the mapping
cone of f is an exact complex of free R-modules, and therefore homotopic to zero.
Show that this property is preserved by the functor Hompg(—, R), and conclude
that the morphism between the dual complexes is also a quasi-isomorphism.)
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LECTURE 9: MARCH 4

Local coordinates on algebraic varieties. Let X be an algebraic variety over
a field k, with structure sheaf &'x. More precisely, X is a scheme of finite type over
k, meaning that for every affine open subset U C X the ring of functions I'(U, Ox)
is a finitely generated k-algebra, or in other words, a quotient of a polynomial ring.
We say that X is nonsingular of dimension n if, at each closed point x € X, the
stalk

ﬁxw = [1]119?(916 F(U, ﬁx)

is a regular local ring of dimension n; in other words, if m, C Ox , denotes the
maximal ideal, then

. 2 .
dimgy , /m, Mz/my; =n = dim Ox .

When the field k is perfect (which is always the case in characteristic zero), an
equivalent condition is that the sheaf of Kéhler differentials Q% /i 18 locally free of
rank n.

Since we are going to need this in a moment, let me briefly review derivations
and Kahler differentials. Let A be a finitely generated k-algebra. A derivation
from A into an A-module M is a k-linear mapping D: A — M such that §(fg) =
f0(g) + go(f) for every f,g € A. We denote by Dery(A, M) the set of all such
derivations; this is an A-module in the obvious way. In the special case M = A,
we use the notation Derg(A) for the derivations from A to itself. In view of the
formula 6(fg) = fd(g) + gd(f), such a derivation is the algebraic analogue of a
vector field, acting on the set of functions in A. We have Dery,(A) C Endy(A), and
one can check that if 41, o € Der(A), then their commutator

[01,02) = 61 062 — 65 0 61 € Endy(A)
is again a derivation. It is the analogue of the Lie bracket on complex manifolds.

The module of Kdhler differentials QY /i Tepresents the functor M +— Dery (A, M),
in the sense that one has a functorial isomorphism

Dery (A, M) = HomA(Qi‘/k,M).

In other words, Q}L‘/k is an A-module, together with a derivation d: A — Q}Mk, such

that every derivation 0 € Dery(A, M) factors uniquely as § = b o d for a unique
A-linear map §: Q4 K M. Concretely, QY /i can be constructed by taking the
free A-module on the set of generators df, for f € A, and imposing the relations
d(fg) = fdg + gdf and d(f +g) = df + dg for every f,g € A, and df = 0 for every
f € k. By construction, one has

Dery(A) = HomA(in67 A),

which makes the module of Kéhler differentials dual to the module of derivations.
Globally, Q% Ik is a coherent sheaf of &'x-modules, such that for every affine open

subset U C X, one has T'(U, Q%{/k) = Qh/w where A = T'(U, Ox). There is again
a universal derivation d: Ox — Q% /- Think of Q% as an algebraic analogue of

the sheaf of holomorphic one-forms on a complex manifold. The tangent sheaf
yx = HOmﬁX (Qﬁ(/kv ﬁx)

is defined as the dual of the sheaf of Kahler differentials; on affines, one has
I'(U, Ix) = Dery(A), using the notation from above. This is an algebraic ana-
logue of the sheaf of holomorphic tangent vector fields on a complex manifold.
Now suppose that X is nonsingular of dimension n, or equivalently, that Qﬁ( Ik is
locally free of rank n. At every closed point x € X, one can choose local coordinates
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in the following way: there is an affine open neighborhood U of z, together with n
regular functions z1,...,z, € I'(U, Ox), such that

Ueely = D x|y, - dui.
i=1

Dually, we have derivations 01, ...,0, € Dery (I‘(U, ﬁx)), such that

yX‘U g@ﬁX‘U'ai'
i=1

This says that df = 01(f) - dzy1 + -+ + On(f) - dz,, for every f € T'(U, Ox), and so
the derivation 9; plays the role of the partial derivative operator 9/0z;. One can
choose the functions z1,...,2, € I'(U, Ox) in such a way that they generate the
maximal ideal m; C Ox .. Keep in mind that the morphism U — A} defined by
the local coordinates is étale, but not usually an embedding (because open sets in
the Zariski topology are too big).

The sheaf of differential operators. Let X be a nonsingular algebraic variety.
Our goal is to define the sheaf of differential operators Zx, which is a global ana-
logue of the Weyl algebra A,, (k). This will be a quasi-coherent sheaf of &x-modules
Px, together with an increasing filtration FeZx by coherent &x-modules, where
F;Zx consists of differential operators of order < j.

We start by considering the affine case. So let U C X be an affine open subset,
and set A = I'(U, Ox), which is a finitely generated k-algebra. We are going to
define an A-module D(A) C Endg(A), whose elements are the algebraic differential
operators of finite order on A. It will satisfy

D(4) = G FyD(A),
§=0

where F;D(A) is the submodule of operators of order < j. The idea is that operators
of order 0 should be multiplication by elements in A, and that if P € F;D(A) and
@ € F;D(A), then their commutator [P,Q] = Po Q — Q o P € Endi(A) should
belong to F;y;_1D(A). This is consistent with what happens for the Weyl algebra.

For an element f € A, we also use the symbol f € Endg(A) to denote the
operator of multiplication by f. Observe that P € Endj(A) is multiplication by
the element P(1) € A if and only if P is A-linear if and only if [P, f] = 0 for every
f € A. We can therefore define

FyD(A) = { P € Endy(A) | [P, f] =0 for every f € A} = A
We then define F;D(A) recursively by saying that
F;D(A) = { P € Endy(A) | [P, f] € Fj_1D(A) for every f € A}.
This construction of differential operators is due to Grothendieck.
Ezample 9.1. Let us work out the relationship between F; D(A) and Dery(A). Every
derivation § € Dery(A) is also a differential operator of order 1, because
[0, f1(9) = 6(fg) — fo(g) =0(f) -9
for every f,g € A, which shows that [d, f] = §(f) € FyD(A). Conversely, suppose
that we have some P € F; D(A). By definition, for every f € A, there exists some
pr € A such that [P, f] = py. Concretely, this means that
P(fg)—fP(g) =ps-9g

for every f,g € A. Taking g = 1, we get py = P(f) — fP(1), and so

P(fg) — fP(9) —gP(f) + fgP(1) = 0.
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It is then easy to check that P — P(1) is a derivation. The conclusion is that
FiD(A) 2 A® Derg(A)
with P € Fy D(A) corresponding to the pair (P(1), P — P(1)).

It is easy to see that each F;D(A) is a finitely generated A-module, and that
composition in Endy(A) has the following effect: if P € F;D(A) and Q € F;D(A),
then Po @ € Fi;;D(A) and [P,Q] € F;1j_1D(A). With some more work, one can
prove the following result.

Proposition 9.2. Let A be a finitely generated k-algebra. If A is nonsingular of
dimension n, then the following is true:
(a) As an A-algebra, D(A) C Endg(A) is generated by Derp(A), subject to the
relations [, f] = §(f) for every § € Dery(A) and every f € A.
(b) One has F;D(A)/F;j_D(A) = Sym’ Der(A) for j > 0.
(c) One has an isomorphism of graded A-algebras

gt D(A) = @ F;D(A)/F;_1D(A) = Sym Dery,(A)
j=0

between the associated graded algebra of D(A) and the symmetric algebra
on Dery(A).

Here, for any A-module M, the j-th symmetric power Sym’ M is the A-module
obtained by quotienting M ®4 --- ® 4 M by the submodule generated by elements
of the form m; ® - m; — mg1) @ -+~ Mmy(y), for all permutations o € S;. The
symmetric algebra on M is the graded A-algebra

Sym M = @Symj M.
j=0
It has the following universal property: if B is any A-algebra, then every morphism
of A-modules M — B extends uniquely to a morphism of A-algebras Sym M — B.

For example, one has Sym A®" = Alxq, ..., z,].
Let us give a concrete description of differential operators in local coordinates.
Let U C X be an affine open, with local coordinates x1,...,%,, and set A =

I'(U,Ox). The A-module Dery(A) is free of rank n, generated by the derivations
O1,...,0n, and so D(A) is freely generated over A by products of these. In other
words, every P € F;D(A) can be written uniquely in the form

P=" fad",
lal<j

where 9% = 9f'' --- 99" and where f, € A. The only difference with the case of
the Weyl algebra is that the coefficients now belong to the ring A, instead of to the
polynomial ring.

Ezample 9.3. In the case A = k[xy,...,x,], we have D(A) = A,(k), and the
filtration FyD(A) agrees with the order filtration.

Now we would like to say that Zx is the unique sheaf of &x-modules with the
property that T'(U, Zx) = D(F(U7 ﬁx)) for every affine open U C X. For this to
work, one needs the following compatibility result.

Proposition 9.4. Let A be a finitely generated k-algebra that is nonsingular of
dimension n. For nonzero f € A, set Ay = A[f~!]. Then one has isomorphisms

D(Af)%”Af XA D(A) and FjD(Af)%"Af XA F}D(A)
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The content of this is that every differential operator on A extends, after mul-
tiplication by a sufficiently large power of f, to a differential operator on A. (The
analogous result for Kihler differentials is that Q}M = Ar®a A /i you can find

this in Hartshorne, who quotes Matsumura for the proof.)

Note. Unless X is affine, I'(X, Zx) does not embed into the k-linear endomor-
phisms of I'(X, Ox ). For example, we shall see below that there are many algebraic
differential operators on P}, but since P} is proper, every regular function on P} is
constant. This is why differential operators are defined locally.

The proposition implies that Zx is a quasi-coherent sheaf of &'x-modules, and
that each F;9x is coherent. Indeed, recall that a sheaf of &x-modules .# is called
quasi-coherent if, for every affine open subset U C X, the restriction of .# to U
is the sheaf of &x-modules associated with the T'(U, &'x)-module T'(U, #). On an
affine scheme Spec A, a necessary and sufficient condition for .%# to be quasi-coherent
is that

F(D(f),ﬁ) = AraT'(Spec A, F)

for every f € A, where D(f) C Spec A denotes the principal affine open defined by
f. When X is noetherian, which is the case for schemes of finite type over a field, #
is coherent if each I'(U, %) is finitely generated over I'(U, Ox). So the proposition
says exactly that Zx is quasi-coherent and that each F;Zx is coherent.

The isomorphisms in Proposition 9.2 globalize as follows. One has FyZx = Oy,
and for every j > 0, one has

grf@x = Fj@)(/FJ;l@X = Symj 9}(7
where Jx is the tangent sheaf. One also has an isomorphism of graded &'x-algebras
gr” 7x =~ Sym Ix,

and so the associated graded algebra of Zx is again commutative, as in the case
of the Weyl algebra. Since X is nonsingular, J is locally free of rank n, and the
symmetric algebra on Jx can be interpreted as the sheaf of algebraic functions on
the cotangent bundle. Let us denote by p: T*X — X the cotangent bundle of X,
with its natural projection to X. This is again a nonsingular algebraic variety, now
of dimension 2n, locally isomorphic to the product of X and affine space A}. By the
correspondence between vector bundles and locally free sheaves (from Hartshorne’s
book), one has an isomorphism

T*X 2 V(Jx) = Specy Sym Jx,

and therefore p,Op+x = Sym Iy as Ox-algebras. This is why people sometimes
refer to Zx as a “noncommutative deformation” of the cotangent bundle.

Ezxample 9.5. Let us consider the example X = P}. The k-vector space I'(X, Zx)
of global differential operators on projective space is infinite-dimensional. There
are several ways to see this. One way is by diagram chasing. We have FyZx = Oy,
and therefore T'(X, FyZx) = k. For each j > 1, we have a short exact sequence

0— Fj_19x — F;Px — Sym? Tx — 0.
One can show by induction that H' (X, F;Zx) = 0 for j > 0, and so
HY(X,F;9x)/H°(X,F;_19x) = H°(X, Sym’ Jx).
These vector spaces can then be computed using the Euler sequence
0— Ox — Ox(1)® Y 5 7 0.

For example, dim H(X, 7x) = (n+1)? — 1, and so dim H*(X, F} Zx) = (n + 1)%.
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Another way is to use the standard open covering X = UyUU; U---UU,. Since
each U; is isomorphic to A}, one has I'(U;, Zx) = A,(k), and so an element of
I'(X, Zx) can be described by (n+1) elements of the Weyl algebra that are related
to each other by the coordinate transformations among the U;. (See the exercises.)

The third way is to use the presentation of X as a quotient of AZ“ minus the
origin, by identifying points of P} with lines in AZ'H. Recall how this works in the
case of the Euler sequence. Once n > 1, a vector field on AZ“ minus the origin is
the same thing as a vector field on AZ‘H, hence of the form

foOo + f101 + - 4 fnOn,

for polynomials fo, ..., fn € klzo,...,2s]. Such a vector field descends to X if and
only if it is homogeneous of degree 0, where degz; = 1 and degd; = —1. At the
same time, the Euler vector field

xoao + $181 R xnan
is tangent to the lines through the origin, and therefore descends to the zero vector
field. This shows that I'(X, Zx) is generated by the (n + 1)? vector fields z;0;,
subject to the single relation zody + -+ + £,0, = 0. In the same way, one can
show that T'(X, Zx) is isomorphic to the space of differential operators on AZ“

that are homogeneous of degree 0, modulo the ideal generated by the Euler vector
field. Concretely, an element P € I'(X, F;Zx) can be written in the form

P= > comfo - afrofe -0
la]=181<j
and this expression is unique modulo multiples of xq9y +- - - +x,,0,,. The restriction
of P to the standard affine open Uj is obtained by setting x¢o = 1 and using the
relation dg = — (101 + -+ - + x,0,).

Algebraic Zx-modules. Let me end with the following definition. An algebraic
Z2-module on a nonsingular algebraic variety X is a quasi-coherent sheaf of Ox-
modules M, together with a (left or right) action by the sheaf of differential opera-
tors Px. In other words, for every affine open subset U C X, with A =T(U, Ox),
we get an A-module M, together with a (left or right) action by the module of
differential operators D(A).

Exercises.
Ezercise 9.1. Show that one has Derg(As) = A; ® 4 Dery(A) for every f € A.
Ezercise 9.2. For X =P}, compute dimy I'(X, F;Zx) as a function of j > 0.

Ezercise 9.3. Consider the example X = Pi. If we use the symbol zq for the
coordinate on Uy = Ai, and x7 for the coordinate on U; = A}e, then T'(Uy, Zx) is
the Weyl algebra on g and dp, and T'(Uy, Zx) is the Weyl algebra on x; and 0.
Using the coordinate change z; = ! decide when two differential operators

P= Zal-}jxéag and Q= mexia{
2] 0,J
have the same restriction to Uy N U;. Use this to describe the space I'(X, Zx) of
global differential operators on Pj.
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LECTURE 10: MARCH 6

Algebraic Z-modules. Let me first recall the definition of an algebraic Z-module
from last time. As before, X is an algebraic variety over a field k, nonsingular of
constant dimension n. We denote by Zx the sheaf of algebraic differential operators
on X, and by F;Zx the subsheaf of operators of order < j. Then each F;%x is a
coherent sheaf of 0x-modules, and Zx itself is quasi-coherent.

Definition 10.1. An algebraic Z-module is a quasi-coherent sheaf of &x-modules
M, together with a left (or right) action by Zx.

Since Zx is noncommutative, we again have to distinguish between left and right
modules. In the case of a left 2-module M, the set of sections M = T'(U, M) over
any affine open subset U C X is thus a left module over the algebra of differential
operators D(A), where A = T'(U, €x). The quasi-coherence condition means that
the restriction of M to the open set U is uniquely determined by this D(A)-module.
Recall from Lecture 9 that the algebra D(A) is generated, as an A-subalgebra of
Endg(A), by the derivations Der(A), subject to the relation [, f] = §(f) for all
d € Derg(A) and all f € A. The left D(A)-action on M is therefore the same thing
as a k-linear mapping

Dery(A) @, M — M, §®@m+— om,

such that (f§)m = f(dm), 6(fm) = fo(m) + §(f)m and 6(nm) — n(dm) = [6,n]m
for all 0,7 € Derg(A), all f € A, and all m € M. Globally, to turn a quasi-coherent
sheaf of Ox-modules M into a left Zx-module, we need a k-linear morphism

Ix @ M — M

that satisfies those three conditions locally. (You can work out for yourself what
happens for right Z-modules.)

Ezample 10.2. Since the algebra of differential operators on the affine space A} is
the Weyl algebra A, (k), an algebraic Z-module on A} is (up to the equivalence
between quasi-coherent sheaves and modules) the same thing as a left (or right)
module over A, (k).

Here are some examples of left and right Z-modules.

Ezxample 10.3. The structure sheaf Ox is a left Zx-module. Indeed, for every affine
open subset U C X, the algebra of differential operators D(A) actson A = T'(U, Ox)
by construction.

Example 10.4. Every algebraic vector bundle with integrable connection is a left
Px-module. Let & be the corresponding locally free sheaf of &x-modules; in
Hartshorne’s notation, the vector bundle is then V(&™*). A connection is a k-linear
morphism V: & — Qﬁ(/k ®e, & that satisfies the Leibniz rule. In other words,

for every affine open subset U C X and every pair of sections s € T'(U, &) and
f €U, Ox), the connection should satisfy

V(fs)= fV(s)+df ®s.

We can also regard the connection as a k-linear morphism V: Iy Qp & — &, but
we use the differential geometry notation Vy(s) instead of V(0®s) for 6 € T'(U, Ix)
and s € I'(U, &). In this notation, we have

(10.5) Vyo(s) = fVe(s),

and the Leibniz rule becomes

(10.6) Vo(fs) = fVa(s) +0(f)s.
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The connection is called integrable if
(107) V@ o Vn - Vn 9] VQ = V[gm]
for every pair of vector fields 6,7 € T'(U, Ix). This is equivalent to the vanishing

of the curvature operator in Qﬁ(/k ®eoy End gy (&). The conditions in (10.5), (10.6)

and (10.7) are exactly saying that the action of Jx on & extends to a left action
by the sheaf of differential operators Zx, and so & becomes a left Z-module.

In general, the left action of Zx on a left Z-module M may be considered
(formally) as a connection operator V: M — Q4 /x®6x M that satisfies the Leibniz
rule and is integrable, in the sense that it locally satisfies the conditions expressed
in (10.5), (10.6) and (10.7).

Example 10.8. Unlike in the case of affine space, we cannot turn left Z-modules
into right Z-modules by changing signs, since we might not be able to do this
consistently on all affine open subsets. Instead, the primary example of a right
Z-module is the canonical bundle wx = A" Q% Jk whose sections are the algebraic
n-forms. If U C X is an affine open subset with local coordinates z1,...,x,, then
wx is locally free of rank one, spanned by dzi A --- A dz,,. The tangent sheaf Ty
acts on wy by Lie differentiation. Given w € T'(U,wx) and 6,01, ...,0,, € T(U, Ix),
the formula for the Lie derivative is

n

(Lieg w)(01,...,0,) =0-w(f1,...,0,) —-jgjcu(el,...,[e,e&,...,en).

i=1
One can check quite easily that the following relations hold:
Lieg(fw) = fLiegw + 0(f)w = Liesgw
Liefg,,; w = Lieg Lie, w — Lie, Lieg w
This almost looks like wx should be a left Zx-module, but note that (10.5) is not
satisfied since Liefgw # f Liegw. But if we instead define
wx @ Ix »wx, w0 w-0=—Lieg(w)
and also write the Ox-action on wx on the right, we obtain
w-0(f) = (—Liegw)f + Lieg(wf) = (w-0)f — (wf) -0
w-[0,n] = — Liey,, w = Lieg Lie,, w — Lie, Liegw = (w-0) -n — (w-n) - 6.

These are exactly the relations defining Zx, and so we obtain on wx the structure
of a right Zx-module. In local coordinates, we have

(fdey A+ Ndzy) - P=(P°f)dzy A+ A dzy,

where P =Y (—0)*f, is the formal adjoint of P = )" f,0%. In local coordinates,
the left Z-module structure on Ox and the right Z-module structure on wx are
therefore related to each other exactly as in the case of the Weyl algebra.

Good filtrations and characteristic variety. As in the case of the Weyl al-
gebra, we study Z-modules using filtrations. Let M be a left Zx-module. We
consider increasing filtrations Fy M by coherent &x-submodules F;M such that

FigX . Fj./\/l Q FH_]‘M
for all 7, j € Z. We also assume that the filtration is exhaustive, meaning that

U Em =M.

JEL
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Note that each F;M is assumed to be coherent over 0x. We say that such a
filtration is good if the associated graded module

ng./\/l = @ FjM/ijlM
jez

is locally finitely generated over gr’’Zx. This implies that F;M = 0 for j < 0.

Now suppose that U C X is an affine open subset, and set A = T'(U, Ox) and
M =T(U, M). By the same argument as in the case of the Weyl algebra, one shows
that M is finitely generated over D(A) if and only if admits a good filtration Fy M
by finitely generated A-modules; again, this means that F;D(A)-F;M - F;4 ;M and
grf’ M is finitely generated over grf’ D(A).

Definition 10.9. We say that a left (or right) Zx-module is coherent if it is locally
finitely generated over Zx.

Note that this is not the same thing as being & x-coherent; in fact, most coherent
P x-modules are not coherent over Ox. Every coherent Zx-module has a good
filtration locally, meaning on each affine open subset; in fact, we will see next time
that coherent Zx-modules always admit a global good filtration Fe M.

Given a good filtration Fy M (globally or locally), the associated graded grf’ M
is coherent over the sheaf of &x-algebras

gr” Ix = Sym Ix = p.Op-x,
where p: T* X — X again means the cotangent bundle. By the correspondence

between coherent sheaves on T*X and finitely generated modules over p,Orp«x, we
thus obtain a coherent sheaf of &7 +x-modules on the cotangent bundle that we

denote by the symbol grf’ M.

Definition 10.10. The characteristic variety Ch(M) is the closed algebraic subset
of T*X given by the support of grf” M, with the reduced scheme structure.

As in the case of the Weyl algebra, any two good filtrations on M are comparable;
for the same reason as before, this implies that the subsheaf

\/Annng@X grf M C grf 9%

is independent of the choice of good filtration. If we denote by Jy C Op«x the
corresponding coherent sheaf of ideals on the cotangent bundle, then Ch(M) is the
closed subscheme defined by Jx(. We are going to show later on that Bernstein’s
inequality carries over to arbitrary coherent Z-modules: as long as M # 0, every
irreducible component of Ch(M) has dimension at least n.

Example 10.11. If & is the left Zx-module determined by a vector bundle with
integrable connection, then Ch(&’) is the zero section. The reason is that & is
coherent over Ox, which means that setting F;& = 0 for j < 0 and F;& = & for
j >0 gives a good filtration. Here

Anng,rg, grf'¢ = @grf.@x,
Jj=1
and so Jg is the ideal of the zero section. Of course, this works more generally for
any Z-module that is coherent over Ox.

The example has a useful converse.

Proposition 10.12. Let M be a coherent Dx-module. If M is coherent over Ox,
then M is actually a locally free Ox-module of finite rank (and therefore comes
from a vector bundle with integrable connection).



Proof. Since M is a quasi-coherent &x-module, it suffices to check that the local-
ization Ox , ®e, M at every closed point z € X is a free Ox ;-module of finite
rank. This reduces the problem to the following special case: A is a regular local
ring of dimension n, containing a field k, with maximal ideal m and residue field
A/m = k, and M is a left D(A)-module that is finitely generated over A. Here
D(A) is again the algebra of k-linear differential operators on A. We need to prove
that M is a free A-module of finite rank.

First, some preparations. Since A is regular of dimension n, the maximal ideal
m is generated by n elements z1,..., 7, whose images in m/m? are linearly inde-
pendent over k. Let 01,...,0, € Derg(A) be the corresponding derivations, which
freely generate Dery(A) as an A-module. For every nonzero f € A, we define the
order of vanishing as

ord(f):max{€20 | feme};

this makes sense because the intersection of all powers of the maximal ideal is trivial.
If f =0, we formally set ord(f) = +o0. The key point is that we can reduce the
order of vanishing of f by applying a suitable derivation. Indeed, suppose that
ord(f) = £. The ideal m’ is generated by all monomials of degree ¢ in z,...,z,,

and so we can write
f = Z famaa
|a|=¢
with at least one f, € A being a unit (because otherwise f € m‘*1). Choose a

multi-index « such that f, is a unit, and then choose i = 1,...,n such that a; > 1.
Since 0;(z;) = 0;,5, we get

) = Y (Blfa)a® + facia™),
lal=¢

and this expression clearly belongs to m*~! but not to m‘. Hence ord(9;(f)) = ¢£—1.

As T said, we need to prove that M is a free A-module of finite rank. To do
this, pick a minimal set of generators mq,...,m, € M, whose images in M/mM
are linearly independent over k. This gives us a surjective morphism of A-modules

A@r%Ma (fla---vfr)'_>f1m1+"'+f7'mra

and we are going to show that it is also injective, hence an isomorphism. Suppose
that there was a nontrivial relation fimq +---+ frm, = 0. Then fi,..., f, € m,
because myq, ..., m, are linearly independent modulo mM. In other words, we have

¢ = min{ord(f1),...,ord(fr)} > 1.

Now the idea is to use the D(A)-module structure to create another relation for
which the value of £ is strictly smaller. By repeating this, we eventually arrive at a
relation with £ = 0, contradicting the fact that mq, ..., m, are linearly independent
modulo mM. Here we go. If we apply 9; to our relation, we obtain

0=0,->_ fim; =Y [0 film;+>_ f;0my) =D (f)m; + Y f;(0imy).
=1 j=1 j=1 j=1 j=1

We can write each 0;m; in terms of the generators mq,...,m, as

T
Oim; = E Qg j kM
k=1

and after reindexing, we get the new relation

T

S (0:0) + 3 asndi)ms — 0.
k=1

j=1



If we now choose j such that ord(f;) = ¢, and then choose i such that ord(9;(f;)) =
¢ — 1, then the j-th coefficient in the new relation belongs to m‘~! but not to m¢,
as desired. O

We showed in Lecture 5 that M is coherent over Ox if and only if its character-
istic variety is contained in the zero section of the cotangent bundle. This means
that if M is a coherent Zx-module with Ch(M) contained in the zero section, then
M is a locally free Ox-module of finite rank, and the Zx-module structure is the
same as the datum of an integrable connection on M.
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Global good filtrations. Let us return for the moment to the topic of good
filtrations. I said last time that, by the same argument as in the case of A,,, every
coherent Zx-module locally admits a good filtration. But in fact, good filtrations
also exist globally, because of the finiteness inherent in the definitions.

Lemma 11.1. Let M be an algebraic Dx-module. If M is coherent, then there
exists a good filtration FeM by coherent Ox -modules.

Proof. Tt will be enough to construct an @x-submodule .% C M that is coherent
over Ox and that generates M as a P x-module. Once we have that, we can define
a filtration by setting

FM=F;9x - % CM,
and for the same reason as in the case of the Weyl algebra, each F; M is coherent
over Ox, and the filtration Fo M is good.

Since X is of finite type over k, it is quasi-compact, and so we can cover X
by finitely many affine open subsets Ui, ...,U,,. Then I'(U;, M) is finitely gen-
erated over I'(U;, Zx), and after choosing a finite set of generators and taking
the T'(U;, Ox)-submodule of T'(U;, M) generated by this set, we certainly obtain a
coherent Op,-module Zy, C M|U_ that has the desired properties on Uj.

To turn these locally defined subsheaves into global objects, we use the following
fact from Hartshorne’s book: Suppose that ¢ is a quasi-coherent sheaf on an alge-
braic variety X . If we have a nonempty open subset U C X, and a coherent subsheaf
Fuy C g’w then there is a coherent subsheaf .% C ¢ such that 9‘1] = %y. When
applied to our situation, this says that there are coherent &x-modules Z1,...,.%,
such that L%}Ui = Zy,. Then the image of

F1D -+ OFy > M
is an Ox-submodule of M that is coherent over &x (because it is the image of a
coherent @x-module) and generates M as a Px-module. O

This result is peculiar to the algebraic setting, and does not hold at all for
analytic Z-modules.

Characteristic varieties are involutive. Recall the definition of the character-
istic variety from last time. If M is a coherent Zx-module, we can choose a global
good filtration Fy M, which makes the associated graded module gr’” M coherent

over grf’ 9y = Sym Jy. If m denotes the corresponding coherent sheaf on the
cotangent bundle T* X, then

Ch(M) = Suppg}?.//\/l.

Equivalently, the characteristic variety is the reduced closed subscheme of the cotan-
gent bundle corresponding to the homegeneous ideal

\/Annng@X grF M C grf' 9.

The most important result about the characteristic variety is the following theorem.

Theorem 11.2. Ch(M) is involutive with respect to the natural symplectic struc-
ture on T*X. In particular, every irreducible component of Ch(M) has dimension
>n.

Note that this gives a lot more information about the characteristic variety than
Bernstein’s inequality. This result was first proved by analytic methods, but Gabber
later discovered an algebraic proof. Bernstein’s inequality can of course be proved
by more elementary means. We are not going to prove Theorem 11.2; instead, I



will review some basic facts about symplectic geometry, so that we can understand
at least the statement, and where the difficulties lie.

Symplectic vector spaces. Let us start with a brief discussion of symplectic
vector spaces. Let V' be a finite-dimensional vector space over a field k. Usually, k&
will be field of real or complex numbers, but the definition works over any field of
characteristic # 2. A symplectic form is a bilinear form

oc: VLV =k

that is anti-symmetric and non-degenerate. In other words, one has o(v,w) =
—o(w,v) for every v,w € V, and if we denote by V* = Homy (V, k) the dual vector
space, then the induced linear mapping

VoV weo(—,w),

is an isomorphism (called the “Hamiltonian isomorphism”). For every linear func-
tional § € V*, one therefore has a unique element Hy € V such that 6(v) = o (v, Hy)
forallveV.

The dimension of a symplectic vector space is always an even number. One way
to see this is as follows. Pick a nonzero vector w € V, and consider the linear
subspace L =k -w C V. Since o(w,w) = 0, one has L contained in the subspace

Lt ={veV|oww) =0}

The fact that o is nondegenerate implies that L = dim V — 1. One easily checks
that the quotient space L+ /L, with the bilinear form induced by o, is again a
symplectic vector space. Since dimV = 2 + dim L+ /L, the claim now follows by
induction.

Example 11.3. If V is any finite-dimensional k-vector space, then V & V* is a
symplectic vector space, with symplectic form given by

((v1,61), (v2,02)) > O1(v2) — b2(vy).
In fact, every symplectic vector space is isomorphic to this model (after a suitable

choice of basis).

Given a subspace W C V, one defines
Wwt={veV | o(v,w) =0 for every w € W }.

Under the Hamiltonian isomorphism V' 2 V*, the subspace W= corresponds exactly
to the kernel of the restriction homomorphism V* — W*, and therefore

dim W + dim W+ = dim V.
Definition 11.4. Let W C V be a linear subspace.
(1) W is called involutive if W+ C W; then dim W > %dim V.
(2) W is called Lagrangian if W+ = W; then dim W = 1 dim V.
(3) W is called isotropic if W+ 2O W; then dimW < 1 dim V.
Note that an involutive (or isotropic) subspace is Lagrangian iff dim W = 2 dim V.

Ezxample 11.5. Consider the symplectic vector space V@ V™. If W C V is any linear
subspace, then W @ ker(V* — W*) is always a Lagrangian subspace of V @ V*.
It is clearly isotropic: if vy, vy are vectors in W, and 64,65 are linear functionals
whose restriction to W is trivial, then 6;(v2) — 62(v1) = 0. Since

dim W 4 dimker(V* — W*) =dimV
is exactly half the dimension of V' & V™, it follows that the subspace is Lagragian.



Symplectic algebraic varieties. A nonsingular algebraic variety X is called sym-
plectic if the tangent space T, X at every closed point x € X is a symplectic vector
space, and the symplectic forms vary in an algebraic way from point to point. More
precisely, there should exist a global algebraic two-form o € T'(X, Qg( /k) whose re-
striction o, : T, X ® T, X — k gives a symplectic form on T, X for every closed
point x € X. Of course, this implies that dim X is even.

Example 11.6. The example we care about is the cotangent bundle T* X of a non-
singular algebraic variety X of dimension n. Note that dim 7*X = 2n. If we choose
local coordinates x1,...,x, on X, then the differentials dzi, ..., dz, give a local
trivialization for Q})(/k, and so we obtain local coordinates x1,...,%p,&1,...,&, On
the cotangent bundle. In these coordinates,

ox = Zd@ A dz;
=1

is a symplectic form. Indeed, at any closed point (z,&) € T* X, we have
T (T°X) = TX & (T, X)",

because the fiber of p: T*X — X over the point « is the cotangent space (T, X)*,
and because a vector space is isomorphic to its own tangent space. Under this
isomorphism, the two-form o x corresponds exactly to the standard symplectic form
in Example 11.3. In more functorial language, one can describe ox as follows. As
with any vector bundle, the pullback p*Qﬁ( Ik has a tautological global section,

whose image under p*Qﬁ( e Q% X/k gives a one-form
ax € D(T*"X, Q. x /1)
In local coordinates as above, one has axy = Zi & dx;. Then
ox = dOéX € F(T*X, Q%*X/k)
is the symplectic form from above.

Let X be a nonsingular algebraic variety with a symplectic form o. Then o,
induces an isomorphism between the tangent space 7, X and the cotangent space
(T, X)* at every closed point € X, and this allows us to convert one-forms into
vector fields and vice versa. In particular, every function f € I'(U, Ox) determines
a vector field Hy € T'(U, Ix ), with the property that df = o(—, Hy) as one-forms
on U. The Poisson bracket of two functions f,g € T'(U, Ox) is defined by

{f.9} = Hy(9) = dg(Hy) = o(Hy, Hy) € T(U, O).
If do = 0, then one has [Hy, Hy] = Hyy g

Ezxample 11.7. In local coordinates z1,...,z,, &1, .- .,&, on the cotangent bundle,
the Hamiltonian vector field of a function f is given by

N~ (0f 0 of 0
Hf o Z (651 8:101 B ({91'Z 8&) ’

i=1

and consequently, the Poisson bracket can be calculated as

N~ (0f dg Of 0g
{f.9}= Z (3&. or; Ox; 8&) .

=1

We can extend the notion of involutive (or Lagrangian or isotropic) to subvari-
eties of X by looking at their tangent spaces at nonsingular points. Thus a reduced
algebraic subvariety Y C X is called involutive (or Lagrangian or isotropic) if at
every nonsingular closed point z € Y, the tangent space T,,Y C T, X is involutive
(or Lagrangian or isotropic).



Ezample 11.8. In the case of the cotangent bundle T* X, the conormal bundle of a
nonsingular subvariety Z C X is a nonsingular Lagrangian subvariety. At a closed
point & € Z, the fiber of the conormal bundle consists of all those cotangent vectors
in (T,,X)* that vanish on the subspace T,,Z. As a subspace of

Tiae) (T7X) = T, X & (T, X)",
the tangent space to the conormal bundle is therefore
1,2 & ker (1,X)" — (1,2)°),

and this is a Lagrangian subspace by Example 11.5 from above. If we choose local
coordinates x1,...,2x, on X such that Z is defined by zx4y1 = --- = 2, = 0, then
the conormal bundle is defined by & = -+ = & = 241 = -+ = z, = 0 in the
corresponding coordinates on the cotangent bundle.

The following lemma gives a way to check whether a reduced subvariety ¥ C X
is involutive by using the ideal sheaf Zy C Ox.

Lemma 11.9. Let X be a nonsingular algebraic variety with a symplectic form,
andY C X a reduced algebraic subvariety. The following conditions are equivalent:

(a) The subvariety Y is involutive.
(b) The ideal sheaf Ty is closed under the Poisson bracket, {Zy,Ty} C Iy .

Proof. Without loss of generality, we may assume that X is affine, and that Y is
the closed subvariety defined by an ideal I C I'(X, &x). Note that Y is assumed
to be reduced. We start with a general observation. Let x € Y be a nonsingular
point, and let o, be the symplectic form on 7, X. Then

(T,Y)' ={veT,X | o2(v,w) =0 for every w € T,Y }

is spanned by the values at x of the Hamiltonian vector fields Hy, as f ranges over
the elements of the ideal I. Indeed, since x € Y is a nonsingular point, a tangent
vector v € T, X belongs to the subspace T,Y exactly when df(v) = 0 for every
f € I. Under the Hamiltonian isomorphism, this condition becomes

oz(v,Hy) = df(v) =0,

whence the claim.

Now let us show that {I,I} C I implies that Y is involutive. If x € Y is a
nonsingular point, we need to argue that (7,,Y)* C T,.Y. In light of the observation
from above, this amounts to saying that, for every f,g € I, the function dg(Hy)
vanishes at the point z. But this is the case, because dg(Hy) = Hy(g) = {f, g} € I.

For the converse, suppose that Y is involutive, so that (7,,Y)* C T,Y at every
nonsingular point * € Y. Then we again have {f,g} = dg(Hy) = 0 at every
nonsingular point of Y, and hence on all of Y because {f, g} is a regular function
and the set of nonsingular points is Zariski-open and dense in Y. Because Y is
reduced, it follows that {f, g} € I. O

Involutivity of the characteristic variety. We return to the characteristic va-
rieties of coherent Zx-modules. If p: T*X — X is the cotangent bundle, then

p:Or-x = gt Py,

and one can use this isomorphism to describe the Poisson bracket in terms of
differential operators. For each j > 0, we denote by

o F;9x%x — grf@x
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the “principal symbol” operator. If P is a local section of F;Zx, and @ a local
section of F; Py, then their commutator [P, Q)] is a local section of Fi4;j_1Zx. One
can show, using the description of the Poisson bracket in local coordinates, that

{0i(P),0;(Q)} = 0irj—1 ([P, Q)).
Now suppose that M is a coherent left Zx-module, and that FeM is a good
filtration. It is easy to see, using the alternative description of the Poisson bracket,
that the ideal
Anng,rg, gr M C grf 9%
is closed under the Poisson bracket. This is a local question, and so we may restrict
everything to an affine open subset U C X. If we set A =T'(U, Ox) and R = D(A),
we then have a finitely generated left R-module M, together with a good filtration
F,M, such that grf'M is finitely generated over S = grf’R. The claim is that the
homogeneous ideal
I=1I(M,F,M)= Anng gr’' M
is closed under the Poisson bracket on S. Suppose that we have two elements
P € F;R and Q € F;R such that ¢,(P) and 0;(Q) belong to the ideal I. Recall
from Lecture 5 that this is equivalent to having
P FkM Q Fi+k_1M and Q . FkM Q Fj+k_1M
for every k € Z. But then
[P,Ql - FxM CP-Fjip 1M+ Q- Fiyp 1M C Frpj_1)4x—1 M,

and therefore 0,4 ;1 ([P, @]) € I. This shows that {I,I} C I.

Why does this argument not prove Theorem 11.27 The issue is that the ideal of
the characteristic variety is not I itself, but /I, because the characteristic variety
is by definition reduced. For non-reduced ideals, being closed under the Poisson
bracket does not correspond to the geometric notion of being involutive, because
all points of a nonreduced subscheme can be singular. And the fact that an ideal is
closed under the Poisson bracket does not imply the same property for its radical.
This is what makes Theorem 11.2 nontrivial.

Exercises.

Exzercise 11.1. Let X be a nonsingular affine variety with a symplectic form. Prove
the following three identities involving the Poisson bracket: for all f, g, h € I'(X, Ox),

{f,9} +{g9,f} =0
{f, 9}, h} +{{g,n}, 1 +{{h, f},9} =0
{f.gh} =1{f,g}h + g{f, h}.

The first two identities are saying that T'(X, Ox ) is a Lie algebra under the operation
(f,9) — {f, g} The third identity is saying that {f, —} is a derivation of I'(X, Ox).

Ezercise 11.2. Show that if do = 0, then one has [Hy, Hy| = Hy .

Ezercise 11.3. Let X be a nonsingular affine variety with local coordinates x1, . .., .
Use the description of the Poisson bracket on T* X to prove that

{0i(P),0;(Q)} = 0irj—1 ([P, Q)),
for every P € F;D(A) and every Q € F;D(A), where A =T'(X, Ox).
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Gabber’s theorem. Last time, we talked about the result that the characteristic
variety Ch(M) of a coherent Px-module M is involutive (with respect to the
natural symplectic structure on the cotangent bundle). We saw that the ideal

Anng,rg, gr M C grf 9

is closed under the Poisson bracket, and that Theorem 11.2 is equivalent to the
radical being closed under the Poisson bracket. This is a problem in algebra, albeit
a very difficult one, and there is a purely algebraic proof, due to Gabber.

In fact, Gabber works in the following more general setup. Suppose that R is
a (Q-algebra, with an increasing algebra filtration F, R, such that the associated
graded ring S = gr’’ R is commutative and noetherian. This means that if u € F;R
and v € F}R, then their commutator [u,v] = wv —vu € F;;_1R. If we again
use the notation o;: F; R — S; for the “symbol” homomorphism, we can therefore
define the Poisson bracket of two homogeneous elements of S by the formula

{oi(u),0(v)} = oipj—1([u,]).
After extending this bilinearly, we obtain a Poisson bracket {—, —}: S ®¢ S — S,
and one can check that it satisfies the same identities as the Poisson bracket on a
symplectic manifold. But note that this is more general than the case R = D(A),
because Gabber is not assuming that S is nonsingular.

Theorem 12.1 (Gabber). Using the notation from above, suppose that M is a
finitely generated R-module with a good filtration FeM , and consider the ideal

J = \/Anng, rrgrf’M C gr'R.

If P C grf' R is minimal among prime ideals containing J, then {P,P} C P. In
particular, one has {J,J} C J.

The minimal primes containing the ideal J correspond, geometrically, to the irre-
ducible components of Supp gr” M inside the scheme Spec S. So Gabber’s theorem
is saying that every irreducible component of the support is “involutive”, in the
sense that its ideal is closed under the Poisson bracket. In the case of Z-modules,
this is saying that every irreducible component of the characteristic variety of a
coherent Z-module is involutive.

Holonomic Z-modules. One consequence of Theorem 11.2 is that Bernstein’s
inequality holds for algebraic Z-modules: If X is a nonsingular algebraic variety of
dimension n, and M a coherent Zx-module, then either M = 0, or every irreducible
component of Ch(M) has dimension > n. As in the case of the Weyl algebra, the
most important Z-modules are those for which the dimension of the characteristic
variety is as small as possible.

Definition 12.2. A coherent Zx-module M is called holonomic if M # 0 and
dim Ch(M) = n, or if M = 0.

If M is nonzero and holonomic, then each irreducible component of its charac-
teristic variety has dimension n, and is therefore (by Theorem 11.2) a Lagrangian
subvariety of T*X. Since the ideal defining Ch(M) is homogeneous, these La-
grangians are moreover conical, that is, closed under the natural G,,-action on
T* X by rescaling in the fiber direction. Here are some typical examples of conical
Lagrangian subvarieties.

Example 12.3. If Y C X is a nonsingular subvariety, then the conormal bundle
N)*,| « is a nonsingular Lagrangian subvariety of T X. Since it is a vector bundle



of rank dim X — dimY over Y, it is clearly conical. More generally, suppose that
Y C X is an arbitrary reduced and irreducible subvariety. The set of nonsingular
points Y;e, is Zariski-open and dense in Y, and so the conormal bundle N;‘,reg‘ y is
locally closed, conical, and Lagrangian. Its Zariski closure

Ty X = N;’mgl ¥

is therefore a conical Lagrangian subvariety of T*X. It is called the conormal
variety of Y in X.

In fact, every conical Lagrangian subvariety of 7% X is a conormal variety.

Proposition 12.4. Let W CT*X be an irreducible subvariety that is conical and
Lagrangian. Then'Y = p(W) is an irreducible subvariety of X, and W =Ty X.

Proof. The statement is local, and so we may assume that X = Spec A is affine
and that 7% X = X x A}. Since W C X x A} is conical, it is defined by an ideal in
Al&y, ..., &,] that is homogeneous in the variables &1, ..., &,. This ideal also defines
a closed subvariety W C X x ]P’Z_l, and since the projection py: X X IP’Z_l - X
is proper, it follows that Y = p(W) = pl(W) is an irreducible subvariety of X.
It remains to show that W = Ty X. Since both subvarieties are irreducible of
dimension n, it will be enough to show that the general point of W is contained in
the conormal bundle to Y;eg.

Let (x,£) € W be a general nonsingular point. By generic smoothness, we have
¥ € Yieg and the map on tangent spaces T(, oyW — T,Y is surjective. Choose local
coordinates x1, ..., x, in a neighborhood of the point x, such that Y is defined by
the equations zpy; = -+ = x, = 0. If we again denote by z1,...,2,,&1,...,&,
the resulting coordinates on 7™X ,then the conormal bundle to Y., is defined by
the equations §; = -+ = & = 41 = -+ = z, = 0. Since W is a Lagrangian
subvariety, the subspace

Tae)W C Tiag) (T°X) = T X © (T, X)*

is n-dimensional and Lagrangian. Its image under the projection to 7, X is the
subspace T,Y. If we denote vectors in T, X & (T, X)* by (a1,...,an,b1,...,bn),
then this image is the set of vectors with agy1 = --- = a, = 0. For dimension
reasons, T{, ¢yWW must contain an (n — k)-dimensional space of vectors of the form
(0,...,0,b1,...,by,), and from the Lagrangian condition, we get by = --- = by = 0.

Now we use the fact that W is conical. Since (z,£) € W, the entire line (z, k-£) is
contained in W, and so the tangent vector to the line, which is (0,...,0,&1,..., &),

must belong to T(, ¢yWW. But as we saw, this implies that §; = --- = § = 0, and
so (z, &) lies on the conormal bundle to Yies. Since (x,&) was a general point of W,
we deduce that W C Ty X, which suffices to conclude the proof. O

This proposition has interesting implications for holonomic Z-modules. Suppose
that M is a nonzero holonomic Zx-module. Its characteristic variety is a finite
union of conical Lagrangian subvarieties, and so there are finitely many irreducible
subvarieties Y7, ...,Y,, C X, without loss of generality distinct, such that

Ch(M) = 13, X.
i=1

Now there are two possibilities. If say Y1 = X, then U = X \ (Y2 U ---UY,,) is
a dense Zariski-open subset, and the restriction of M to U has its characteristic
variety equal to the zero section. By Proposition 10.12, it follows that M|U is
locally free of finite rank, and therefore a vector bundle with integrable connection.
The connection acquires some kind of singularities at the remaining subvarieties
Yo, ..., Y,. The other possibility is that Y7, ...,Y, # X. In that case, the restriction
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of M to X\ (Y1 U---UY,) is trivial, which says that M is supported on the
union Yj U---UY,. Either way, M is generically a vector bundle with integrable
connection.

Holonomic Z-modules and duality. Our earlier results about duality for holo-
nomic modules still hold in this context; indeed, the assumptions we made in Lec-
ture 6 apply to the case R = D(A). In general, if M is a coherent left (or right)
P x-module, then each ‘
Exty, (M, Ix)

is again a coherent right (or left) Zx-module. On an affine open subset U C X with
A = T(U,0Ox), the corresponding D(A)-module is of course Exth(A) (M, D(4)),
where M =T'(U, M). One then has

Extl, (M, Zx)=0 forj>n+1,

as well as the useful identity
min{ j > 0 ‘ Eutly, (M, Zx) # 0 } + dim Ch(M) = 2n.

If M is a nonzero holonomic Zx-module, then gmtj%( (M, Zx) = 0 for every j # n,
and one can again define the holonomic dual by

M* = &ty (M, D).

As before, one has (M*)* =2 M, and Ch(M*) = Ch(M). The holonomic dual is
again an exact contravariant functor from the category of left (or right) holonomic
Px-modules to the category of right (or left) holonomic Zx-modules.

Direct images under closed embeddings. In the next few lectures, we are going
to look at various operations on algebraic Z-modules, such as pushing forward or
pulling back along a morphism of algebraic varieties. This will also give us many
new examples of Z-modules. We will be especially interested in the effect of these
functors on holonomic Z-modules. Things are somewhat similar to the case of
coherent sheaves, formally, but there are also some interesting differences. Let us
start with the simplest case, namely pushing forward along a closed embedding.

Example 12.5. Consider the closed embedding i: Az_l — A} defined by the equa-
tion z, = 0. If M is a Z-module on Az_l, then its pushforward ¢,M is not a
Z-module on A}. The problem is that z1,...,z, and 01,...,0,-1 act in a natural
way on i, M, but we don’t know what to do with 0,,. In terms of rings and modules,
the closed embedding corresponds to the quotient morphism k[xy, ..., Zn_1,2,] —
klx1,...,Zn—1], and the Z-module to a module M over the Weyl algebra A,,_1 (k).
We can consider M as a module over k[x1,...,x,], with x,, acting trivially, but we
cannot let 9,, act trivially this would violate the commutator relation [9,,, z,] = 1.

Suppose that i: X — Y is a closed embedding between two nonsingular algebraic
varieties, and M an algebraic Zx-module. For the same reason as above, i, M is
not in general a Zy-module. To motivate the correct definition, let us first look at
the example of distributions.

Example 12.6. Consider the closed embedding

ii R¥ 5 R™ i(xy,...,2) = (z1,...,2,0,...,0).
Suppose that we have a distribution D on R¥; recall that D is a continuous linear
functional on the space of compactly supported smooth functions C§°(R¥), and

that (D, ) denotes the real number obtained by evaluating D on a test function
. The pushforward distribution i, D is defined in the obvious way:

(ixD,1p) = <Da¢!Rk>,



60

for any ¢ € C§°(R™). The point is of course that we know how to pull back
functions. Now suppose that D satisfies a system of partial differential equations.
Can we figure out the partial differential equations satisfied by 7,.D?

Recall that the Weyl algebra Ay (R) acts on the space of distributions by formal
integration by parts: if ¢ € C5°(R¥) and P € Ag(R), then

Therefore D determines a right ideal
I(D)={PeA,R)|D-P=0}C Ay(R),

and also a right Ag(n)-module Ag(n)/I(D). In these terms, we are trying to find
the right ideal I(i.D) from I(D). This is actually fairly easy.

First, the functions xj41, ..., 2, vanish on R*, and so every differential operator
of the form Q = x4 1Qk+1 + - + ,Qpn € A, (R) annihilates i, D, because

(iD- Q) = Y (iuD-2;Qs00) = > (D, 2;Q¢| ) = 0.
j=k+1 j=k+1

We can write any @ € A,(R) in the form

Q=2 1Qri1+ +2nQn+ > Padpii---00n

aENn—k

where P, € Ai(R) only involves x1,...,x,01,...,0;. Suppose that @ € I(i.D).
If we act on a test function of the form ¢n, with ¢ € C§°(R*) and n € C§°(R™~%),
we obtain

] aak+1+"'+0¢n7f]
(1D Qron) = D w5 (0) (D, Pag).
aEeNn—k k+1 n
By choosing 7 appropriately, we can pick out the individual terms, and so

O=<D,Pa(p>:<D~Pa,<p>

for every a € N*=* and every ¢ € C$°(RF). In other words, each P, belongs to
I(D). Tt is easy to see that the converse is also true, and so we conclude that

1(i,D) = (Ths1s - -, Tn) Ap(R) + I(D)An(R).

Here is another way to put this. Remembering that right (and left) ideals in the
Weyl algebra are finitely generated, we have I(D) = (Py,..., P.)Ax(R), and so the
right Ag(R)-module determined by the distribution D is

A(R)/(Pr, ..., Pr)Ak(R).
Then the right A, (R)-module determined by the distribution i, D is
An(R)/(Pry..., Pryigr, .., 2n)An(R).
This is much larger than the other module, but has a natural action by A4, (R).

The example suggest that pushing forward works naturally for right Z-modules.
The reason is that distributions give rise to right Z-modules, whereas functions give
rise to left Z-modules, and one can push forward distributions, but not functions. It
also suggests how to define the pushforward, at least in the special case of modules
over the Weyl algebra.
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The transfer module. Let me now show you the actual definition. Suppose that
i: X = Y is a closed embedding between two nonsingular algebraic varieties; since
X and Y are both nonsingular, X is locally a complete intersection in Y. We will
see next time that

Dxy = Ox Ri-10, 1 "Dy
is a (Zx,i~ 'y )-bimodule, which is to say that it has both a left action by Zx
and a right action by i~ %y, and the two actions commute. The right action by
i~' 9Py is the obvious one; the left action by Zx is less obvious and involves both
factors in the tensor product. Given a right Zx-module M, one then defines its
pushforward as

iy M =i, (M ®g, Dxy);
this becomes a right %y-module through the natural morphism %y — i,i~'%y.
We will see next time that, in local coordinates, this definition agrees with what
happens for distributions.

Exercises.

Ezercise 12.1. Let M be a left Zx-module and A a right Zx-module. Show that
the tensor product N ®g¢, M is naturally a right Zx-module.

Ezercise 12.2. Recall that the canonical line bundle wy is a right Zx-module. Show
that the tensor product 2% = wx ®g Zx is a right Zx-module in two different
ways. Show that the two right Zx-module structures commute with each other,
and that there is an automorphism of 2% that interchanges them.

Ezercise 12.3. The previous exercise gives a way to convert left Z-modules into
right Z-modules and back. Show that if M is a left Zx-module, then

D% Qg M
is a right Zx-module; here one right Zx-module structure on ¢ is used to define
the tensor product, and the other one is used to turn the tensor product into a
right Zx-module. Conversely, show that if N is a right Zx-module, then
Homg (@}‘é N )

is a left Zx-module; here one right Zx-module structure on Z¢ is used to define
Homg, , and the other one is used to turn Homg, into a left Zx-module. Finally,
show that the obvious morphism

M — Homg, (@3"(, D% Qay M)

is an isomorphism of left Zx-modules.
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The transfer module. Last time, we looked at the example of distributions
to understand what the pushforward of an algebraic Z-module under a closed
embedding should be. In the case of i: R¥ «— R” defined by i(z1,...,21) =
(x1,...,2x,0,...,0), we concluded that the pushforward of a right Ax(R)-module
of the form
Ar(R)/(Py, ..., Pp)Ar(R)
should be the right A, (R)-module
An(R)/(Plv ceey Pm; Th41y--- ,I’n)An(R)

Let me know explain how to define the pushforward under a closed embedding in
general. Let i: Y — X be a closed embedding, with X nonsingular of dimension n
and Y nonsingular of dimension r. The definition uses the transfer module

1
Dy sx = Oy @i16, 1 Dx,

which is a (Zy, i1 Zx)-bimodule. In other words, Zy _, x is both a left Zy-module
and a right i~!Zx-module, and the two structures commute with each other. The
right i~!Zx-module structure is the obvious one, induced by right multiplication
on the second factor of the tensor product. The left Zy-module structure is less
obvious, and involves both factors. Remember that since X and Y are both non-
singular, we have a short exact sequence

0— Y 6—1> 1" Ix = Oy Ri-16 i_lyX — Ny|X — 0,

where Ny |x is the normal bundle of ¥V in X, a locally free &y-module of rank
dim X —dimY. Now 9y acts on Yy _, x as follows:

0-(foP)=0(f)oP+f 40 (1o P),

where 0 € Jy, f € Oy, and P € i~'9x are local sections. I will leave it as an
exercise to show that this extends to a left Zy-module structure.

Ezxample 13.1. Let us write out everything in local coordinates. Choose local

coordinates x1,...,T, on X, in such a way that Y is defined by the equations
Tpy1 =+ =z, =0. We write J1, ..., 0, for the corresponding vector fields on X;
then y1 = z1,...,y, = , are local coordinates on Y, with vector fields 9y,, ..., 0y, .

The morphism 6;: Fy — i*Ix sends 9,, to 1 ® J;, and so we get
Oy, - (f@P)=0,,f@P+ f®0;P,
where 0; P is the product in Zx.

Lemma 13.2. The transfer module Dy _,x contains a copy of Py and is a locally
free left Dy -module of infinite rank.

Proof. Since Py . x = Oy ®;-14, i~19Px, the transfer module has a global section
given by 1 ® 1. This embeds a copy of Zy into Py _, x, by letting Py act on 1 ® 1.
In local coordinates as above, we have

Oy, -(1®1)=1®0;.
More generally, for any differential operator Q@ = ), fo0y on Y, we get

Q (®1)=> fa®0* =) fa@d* - 0.

This shows that the resulting morphism 2y — %y _, x is injective.
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Since we are working locally, every differential operator P on X can be written
uniquely in the form P = EB gp0®, where 3 € N". By restriction, each gs €
I'(X, Ox) defines an element gz € I'(Y, Oy ), and we have

foP=> fogd = > ST fgp@ol ol | ol o
5 57‘+17"‘7B7‘L /617---;57“

This shows that the morphism 2y ®y k[Oy41,-..,0n] = Py x, given by multipli-
cation, is an isomorphism. More formally, consider the subalgebra

7% = P Ox -0 -0 C Ix.
aeN"
Then we have Zx = Z¥ @ k[Or41, .- ., 0], and therefore
Dyx 2 (Oy ®i-16y i DY) @k k[Ory1,. .., On),

and the discussion above shows that 0y ®;-14, 1 19Y identifies with the copy of
.@y inside @yﬁx. O

Definition 13.3. The pushforward of a right Zy-module is defined as
iwM =i, (M @9y Dy_x);
it becomes a right Zx-module through the morphism Zx — i,i ' Zx.
Note that the pushforward is an exact functor, in the sense that if
0> M > MM =0
is a short exact sequence of right Zy-modules, then
0—=i M - igM— i M'—0

is a short exact sequence of right Zx-modules. The reason is that the tensor
product over Py is exact (because Py _, x is locally free as a left Zy-module) and
that i, is exact (because i: Y — X is a closed embedding).

The inclusion 9y — Yy _, x induces an inclusion of i, M into the pushforward
14+ M. In local coordinates as in the lemma, we get

iy M 2 M Qp K[Or g1, -+, Onl,
and so the problem that i,M is not a Px-module is solved by simply creating

a new copy of i,M for every monomial in 0,41,...,0,. Note the the submodule
1,M is annihilated by the equations x,41,...,x, of Y, but because of the relation
[0;,2;] = 1, this is no longer true for iy M. In general, every section of i, M is

annihilated by the ideal sheaf 7y C O, and every section of i, M is annihilated
by some power of Zy .

Ezxample 13.4. Let’s compute the pushforward of Zy. We have
i+ Dy =i(Dy oy Dy—x) = isDyx = ix(Oy Qi-10y i Dx).

The natural morphism Zx — i; Yy, given by sending P € Zx to 1 ® P, is clearly
surjective, and its kernel is exactly the right ideal Zy Zx. Thus iy Py = Px /Iy Dx.

Example 13.5. Let us compare the definition with the calculation from last time.
Consider the closed embedding i: A} — A}, corresponding to the quotient mor-
phism k[z1,...,2,] — k[x1,...,2,]. Let’s compute the pushforward of the right
A,-module M = A,./(Py, ..., Py)A,. By the previous example, the pushforward of
A, itself is given by A, /(xy41,...,2,)A,. Using the presentation

(P1,...,Pm)
e,

Apm A,
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for M and the exactness of iy, we see that the pushforward of M is the cokernel
of the induced morphism

(A (@ i1y @) A) T —— A f(@gs s 0) An.

One then checks that for the endomorphism of A, given by left multiplication by
a differential operator P € A, the induced endomorphism of A, /(z41,...,2Zn)An
is still left multiplication by P. Thus that the pushforward of M is isomorphic to

An/(P17 s 7P’m7x’r+17 R 7xn)An7
in agreement with the calculation we did for distributions last time.

Coherence and characteristic variety. Now let us study the effect of the push-
forward functor on coherence and on the characteristic variety.

Lemma 13.6. If M is a coherent right Dy -module, then i, M is a coherent right
Dx -module.

Proof. Since M is coherent over %y, we can find a coherent &y-module .% C M
such that .% - 2y = M. Using the embedding of i,,M into iy M, the coherent
Ox-module i,.# embeds into iy M, and one checks in local coordinates that it
generates i+ M as a right Zx-module. Therefore iy M is coherent. O

To understand the effect of pushing forward on the characteristic variety, we
need to investigate in more detail what happens to a good filtration. Suppose
that M is a coherent right Zy-module, and choose a good filtration Fe M, so
that each F;M is a coherent Oy-module. Using the embedding of .M into the
pushforward i, M = i,(M ®g, Py x), each F;M therefore defines a subsheaf
ix(F;M) C iz M. To get a filtration that is compatible with the Zx-module
structure, we now define

(13.7)  Fi(ipzM) = is(F;M) + i (Fj_1 M) - FLDx + ix(Fj_aM) - Py D + -+

Since F;M = 0 for j < 0, there are only finitely many terms, and so each F}(i4 M)
is a coherent Ox-module. To check that this gives a good filtration, we work in
local coordinates. So let U C X be an affine open subset, with local coordinates
Z1,...,2y € A=T(U, Ox), such that Y is defined by the ideal I = (2y41,...,Zp).
Set B = A/I, and let M =T(UNY, Py); this is a right D(B)-module, of course,
but we may also consider it as an A-module on which I acts trivially. From our
earlier discussion,

LU, iy M) =2 M Q¢ k[Or41,...,0,] = M,
and the above filtration is given by
F;M =F;M®1+ (Fj_1M ®1) - FLD(A) + (Fj_sM ® 1) - F;D(A) + - - .
We can write this in more compact notation as
FM =3 Fjja M @01 07
The associated graded module is therefore given by

(13.8) grf' M = gr'' M @4, k[0 41, . .., 0y,
with the grading in which every 0; has degree 1. Concretely,

ey M = Par o M@ o5
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Now grf’ M is a graded module over gr’” D(A) = A[dy,...,d,]. Let us describe the
module structure in more detail. Recall that grf’ M is a finitely generated graded
module over grf D(B) = B[dy, ..., 0,]. From (13.8), we get

gI‘FM &~ ngM ®B[31"”,3T] B[@l, .. .,8n],

and since I C A acts trivially on grf’ M by construction, this is actually an isomor-
phism of A[dy, ..., d,]-modules. Since grf’ M is finitely generated over B[d1, ..., d,],
this shows that grf' M is finitely generated over grf’ D(A), and so the filtration in
(13.7) is indeed good.

The calculation we have just done has the following geometric interpretation.
The closed embedding i: Y — X gives rise to two morphisms between the cotangent
bundles of X and Y:

YV xx T*X %5 T*Y

lpz

X
Here the morphism di: Y xx T*X — T*Y corresponds to the pullback morphism
Z*Qﬁ( K Q%, n between Kéahler differentials, and is therefore a morphism of vector

bundles, with kernel the conormal bundle of ¥ in X. In particular, it is a smooth

morphism of relative dimension dim X —dimY". If we denote by grf M the coherent
Or~y-module corresponding to grf’ M, then the above isomorphism takes the form

(13.9) gr(is M) = (po).di"grF M.

The reason is that, in local coordinates, the morphisms of k-algebras corresponding
to the morphisms between cotangent bundles are

Bloy,...,0,] «— Bloy,...,0,]

|

Aldy, ..., 0,

and so pulling back via di corresponds to tensoring the B[dy, ..., d,-module grf M
by B0, ...,0,], and pushing forward via py corresponds to consider the result as
a module over A[0y,...,0,]. The calculation from above shows that the result is
isomorphic to gr M. Let us summarize the conclusion.

Proposition 13.10. Leti: Y — X be a closed embedding, and M a coherent right
Dy -module. Then the pushforward i1+ M satisfies

Ch(iz M) = pa(di~' Ch(M)),
and so dim Ch(iy M) = dim Ch(M) + dim X — dim Y.

Proof. Since the characteristic variety of M is the support of grf M, the formula
for the characteristic variety is an immediate consequence of (13.9). Because di is
a smooth morphism of relative dimension dimY — dim X, whereas po is a closed
embedding, the asserted formula for the dimension of the characteristic variety
follows from this. O

The formula for the characteristic variety of the pushforward has several useful
consequences. Firstly, it implies that M is holonomic if and only if i, M is holo-
nomic. The reason is of course that dim Ch(iy M) —dim X = dim Ch(M) —dim Y.
Secondly, it gives another proof for Bernstein’s inequality dim Ch(M) > dim X,
independently of symplectic geometry. Recall that, back in Lecture 3, we proved
Bernstein’s inequality for finitely generated modules over the Weyl algebra, by look-
ing at Hilbert functions. We can now deduce from this that Bernstein’s inequality
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holds for all algebraic Z-modules. Suppose then that M is a finitely generated
right Zx-module, where X is a nonsingular algebraic variety. Since the question
is local, we may assume that X is affine. We can then choose a closed embedding
i: X — A}" into affine space. By Proposition 13.10, we have

dim Ch(M) — dim X = dim Ch(iyx M) —m >0,

where the inequality is a consequence of Bernstein’s inequality for the Weyl algebra.
Thus dim Ch(M) > dim X.

Kashiwara’s equivalence. Let i: Y < X be a closed embedding. We had al-
ready noted that

iy : (coherent right Zy-modules) — (coherent right Zx-modules)

is an exact functor. One of the first results that Kashiwara proved in his thesis is
a description of the image of this functor. Clearly, every right Zx-module of the
form i, M is supported on Y, in the following sense.

Definition 13.11. The support of a coherent right Zx-module N is defined as
Supp N = p(Ch(N)),
where p: T*X — X is the projection.
Since Ch(AN/) is conical, its image in X is always a closed algebraic subset. It
follows that Supp is the complement of the largest Zariski-open subset U C X
such that A/ ’U is trivial. Since every section of i; M is annihilated by a sufficiently

large power of Zy, it is clear that Supp(i; M) C Y. (This allows follows from
Proposition 13.10, of course.)

Theorem 13.12 (Kashiwara’s equivalence). The functor iy is an equivalence of
categories between the category of (coherent) right Dy -modules and the category of
(coherent) right Px-modules with support contained in'Y .

We will give the proof next time.
Exercises.

Ezxercise 13.1. Suppose that X = Spec A is affine, and that Y is the closed sub-
scheme defined by an ideal I C A, so that Y = Spec B for B = A/I. Show that
the morphism Derg(B) — B ®4 Derg(A) puts a left D(B)-module structure on
B ®4 D(A), and that it commutes with the natural right D(A)-module structure.

Ezxercise 13.2. Let X = Spec A, with local coordinates x1,...,z, € A, and let
I = (xp41,...,25). Show that if M is a finitely generated right D(B)-module,
where B = A/I, then M Q, k[Or+1,...,2y,] is finitely generated as a right D(A)-
module.

Ezercise 13.3. Let M be a graded B0y, ..., d,]-module. Show that
Annypp, o, (M ®k k[Or41,- - ,8n])
= (Tyy1y-- - @n) +A[O1, ..., 0n] - Annpy, ... 0, M,
as ideals in A[01,...,0y).
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Kashiwara’s equivalence. Let us start by giving the proof of Kashiwara’s equiv-
alence from last time. Here is the statement again.

Theorem (Kashiwara’s equivalence). Leti: Y < X be a closed embedding between
nonsingular algebraic varieties. The functor iy gives an equivalence between the cat-
egory of coherent right Py -modules and the category of coherent right Zx -modules
with support cotained in'Y .

Proof. Recall that if M is a coherent right Zy-module, we defined
i+M = Z* (M ®@y @Y—)X)7

where the transfer module 2y, x = Oy ®;-1¢4, iT19x is a (Py,i~ ' Zx)-bimodule.
The first step is to construct an inverse for the functor i,.. We have seen that i, M
always contains a copy of the &x-module i,M, and from the local description, it
is clear that .M is exactly the subsheaf of i, M that is annihilated by the ideal
sheaf 7y C Ox. Thus the inverse functor should take a coherent right Zx-module
N to the subsheaf of sections that are annihilated by Zy. An efficient way to do
this is as follows. Given a coherent right Zx-module N, we define

PN = Hom;-19, (.@yﬁx, ’i_l./\/) .

Here we use the right i ! Zx-module structure on the transfer module for Hom;-14, .
The left Zy-module on Py _, x then induces a right Zy-module structure on itN.
We can rewrite the above definition as

N = Homi-19 (ﬁy Qi-10x iil@Xviil'N) =Homi-10, (ﬁYyiil./\/‘)a

using the adjunction between Hom and the tensor product. From the short exact
sequence 0 = i~ 17y — i~ 10x — Oy — 0, we obtain an exact sequence

0= *N = i N = Hom15 (i Ty, i 'N)

and so i*\ is exactly the subsheaf of i~'N annihilated by i~'Zy. I will leave
it as an exercise to check that this isomorphism is compatible with the natural
9y -module structure on both sides.

Now the claim is that the natural morphism i, M — M is an isomorphism for
every coherent right Zy-module M, and that the natural morphism N — i, ¥\
is an isomorphism for every coherent right Zx-module A such that Supp N C Y.
This can be checked locally, and so we may assume without loss of generality
that X = Spec A is affine, with coordinates x,...,z, € A, and that the closed
embedding is defined by the ideal I = (z,41,...,2,) C A. If we set B = A/I, we
then have Y = Spec B. In this setting, the pushforward of a right D(B)-module
M is isomorphic to M ®j, k[Or41,. . .,0n], and it is easy to see from this description
that the submodule annihilated by the ideal I is exactly M ® 1 = M. This proves
the first isomorphism.

The proof of the second isomorphism is more interesting. Suppose that NV is
a right D(A)-module with Supp N contained in the closed subscheme V(I). This
means that every s € N is annihilated by a sufficiently large power of I. Our goal
is to prove that N = Ny ®p, k[Or41,...,0n], where Ny = {s e N ’ sl = 0}. For
this, we consider the effect of the operators

Tj = xjﬁj
on the module N. The point is that

€r41 en __ Qfr+1 €n e
Tj'ar—i-l '”871L_8r+1 ann(T’J 6]),
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and since T} acts trivially on the submodule Ny, we have
s®8ff11 8;” . (Tj —€j) =0

for every s € Ny. This means that we can read off the exponents of each monomial
from the eigenvalues of the operators T;41,...,Ty.

Now let us make this precise. The operators T;41, ..., 7, commute, and a short
calculation shows that

LT = 1) (T — ) = 25105
for every e > 0. For any s € N, we have sx?“ = 0 for e > 0, and therefore

STy (Ty — 1) (T — e) = sz o5 = 0.

This means that s can be written as a sum of eigenvectors of T with eigenvalues
in N. Since T;41,...,7T, commute, we therefore obtain a decomposition

N = @ Ne'r'+1:~~7en

erq1,..,en€N

into simultaneous eigenspaces, where T; acts on Ne,_, . ., as multiplication by

e;j. Now the claim is that Ny . o = Np, and that this decomposition gives us an

isomorphism N 2 Ny Q k[Oy41, .. .,0,] between N and the pushforward of Np.
To simplify the notation, let me assume that » = n — 1, meaning that I = (z,,)

is principal. Then the eigenspace decomposition becomes
N =@PN..
eeN

where the operator T;, = x,0, acts on N, as multiplication by e. Since T,, commutes
with z1,...,2p-1,01,...,0n-1, each N, is a D(B)-module. Suppose that we have
s € N.. Then we get s0,, € Ney1, because

80, Ty, = 8(0nxn)0n = $(xn0pn + 1)0,, = $0n(e + 1);
likewise, we get sx,, € N._1, because
8, Ty = $xn (xn0n) = 8Ty (Opxy, — 1) = sxpe — sz, = sxp(e — 1).

Since N, is trivial for e < —1, we conclude that Ny = {s e N ’ ST, = 0};
moreover, we see that for e > 0, the morphism

No — N, s+ s0y;,
is an isomorphism of D(B)-modules. It is now easy to check that

No @1 k[0n] = N, > se @05 > 5.0,

eeN eeN

is an isomorphism of D(A)-modules. This proves the second isomorphism. d

Ezxample 14.1. Kashiwara’s equivalence implies that Z-modules, unlike &-modules,
never have nontrivial nilpotents. For example, the A;-module A;/z3A; is isomor-
phic to three copies of A;/xA;.

Kashiwara’s equivalence suggests the following definition of the category of alge-
braic Z-modules on a singular algebraic variety. Suppose that X is a nonsingular
algebraic variety, and Y C X any closed subvariety. Then an algebraic Zy-module
is defined to be an algebraic Zx-module whose support is contained in Y. One can
use Kashiwara’s equivalence to show that the resulting category is, up to equiva-
lence, independent of the choice of nonsingular ambient variety X.
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Pulling back. Suppose that f: X — Y is a morphism between two nonsingular
algebraic varieties. It is not hard to construct a pullback functor from algebraic
Py-modules to algebraic Zx-modules. Recall that we have a natural morphism

51 Ix = [*Fy = Ox @10, [ Py,

dual to the pullback morphism f*Q3, e Q% /. on Kéhler differentials. Now if M

is any left Zy-module, then this morphism gives
f*./\/l =0x Qf-10y f_l./\/l

the structure of a left Zx-module. The formula is the same as in the case of the
transfer module: one has

0-(g@u)=0(g)@u+g-dp0) - (1®u),

where 6 € Jx, g € Ox, and v € f~' M are local sections. We can say this more
compactly by noting that

FM=(Ox @10, ' Dy) @p-19y fTIM=Dx0y @p-19y 7M.

The transfer module Zx .,y is a (Zx, f ' %y )-bimodule, and f* M becomes a left
P x-module through the left Zx-module structure on Zx_,y. Since the pullback of
a quasi-coherent Oy-module is a quasi-coherent &'x-module, it is clear that f*M
is again an algebraic Zx-module.

Now the functor f~! is exact, but tensor product is only right-exact, and so
makes sense to consider also the right derived functors.

Definition 14.2. We define the inverse image of a left Zy-module M by the
formula f*M = Px_,y ® -1, f~*M. For j > 0, we define L™7 f*M as the j-th
right derived functor of f*.

As usual, L™7 f* M is computed by choosing a resolution of M by Zy-modules
that are locally free (or flat) over Oy ; alternatively, we can choose a resolution of
Dx .y .

Example 14.3. Suppose that & is a locally free Oy-module with an integrable
connection V: & — Q%, /K Doy &, viewed as a left Zy-module. The inverse image
is then simply the usual pullback f*&, together with the integrable connection

PV FE = P @0y 116 = Qi Goy 76,
viewed as a left Zx-module.

Ezample 14.4. Consider the left A;-module M = A;/A;z and its pullback to the
origin in A}v. The corresponding morphism of k-algebras is k[z] — k; using the free
resolution
for k, the derived functors of the pullback are computed by the complex

Al/Ale i) Al/AliC,

where the map is P — xP. The kernel is isomorphic to k, generated by the image
of 1 € A;; the cokernel is trivial, because 1 = —z0 modulo A;z. Thus L%*M =0
and L™1*M = k.

In Lecture 12, I said that the definition of the pushforward functor (in the case
of a closed embedding) was motivated by the pushforward of distributions. So why
do I not talk about pulling back functions before introducing the pullback functor?
The reason is that pulling back Z-modules does not correspond to pulling back
functions; as we will see next week, the actual meaning is much more interesting.
For now, let me just point out one difference between the two functors: pulling
back does not necessarily preserve coherence.
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Ezample 14.5. Consider the embedding Speck < A} of the origin, corresponding
to the morphism of k-algebras k[z] — k. The pullback of a1 is the k-module
k ®k[2) A1(k) = A1(k)/xAq(k). This is infinite-dimensional, because the elements
1,0,0%,... are all linearly independent, and in particular, it is not coherent over k.

In general, the pullback of a Zx-module of the form Zx/Zx (P, ..., Py,) is not
coherent, and so we cannot interpret it as pulling back functions and looking at the
differential equations they satisfy.

The following lemma is obvious from the definition.

Lemma 14.6. If f: X — Y and g: Y — Z are morphisms between nonsingular
algebraic varieties, then one has a natural isomorphism of functors (go f)* = f*g*.

We can factor any morphism f: X — Y through its graph as
X Y Xxy 2y

as a closed embedding i followed by a smooth morphism ps (actually, a projection
in a product). Because of the lemma, this means that it suffices to understand the
pullback functor in the case of closed embeddings and smooth morphisms.

Non-characteristic inverse image. I am now going to describe a condition un-
der which f* preserves coherence. This will also help us understand what the pull-
back functor is doing in terms of differential equations. To do this, we revisit a very
pretty classical result about differential equations, called the Cauchy-Kovalevskaya
theorem. Let’s begin with the case of ordinary differential equations.

Theorem 14.7 (Cauchy-Kovalevskaya). Consider the initial value problem
d
= Fw), u(0)=0,

for a real function u. If F': (—e,e) — R is real-analytic near 0, then the solution u

is also real-analytic near 0.

Proof. Although it is not directly connected with Z-modules, let me show you the
proof, because it is very beautiful. The proof is basically Cauchy’s original proof.
How do we show that u is real-analytic? We have to prove that the Taylor series

(oo} tn
> u(0)
o n!
converges in a neighborhood of 0, and for that, we need to compute the values of
all the derivatives u(™)(0). The differential equation gives
u = F(u)
u' = F'(u)u' = F'(u)F(u)
u" = F"(w)u'F(u) + (F'(w))*u’ = F"(u)(F(u))® + (F'(w))F(u).
and so on. In principle, we can compute u(™ (0) for every n > 0, but the formulas
get very complicated, and so trying to prove the convergence of the series looks
pretty hopeless. Still, what we get is that
u™ = P, (F(u), F'(u),..., F" Y (u),

where P, is a polynomial with nonnegative integer coefficients. These polynomials
are universal, in the sense that they do not depend on the given function F. For
example, Py(x,y) = yx and P3(z,y,z) = z2? + y?x. Because P, has nonnegative
coeflicients, this gives us an upper bound

[ut™(0)] < Pu(IEO), [E(0)],...., [FT~D(0)])
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on the derivatives of u, using the initial condition «(0) = 0. Now Cauchy makes
the following brilliant observation. Suppose that we have another function G with
the property that |F(™(0)| < G(™(0) for every n > 0. Then

[u™(0)] < Pu(G(0),G(0),...,G"D(0)) = 0™ (0),

where v is the solution to the initial value problem
% =G(v), wv(0)=0.

The reason is again that P, has nonnegative coefficients, and that the same poly-

nomial P,, works for both F' and G. Such a function G is called a “majorant”, and

the proof is known as the method of majorants. Suppose that we manage to find G

in such a way that the function v is real-analytic. Then the Taylor series

oo tn
> v 0)
ne0 n.

has a positive radius of convergence, and since |u(™ (0)| < v(™(0) for every n > 0,
the same is true for the series

oo t"
Sl (0)|
ne0 n:

This is sufficient to conclude that u is real-analytic in a neighborhood of 0.

It remains to construct a suitable majorant G. By assumption, F' is real-analytic
near 0, and so its Taylor series
N g oy
> FM(0) —

n=0

has a positive radius of convergence. By comparing this series with a geometric
series, we find that there are constants C' > 0 and r > 0 such that |[F((0)] <
Cnl/r™ for every n > 0. We can then take

G(t) = C,i (i)" o

because G(™(0) = Cn!/r™ > |F(™(0)| by construction. The solution of the corre-
sponding initial value problem

dv Cr

i ’ 0) = 07

da r—wv v(0)
is easily found using separation of variables; the result is that v = r—r\/1 — 2Ct/r.
This is evidently real-analytic for |¢| < r/2C, and so we are done. O

Exercises.

Ezercise 14.1. Let X = Spec A and Y = Spec B, where B = A/I for anideal I C A
and both A and B are nonsingular. Let N be a right D(A)-module.

(a) Show that Ng = {s€ N | sI =0} is a B-module, and that the map
No®p T — Ny, S®9l—>55(0),

makes Ny into a right D(B)-module, where ¢: Dery(B) — B ®4 Der(A)
is the induced morphism between derivations.
(b) Check that the isomorphism of B-modules

HomD(A) (B XA D(A),N) = HOHlA(B,N) = Ny

is actually an isomorphism of right D(B)-modules.
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Ezercise 14.2. If T = x0, prove the identities
To* =0T —¢) and T(T —1)---(T —e) = 219!

for every e > 0.
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The Cauchy-Kovalevskaya theorem. Last time, we showed that the solution
to the initial value problem

d

— = F(u), u(0)=0,

is real-analytic near ¢ = 0, provided that this is true for the function F. I also
showed you Cauchy’s proof, using the “method of majorants”. Today, we are going

to generalize this result to partial differential equations. We work on R™, with

coordinates x1,...,x,, and consider a partial differential equation of the form
Pu = Z fa0%u =0,
la|<k

where each f, is a real-analytic function in a neighborhood of the origin, say.
(And 9; = 9/0x;, as usual.) In other words, P is a linear differential operator of
order k with real-analytic coefficients. We will specify the initial conditions on the
hyperplane z,, = 0, which is a copy of R"~!. They are

k—1
U Rn—1 =41, R an u|]Rn—1 = 0Gk—1,

rn—1 — 90, Onu
where go,g1,...,gk_1 are real-analytic in a neighborhood of the origin in R"~1.

From this data, we can of course compute all partial derivatives of u of order at
most k — 1 on R"~1; indeed, if & € N” is a multi-index, then

(15.1) Oul gy =07 03" Garns

provided that a,, < k — 1.

The goal is to show that the solution w is real-analytic near the origin. For
that to be true, the Taylor series of u at the origin needs to be determined by
the equation Pu = 0 plus the initial conditions, and so we had better be able to
compute all partial derivatives of u at the origin. Since we can always differentiate
along R™~!, the real question is how to find

0ol
for j > k. Clearly, this information has to come from Pu = 0. Since P has order
k, we can rewrite Pu =0 as

Fo0m) - Ofu = — Z fa0%u,

an<k—1

and in view of (15.1), we can solve this for 8§u|Rn,l if and only if the restriction
of the coefficient function f . o) to R"~! is everywhere nonzero. (If we only
care about what happens at the origin, then the condition is that f(o, . o) should
be nonzero at the origin.) If that is the case, we can of course divide through by
fo....,0,k) and arrange that OF appears with coefficient 1.

Definition 15.2. We say that P is non-characteristic with respect to the hyper-
surface x,, = 0 if the coefficient function f, . o) is everywhere nonzero on Rr1L.

Assuming that P is non-characteristic (and fo, .. 0% = 1), we can rewrite the

equation Pu = 0 in the form
ok u = Qu,

where @ is a differential operator of order k in which 9% does not appear. We can
now use this equation recursively, together with (15.1), to compute 6‘)‘u|w,1 for
every a € N”. In particular, assuming that P is non-characteristic, the equation
Pu = 0 together with the initial conditions on R"~! give enough information to
compute the Taylor series for u at the origin. We can now state the PDE version
of the Cauchy-Kovalevskaya theorem.
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Theorem 15.3 (Cauchy-Kovalevskaya). Let P be a linear partial differential op-
erator of order k whose coefficients are real-analytic near the origin in R™. If P is
non-characteristic with respect to x,, = 0, then the boundary-value problem

— — _ k—1 —
P'LL—O, U}Rn—l *907 anU|Rn—1 *917 crt an U|Rn—1 *gk‘—17

has a unique real-analytic solution u near the origin in R™, for every choice of
functions go, g1, . .., gx—1 real-analytic near the origin in R™~1.

Example 15.4. Here is an example to show that the solution can fail to be real-
analytic if P is “characteristic”. This example is due to Kovalevskaya herself.
Consider the heat equation d;u = d2u in R?, with coordinates (z,t). Since the
equation is first-order in ¢, we only need a single initial condition u(z,0) = g(z).
Note that the operator P = 9; — 02 is characteristic with respect to t = 0, because
it has order 2, but no term involving 2. Here is a heuristic reason why we cannot
expect u to be real-analytic in general. From the equation, we get

o' = 0%"u,

and at (x,t) = (0,0), this evaluates to g(®*)(0). If the Taylor series of g at the
origin has a finite radius of convergence, then

\ (2n)!

9 (0) > %)

for some C,r > 0. But this means that the function h(t) = u(0,t) cannot be
real-analytic in ¢: indeed, from the above, we deduce that

2n)!

r2n’

W) = 0!
and since (2n)! grows so much faster than n!, the Taylor series of h(t) has radius of

convergence equal to zero. For an actual example, take g(x) = 1/(2? + 1).

Now let me give an outline of the proof of Theorem 15.3. As explained above,
we can rewrite the equation Pu = 0 in the form

Bsu = Qu,

where @ is a differential operator of order k with real-analytic coefficients, such that
@ has order at most k— 1 in 9,,. Moreover, we can subtract a suitable real-analytic

function from wu to arrange that go = g1 = ... = gx—1 = 0. We now rewrite the
problem as a system of first-order PDE for N = ("H“*l) + 1 unknown functions
U,...,un. These functions are the N — 1 partial derivatives 0%u for |o| < k — 1,
and the auxiliary uy = x,,. In vector notation, the system takes the form
ou == ou

15.5 — = Bi(z1,...,2n—1)=— + Bo(x1,...,Tn-1)u,

( ) 8(En ; j( 1 n l)a.’IJJ + O( 1 n 1),
where u = (ug, ..., un), and where the coefficient matrices By, . .., B,_1 are derived

from @, hence real-analytic near the origin. Note that we threw in the function
uy = T, in order to make the coefficients be independent of z,; of course, the
corresponding equation is simply Ouy/0z, = 1. The initial condition is that u is
the zero vector for x,, = 0.

Now one can again use the method of majorants to prove that w is real-analytic
near the origin in R™. From (15.5), all partial derivatives of u at the origin are given
by (very complicated) universal polynomials with nonnegative integer coefficients
in the partial derivatives of By,...,B,_1 at the origin. Using the fact that the
coefficient matrices are real-analytic near the origin, one can again write down
simple majorants for each of them, and then explicitely solve the resulting system
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of first-order PDE to show that its solution v, and hence also u, is real-analytic
near the origin.

Non-characteristic Z-modules. Here is a geometric interpretation for the con-
dition that P is non-characteristic with respect to x,, = 0. If P = ) fo0 has
order k as above, then its principal symbol

O’k(P) = Z fa({l?h...,.’L'n) : ill fg”
lo|=F
is a homogeneous polynomial of degree k in the variables &1, ...,&,. We said that
P is non-characteristic iff fi . ox)(z1,...,20-1,0) # 0 for every x1,...,2,1.
Another way of saying this is that if we set z,, = 0 and assign arbitrary values to
the variables x1,...,2,-1,&1,...,&n—1, then o;(P), considered as a polynomial in
the remaining variable £,,, always has degree exactly k. The geometric meaning of

this condition is as follows. We have the usual maps between the cotangent bundles
T*R™ = R" x R” and T*R"~! = R"~! x R*1:

R™"! xga T*R® —% T*RP1

|

T*R"™
Using z1,...,2Tn,&1,-..,&, as coordinates on T*R"™, the maps are just

pg((El, ce ,l'n,l,gl?. .. ,gn) = (:L‘h. . .,$n71,07£1, N 7£n)

di(l‘l, . ,xn_l,fl,. .. 7571) = (.’I}l,. . -7xn—1a£17~ .. ,fn_l).
Consider the subset Ch(P) C T*R"™ defined by the equation o, (P) = 0. Setting
, = 0 and prescribing values for z1,...,2,_1,&1,...,&,—1 amounts to looking at
the fibers of p, ' Ch(P) over T*R"!, and so P is non-characteristic exactly when
the projection from ]32_1 Ch(P) to T*R"! is a finite morphism of degree k. If we
observe that Ch(P) is the characteristic variety of the Z-module A4, (R)/A,(R)P,
this finiteness condition makes sense for arbitrary coherent Z-modules.

Let me now give the general definition. Suppose that f: X — Y is a morphism

between two nonsingular algebraic varieties. Here is the diagram of the induced
morphisms between cotangent bundles:

X xy TY -2 1o x
|p
™Y
Definition 15.6. Let M be a coherent left Zy-module. We say that M is non-
characteristic with respect to f: X — Y if the morphism
df : p; ' Ch(M) — T*X
is finite over its image.

Example 15.7. Consider the closed embedding i: AZ‘l — A}, defined by z,, = 0.
Our earlier discusion shows that if P € A, is nonzero, then the left A,-module
A, /A, P is non-characteristic with respect to i if and only if the differential operator
P is non-characteristic with respect to x,, = 0 in the classical sense.

Example 15.8. If f: X — Y is a smooth morphism, then every coherent Zy-module
is non-characteristic with respect to f. Indeed, smoothness means that we have a
short exact sequence

0= f*Qy ), = Qx/p = Uxyy =0,
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with Q1

Xy locally free of rank dim X — dim Y. But this says that

df : X xy T*Y - T*X

is a closed embedding (of codimension dim X —dim Y'), and so p; ' Ch(M) is trivially
finite over its image in T*X.

In the following example, we compute the pullback of an A,-module of the form
A, /A, P to the hypersurface x,, = 0, in the case where P is non-characteristic.

Ezample 15.9. Consider the left A,-module M = A, /A, P, where P € A, is a
nonzero differential operator of order r > 0. Suppose that M is non-characteristic
with respect to the closed embedding i: A"~! <+ A" defined by the equation x,, = 0.
We claim that, in this case, the pullback ¢* M is not only coherent, but actually a
free A,,-module of rank r. The definition of the pullback gives

(15.10) M = k21, 1] @] M= An /(@ Ay + Ay P),

where the right-hand side is a left A,,_j-module in the obvious way. We have a
morphism of left A, _;1-modules

: Afﬁl — An/(xnAn + A P)
(QOv le e 7Qr71) = QO + Qlan + -+ Qrfla';,_l'

We will show that ¢ is an isomorphism. Let us first argue that 0), is in the image.
We can write our differential operator P € A, uniquely in the form

P=fo — P10~ . — PO, — Py,

where f € k[xy,...,2,] and where Py,...,P._1 € A, do not involve 9,. The
fact that P is non-characteristic means that f is nowhere vanishing on A”~!; after
rescaling, we can assume that f = 1 — x,g9. Writing P; = @, + z,R;, with
Qj € Ap_1, we get

r—1 r—1
(15.11) O =3 Q00 +w(90n + Y Rid3) + P,
7=0 j=0

and so 0!, belongs to the image of ¢. Using the relation in (15.11) repeatedly, we
see that this is true for all powers of 0,,, and so ¢ is surjective.
It remains to prove that ¢ is injective. This is equivalent to saying that if

Qo+Q10p+-+Qr 10" =2,8S+TP

for some Qq,...,Qr—1 € A,_1 and S,T € A,,, then actually Qg =---=Q,_1 =0.
We can write T' = x, Ty + T, in such a way that x,, does not appear in T;; since
2y S+ TP = x,(S 4+ To) + T1 P, we can therefore assume without loss of generality
that T" does not involve z,,. Now suppose, for the sake of contradiction, that T # 0.
On the right-hand side of the equation, 0, appears with a nonzero coefficient:
indeed, P contains (1 — z,,¢)0!, and since T' does not involve z,,, it is not possible
to cancel this term against anything from z,S. But this clearly contradicts the
fact that 9], does not appear on the left-hand side of the equation. The conclusion
is that 7" = 0; and then also Q¢ = --- = @Q,_1 = 0, because the right-hand side is
divisible by x,,, whereas the left-hand side does not involve x,,.

The preceding example, together with the Cauchy-Kovalevskaya theorem, sheds
some light on what the pullback of Z-modules has to do with differential equations.

Ezxample 15.12. Continuing with the previous example, let us take £k = R. Set
M = Dpn /| Drn P. Let us denote by Zgrn the sheaf of real-analytic functions on R™;
it is a left Zg»-module in the obvious way. Recall from Lecture 1 that real-analytic
solutions to the equation Pu = 0 on an open subset U C R" correspond naturally
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to morphisms of left Zgn-modules M — Zgn over U; here the morphism takes the
generator 1 € T'(U, Zrn) to the corresponding function u € T'(U, Zgn ).

In this notation, the Cauchy-Kovalevskaya theorem says that if V' C R"~! is an
open subset, and go, g1, - . ., gr—1 € ['(V, Zgn-1) are arbitrary real-analytic functions
on V, there is an open subset U C R" with U NR"™! = V, and a real-analytic
function u € T'(U, Zg~), such that Pu = 0 and

0ﬁ;u|Rn_l =g; forj=0,1,...,r—1
By what we have just said, v may be viewed as a section of the sheaf
i_l”Hom@Rn (M,%Rn)
on the open subset V. Now we have a natural morphism of sheaves
i Homgy, (M, Brn) — Homg,, _, (i*M,i*Ren) — Homg,, _, (i*M, Bga-1);

it works by applying the pullback functor * to a morphism of left Zgn-modules
M — Zgrn, and then composing with the restriction morphism i*Zg»n — Zrn-1.
The preceding example shows that i* M is a free Prn-1-module of rank r, generated
by the images of 1,9,,...,0.~!. Thus

’H,om@Rn_l (Z*M, %Rn—l) =~ g

Rn—1>

n—1

and one checks that the resulting morphism

i Hom gy, (M, Zrn) — Rl

takes u to its boundary values
r—1
u|]Rn—17anu’Rn—17.” 76n u|Rn—1'

This means that we can interpret the Cauchy-Kovalevskaya theorem, in more fancy
language, as the statement that the morphism

i_l?'-[om@w (M,%’Rn) — Homg,,, , (i*M,ﬂRnﬂ)

is an isomorphism of sheaves on R™~!. This tells us that the Z-module pullback
1* M has to do with the boundary conditions for the partial differential equation
Pu = 0; the fact that i* M is free of rank r means that we can specify r independent
real-analytic functions as boundary conditions.

Non-characteristic pullback. Our next goal is to show that if f: X — Y is

a morphism between nonsingular algebraic varieties, and if M is a coherent left

Py -module that is non-characteristic with respect to f, then the pullback f*M is

coherent over Zx. To simplify the analysis, we are going to factor f through its

graph. Let us see how this factorization interacts with being non-characteristic.
Suppose for a moment that we have an arbitrary factorization

X2tz sy
W
with Z nonsingular. We can then draw the following big diagram of induced mor-
phisms between cotangent bundles:
df

XxyTY —4s X x, 77 —%5 17X

lg xid lm

ZxyT'Y — 3 s 1g

|

Y



78

If h: Z — Y is a smooth morphism, then dh is a closed embedding, and so its base
change along g: X — Z, which is denoted by ¢ in the diagram above, is also a closed
embedding. Since df = dg o ¢, we see that the subset p;* Ch(M) of X xy T*Y is
finite over T Z if and only if its image under ¢ is finite over T*Z. This observation
can be used to reduce the study of non-characteristic pullback to two special cases:
smooth morphisms and closed embeddings.

Exercises.

Ezercise 15.1. On R™, we use coordinates x1,...,2,. Let M = Pgn/PDrn P, where
P is a differential operator of order r that is non-characteristic with respect to
2z, = 0. Show that the morphism

i " Homg,, (M, Brn ) — R

in Example 15.12 takes a real-analytic solution to the equation Pu = 0 to the
r-vector of its normal derivatives

r—1
u|]Rn717anu|Rn—l7.” 7671 u|Rn—l'
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LECTURE 16: APRIL 8

Non-characteristic pullback and coherence. Recall that if f: X — Y is a
morphism between nonsingular algebraic varieties, we have the following morphisms
between cotangent bundles:

X xy T*Y -2 1 x
(16'1) lpz
T*Y

We said last time that a coherent left Zy-module M is called non-characteristic
with respect to f if p; * Ch(M) is finite over its image in 7* X (under the morphism
df). Here are three typical examples.

Ezxample 16.2. If f is a smooth morphism, then df is a closed embedding, and so
every coherent left Zy-module is noncharacteristic with respect to f.

Ezample 16.3. If M is a vector bundle with integrable connection, then Ch(M) is
the zero section in T*Y . Since the zero section in X Xy T*Y and in T*X are both
isomorphic to X, the restriction of df to p2_1 Ch(M) is an isomorphism, and so M
is non-characteristic with respect to any morphism f. So being non-characteristic
is really a condition on the other components of the characteristic variety.

Ezxample 16.4. The left Zy-module %y is never non-characteristic with respect to a
closed embedding f: X — Y (as long as dim X < dimY"). Indeed, Ch(M) = T*Y
in this case, and since df has positive-dimensional fibers, p; * Ch(M) is not finite
over its image.

Our goal for today is to show that pulling back preserves coherence in the non-
characteristic setting.

Theorem 16.5. Let f: X — Y be a morphism between nonsingular algebraic
varieties, and M a coherent left Py -module. If M is non-characteristic with respect
to f, then the following is true.

(a) The pullback f*M is a coherent left Dx-module.
(b) One has L™7 f*M =0 for j > 1.
(¢) One has Ch(f*M) = df (p; ' Ch(M)).

Note that since df : pgl Ch(M) — T*X is a finite morphism, the image is again
a closed algebraic subset of T7*X. Thus the statement in (c) makes sense.

For the proof, the idea is to factor f: X — Y as a closed embedding followed by
a smooth morphism, and to analyze the two cases separately.

Smooth morphisms. Suppose that f: X — Y is a smooth morphism. In the
diagram in (16.1), the morphism p, is then also smooth, and the morphism df is a
closed embedding. Now let M be a coherent left Zy-module. We have

f*j\/l =Dx_vy Qf-19y fﬁlM >~ CO0x Qf-16y fil./\/l7

and since smooth morphisms are flat, the tensor product with Ox is exact. In
particular, the higher derived functors of the tensor product are zero, and so
L77f*M = 0 for j > 1. This proves (b). Next, we show that f*M is coher-
ent over Zx. By assumption, M is coherent over %y, and so f~!M is coherent
over f~'Py . Since the left Zx-module structure on f*M comes from Zx_,y, it is
therefore enough to show that the morphism

Dx = Dx_y =Ox Qf-10y f_lgy, Pi—>P~(1®1)
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is surjective. This can be done locally. We can therefore assume that X and
Y are affine, and we can choose local coordinates x1,...,2,+, € T'(X,Ox) and
Y1,---,yn € L(Y, Oy), in such a way that the morphism on tangent sheaves

TIx = [* Py =Ox @0y [Ty

maps d,; to 1 ® 9y, for 1 < j < n, and to zero otherwise. (This means that
Ozpyrs+ -+ 0r,,, generate the relative tangent sheaf 7 /y.) Now every element of

(X, Zx_v) can be written in the form

D 92 GO O

aeNn

with g, € T'(X, Ox), and because of how we defined the Zx-module structure on
the transfer module, this expression equals

> a5t (101).

aeN"?

Thus Zx — Px_,y is indeed surjective, with kernel generated by the relative
tangent sheaf Jx,y.

It remains to prove that Ch(f* M) = df (;1)2_1 Ch(M)). Choose a good filtration
FoM, and observe that because f is flat, we have f*F;M C f*M. If we set
N = f*M, we thus get a filtration with terms F;N = f*F; M. It is clear that each
F;N is a coherent &x-module; moreover, flatness of f gives

gl‘f./\/‘ = FjN/ijlN = f* grf./\/l.

Once we check that F, N is a good filtration, we can use it to compute Ch(N).
Working locally, we can assume that X and Y are affine, and that we have local
coordinates z1,...,Znr € I'(X,0x) and y1,...,y, € I(Y,0y) as above. To
abbreviate, set A = I'(X, Ox) and B = I'(Y, Oy ); then A is a smooth B-algebra.
We shall use the same symbol 9; to denote both 0., and d,,; then the morphism
on tangent sheaves takes d; to 1 ® 0; for 1 < j < n, and to zero otherwise.

Let us set M =T'(Y, M) and N = T'(X, ). By construction,

N=A®pM and F;N=A®pF;M and gfN=A®pgr M.

As the filtration on M is good, the associated graded gr’ M is finitely generated
over gr’ D(B) = B[dy, . ..,0,]. The left D(A)-module structure on N is given by

dia@m+a®0dm if1<j<n,
dja®@m ifn+1<j<n+r.

3j(a®m) :{

This formula shows that the filtration Fq N is compatible with the action by D(A).
It also shows that Op41,...,0h+r act trivially on

gf'N=A®p gfM,

and that 0i,...,9, only act on the second factor. Said differentialy, we have an
isomorphism of graded A[d1, ..., Opqr]-modules
(16.6) gt N = Aoy, ...,0,] ®pa,,..0, 8t M,

with A[Dy,...,Ontr] acting on the first factor in the obvious way. This says that
grf' N is finitely generated over A[dy,...,0n1,], and so FyN is a good filtration.
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It is now easy to compute the characteristic variety Ch(N'). If we rewrite the
diagram in (16.1) in terms of rings, we get

Spec Ady, ..., 0] —L Spec A[Dy, ..., Onir]

|p

Spec B[04, . .., O]

with po induced by the morphism of rings B — A, and df induced by the quotient
morphism A[0y,...,0h4r] — AlO1,...,0,]. Thus (16.6) says that the coherent
sheaf on T*X = Spec A[0, ..., 0n+,] corresponding to gr’ N is obtained by first
pulling back gr’ M along p,, and then pushing forward along df. Globally,

erF N = df.pierf M,
and since po is surjective and df a closed embedding, we get
Ch(N) = df (p; ' Ch(M)),

proving (c) for all smooth morphisms.

Factorizing through the graph. Using the graph embedding, we can write any
morphism f: X — Y as the composition of a closed embedding i: X — Z and a
smooth morphism g: Z — Y. (Here Z = X x Y, of course, but let me write Z to
simplify the notation.) We already know that N' = g* M is coherent over 2, and
that Ch(N) = dg(p5 ' Ch(M)). Using the big diagram

af

X xyTY s X x,T*7 —%5 1%7

li xid lm

Zxy TY %, 1+g

2

™Y

from last time, we see that p, ! Ch(N) is finite over its image in 7*X (under the
morphism dz); this says that A is non-characteristic with respect to the closed
embedding i: X — Z. As f*M = i*N, this reduces the proof of Theorem 16.5 to
the case of a closed embedding.

Closed embeddings. Suppose now that f: X — Y is a closed embedding. We
are only going to treat the case where dim X = dimY — 1; to go from there to the
general case, one uses the fact that f can be locally factored as a composition of
dimY — dim X closed embeddings of codimension one (because closed embeddings
between nonsingular algebraic varieties are locally complete intersections).

The problem is local, and so we can assume that Y is affine, with B = I'(Y, Oy).
Choose local coordinates yg, y1, - .-, Yn € B, in such a way that X is defined by the
equation yg = 0; then A = I'(X, Ox) = B/Byo, and the images x1,...,x, € A of
Y1i,...,Yn € B are local coordinates on X. The morphism on tangent sheaves

TIx = [Py =Ox Qp-r0y [Ty

takes 8zj to 1® ay]. for 1 < j < n. (The remaining vector field d,, is not in the
image; it generates the normal bundle.) We again write 9; for both 9., and d,,, so
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that the morphism on tangent sheaves takes 0; to 1 ® d;. With this notation, the
diagram in (16.1) becomes

Spec A[dy, ..., 0n] —2Ls Spec A[d1, ..., 8]

(16.7) l?Q
Spec B[0o, - . ., On).

This time, py is a closed embedding and df is smooth of relative dimension one.
We are going to use the following basic fact from algebraic geometry.

Lemma 16.8. Let B be a finitely generated A-algebra.

(1) If B is integral over A, then every finitely generated B-module M is also
finitely generated as an A-module.

(2) If M is a finitely generated B-module such that Supp M is finite over
Spec A, then M is also finitely generated as an A-module.

Proof. The first assertion follows from the fact that B itself is finitely generated
as an A-module. To prove the second assertion, we may replace B by the quotient
ring B/ Anng (M) and assume without loss of generality that Anng(M) = 0. The
support of M is then the reduced closed subscheme defined by the nilradical of B,
and so the hypothesis says that B/Nil B is integral over A. This means that for
every b € B, there is a monic polynomial h(t) € A[t] such that h(b) € Nil B. But
then h(b)™ = 0 for some m > 1, and so b is integral over A. We now conclude from
the first assertion that M is finitely generated as an A-module. O

Now let M be a coherent left Zy-module that is non-characteristic with respect
to f. Set M = I'(Y, M), which is a finitely generated module over the ring of
differential operators D(B) = I'(Y, Zy). The following lemma expresses the non-
characteristic property of M in terms of differential operators.

Lemma 16.9. For every u € M, there exists a nontrivial differential operator
P € D(B) that is non-characteristic with respect to yo = 0 and satisfies Pu = 0.

Proof. The submodule D(B)u C M is isomorphic to D(B)/I, where
I={PeDB)|Pu=0}

is a left ideal in D(B). The characteristic variety of D(B)/I is contained in that
of M, and so D(B)/I is again non-characteristic with respect to f. As a subset of
T*Y = Spec B[y, ..., 0], the characteristic variety of D(B)/I is cut out by the
principal symbols o(P) € B[dy,...,0,] of all the differential operators P € I. Its
preimage under ps is therefore cut out by their images in A[dy, . .., d,]. Because this
subset is finite over Spec A[dy, ..., d,], we can argue as in the preceding lemma to
show that there is a monic polynomial h(t) of some degree d > 1, with coefficients in
the ring A[d1, . .., On], such that h(9y) € A[Dy, ..., On] belongs to the ideal generated
by o(P) for P € I. Keeping all terms in h(9p) that are homogeneous of degree d,
we conclude that there exists a differential operator P € I of order d, such that the
image of o(P) in A[dy, ..., 0,] contains the term 9§. But this says exactly that P
is non-characteristic with respect to yo = 0. O

Note. Since M is finitely generated over D(B), the lemma implies that there exist
finitely many differential operators Py, ..., P. € D(B), all non-characteristic with
respect to yg = 0, and a surjective morphism

émmmwmﬁM
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By applying the same observation to the kernel, one can in fact show that M admits
a resolution by non-characteristic D(B)-modules of the form D(B)/D(B)P.

Now let us continue with the proof of Theorem 16.5. The derived functors
L=7 f* M are computed, in our local coordinates, by the complex of D(A)-modules

M -2 M.

To show that L=/ f*M = 0 for every j > 1, we only have to argue that multipli-
cation by yg is injective. Suppose that we have some u € M with you = 0. By the
lemma, we can find a differential operator P € D(B), say of degree d > 0, such that
Pu = 0 and such that P is non-characteristic with respect to yg = 0. Concretely,
this means that the coefficient of 9¢ is constant modulo yo. As you = 0, we can
therefore assume without loss of generality that d¢ appear with coefficient 1 in P.
Let us choose P in such a way that d is minimal. The commutator [y, P] contains
the term —ddd~!, and since

[yo, Plu = yoPu — Pyou = 0,

we conclude by minimality that d = 0, and hence that « = 0. This proves (b).

To prove the other two assertions, we choose a good filtration Fy M, with grf' M
finitely generated over gr’’ D(B) = B[d, ..., 0,]. Set N = f*M and N = I'(X, N,
so that

N=AQp M.
This time, tensoring with A is no longer an exact functor, but we can still define a
filtration on N by setting
F;N = im(A ®p F;M — A®p M)
With this definition, each gréD N is a quotient of B® 4 grf M, and by exactly the same
calculation as before, the A[dy, ..., d,]-module grf’ N is a quotient of A @ grf’ M,
considered as an A[dy, ..., dy]-module through the morphism in (16.7).

Now I claim that A ®p gr’ M is finitely generated over A[dy,...,d,]. Indeed,
grf"M is finitely generated over B[y, ..., ,] (because Fy M is good), and so A®p
grf’ M is finitely generated over A[dy,...,0,]. By the non-characteristic property,
the support inside Spec A[Dy, ..., 0y] is finite over Spec A[dy,...,dy,], and so the
claim follows from Lemma 16.9. Therefore grf’ N, which is a quotient, is also
finitely generated over A[ds,...,dy,], proving that N' = f* M is coherent over Zx.
This argument also shows that

Ch(N) C df (p3 ' Ch(M)),

because the support of A ®p grf’ M contains the support of the quotient module
grf’ N. Some extra work is required to show that the two sides are actually equal.
(In brief, one has to construct a good filtration F M such that grfN = A®BgrfM.)

Exercises.

Exercise 16.1. Suppose that X C A™ is a nonsingular subvariety. Determine the
set of hyperplanes H C A" such that p, '(T5A™) is finite over its image in T*H.

H xpn T*A" —— T*H

|p

T*A™
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LECTURE 17: APRIL 10

Direct images in general. We are now going to define the direct image functor
for (right) Z-modules for an arbitrary morphism f: X — Y between nonsingular
algebraic varieties. Let M be a right Zx-module. By analogy with the case of
closed embeddings, the direct image should be

fe(M®ay Dxv).

Recall that the transfer module Zx_y = Ox ®f-14, 19y is a (Zx, f 1 9y)-
bimodule, and so the direct image is again a right Zy-module. The problem with
this definition is that the resulting functor is neither right nor left exact, and there-
fore not suitable from a homological algebra standpoint. (The reason is that we are
mixing the right exact functor ® with the left exact functor f..) This problem can
be fixed by working in the derived category; in fact, Sato, who founded algebraic
analysis, independently invented the theory of derived categories for his needs.

Derived categories. Let me very briefly review some basic facts. Let X be a
topological space, and Zx a sheaf of (maybe noncommutative) rings on X. We
denote by Mod(Zx ) the category of (sheaves of) left Zx-modules; this is an abelian
category. Note that right Zx-modules are the same thing as left modules over the
opposite ring Z3’. We use the notation

D*(%x)

for the derived category of cohomologically bounded complexes of left % x-modules.
The objects of this category are complexes of left Zx-modules, with the property
that only finitely many of the cohomology sheaves are nonzero. The set of mor-
phisms between two objects takes more time to describe, and this is where the
action is happening. Recall that when we compute a derived functor, we have to
replace a sheaf (or complex of sheaves) by a suitable resolution: injective resolu-
tions in the case of pushforward, flat resolutions in the case of tensor product, etc.
The reason for introducing the derived category is that one wants to have a place
where a sheaf (or complex of sheaves) is isomorphic to any of its resolutions.

Ezxample 17.1. Suppose that we choose an injective resolution
0-F -1 =T — ...

for a sheaf of 0x-modules, say. Homological algebra shows that any two such
resolutions are the same up to homotopy, meaning that if 7° is another injective
resolution of %, then there is a morphism of complexes Z* — J°, unique up to
homotopy; and its composition with the morphism going the other way is homotopic
to the identity morphism. But .% is not isomorphic to the complex Z*; all one has is
a quasi-isomorphism, meaning a morphism of complexes that induces isomorphisms
on cohomology sheaves. So if we want .% to be isomorphic to Z°, then we need to
work up to homotopy and somehow create an inverse for the morphism .# — Z°.

Back to D(%x). The set of morphisms between two objects is obtained by a
two-step procedure: starting from all morphisms of complexes, one first identifies
morphisms that are homotopy equivalent, and then one formally adjoins inverses
for all quasi-isomorphisms. As I said, this construction makes sure that a sheaf (or
complex of sheaves) is isomorphic to any of its resolutions by a unique isomorphism.

Concerning the existence of resolutions, one has the following basic fact:

(1) Every Zx-module can be embedded into an injective Zx-module.

(2) Every Zx-module is a quotient of a flat Zx-module.
One can then use the Cartan-Eilenberg construction to show that every cohomo-
logically bounded complex of Zx-modules has both injective and flat resolutions.
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The direct image functor. We can now define the direct image functor for an
arbitrary morphism f: X — Y between nonsingular algebraic varieties. The con-
struction is done in two stages. First, we have a functor

L
DY (2F) — DY (f7'90F), M® s M® 29, Dx vy,

obtained by taking the derived tensor product with the transfer module Zx_.y.
Concretely, this means that we choose a flat resolution for the complex of right
Px-modules M*®, and then tensor this resolution with Zx_,y. For the time being,
we do not make any quasi-coherence assumptions. Second, we have a functor

DY(f9) = DMDP), N* e REN,

obtained by applying the derived pushforward functor for sheaves. Concretely,
this means that we choose an injective resolution for the complex of right f~'%y -
modules A'®, and then apply the usual pushforward functor f, to each sheaf in
the complex. Each sheaf in the resulting complex is naturally a right Zy-module
through the morphism %y — f.f ' %y.

One has to show that both functors are well-defined and “exact”, meaning that
they preserve distinguished triangles (which are the derived category version of
short exact sequences of complexes). We define the pushforward functor as the
composition of the two functors above.

Definition 17.2. Let f: X — Y be a morphism between nonsingular algebraic
varieties. The pushforward is the exact functor

L
Fr: DYTE) = DUDP), [ M = RE(M® Sy Dxosy)
between derived categories.

Note that the general definition involves first choosing a flat resolution for the

complex M*®, and then a second injective resolution for M* Qlé 2 Px—y. Of course,
this is only for theoretical purposes; in practice, we factor f into a closed embed-
ding followed by a projection, and there are simple formulas for computing the
pushforward in both cases.

Example 17.3. Another word about resolutions. In the case of Zx-modules, one can
use results about &'x-modules to get resolutions very easily. For example, suppose
that we want to represent a quasi-coherent right Zx-module M as a quotient of a
flat Zx-module. Pick a quasi-coherent &'x-module % C M that generates M as
a Px-module. If M is a coherent Zx-module, we can choose % to be a coherent
Ox-module; in general, # = M will always do the job. Now pick a flat &'x-module
& that maps onto .%. Then the composition

ERoy Ix — F Qoy Ix - M
is surjective, and & ®g, Zx is flat as a right Zx-module.
Here are some concrete examples of the pushforward functor.

Example 17.4. Suppose that i: X — Y is a closed embedding. In this case, the
transfer module Zx_,y is locally free (as a left Zx-module), and tensoring with
Px vy is therefore exact. The pushforward functor i, is also exact, and so we have

i M® =i, (M. Ry 9X->Y)-

This agrees with our earlier definition in the case of a single Zx-module; in the
case of a complex, we simply apply the naive pushforward functor for a closed
embedding term by term.
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Ezxample 17.5. Suppose that j: U — Y is an open embedding. Then
Duy =0y Rj-16, § Dy = Dy,

by the basic properties of Py from Lecture 9. This shows that the pushforward
functor agrees with Rj, in this case. Generally speaking, j,. is exact when the com-
plement Y \ U is a divisor; otherwise, there might be higher derived functors. The
localization k[z1,...,x,,p~!] that we analyzed in Lecture 3 is a concrete example,
namely the pushforward of k[x1, . .., z,] along the open embedding A™\ Z(p) — A™.

Example 17.6. Let’s consider the case where f: X — Speck is the morphism to a
point. In this case, the pushforward f; M should be viewed as something like the
cohomology of X with coefficients in a right Zx-module M. The transfer module

—1
DX speck = Ox Q164,00 [~ Dspeck = Ox

is just Ox in this case; it has the structure of a left Px-module (and a right
k-module). To compute the pushforward

L
f+M :Rf*(M ®@X ﬁX)?

we can use a resolution of Ox by left Zx-modules. Such a resolution is furnished
by the Spencer complex

n 2
Sp(.@x)z [-@X®6’x /\«7X—>"-—>@X®ﬁx/\yx—>@)(®ﬁx 9}(%9}(}7

which lives in degrees —n, ..., —1,0. The Spencer complex maps to Ox via the
PDx-linear map Zx — Ox that takes P € Px to P(1) € Ox. This is surjective,
and the kernel is generated by . The general formula for the differentials

k+1 k

d: Dx Qe /\ Ix = Dx Qo /\<7X

in the Spencer complex is as follows:

k
AP @O AOL A AO) =D (~1)(PO) @ 0o A~ AO; A= A b
=0

+ Y (CU)MP@0L,0) A O A NG A NG A A,

0<i<j<k
In local coordinates x1,...,x,, the tangent sheaf is a free &'x-module with basis
d1,...,0, and the above formula simplifies to

k
d(P®8io/\6il/\~~/\8ik):Z(fl)j(P&j)@Qé)io/\'--/\5;/\'--/\6‘%.

=0

Except for the fact that Zx is noncommutative, this is the same formula as for the
differentials in a Koszul complex. Let us check that the Spencer complex resolves
Ox . From the formula for the differentials, it is clear that we can filter Sp(Zx) by
the family of subcomplexes

F,Sp(Zx) = [Fp—n-@X Rex /\ Ix == Fp 19x ®ox Ix — FPQX]

The description of the differential in local coordinates shows that the associated
graded complex

grySp(7x) = [gr.F_nQX Rox [\ Tx = -+ = gri19x ®ox Tx = grf%c}
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identifies with the Koszul complex for the regular sequence 9y, ...,9, € gri’?x,
and is therefore a resolution of Ox as a graded ng P x-module. This proves that
the Spencer complex resolves Ox as a left Zx-module.

Since each term of the Spencer complex is a locally free Zx-module, we get

where the Spencer complex of M is defined analogously by

n 2
Sp(M) = {M@g’x/\ﬂx—>~-~—>MX®ﬁX/\«7X—>MX®6’X 9X—>M}>

with the same formula for the differentials. The pushforward of a right Zx-module
is therefore equal to the hypercohomology of its Spencer complex Sp(M).

Ezample 17.7. In the case of wx, you can check that the Spencer complex Sp(wx)
is isomorphic to the algebraic de Rham complex

DR(Ox) = |0x = Q) = - = Q}/k]

The j-th hypercohomology group of the de Rham complex is denoted by H: g r(X/E)

and is called the j-th algebraic de Rham cohomology of X. When X is defined over

the complex numbers, Grothendieck’s comparison theorem tells us that H?,(X/C) =
H7(X,C) is isomorphic to the singular cohomology of X, considered as a complex

manifold.

Let us check that the pushforward functor is compatible with composition of
morphisms.

Proposition 17.8. Let f: X =Y and g: Y — Z be morphisms between nonsingu-
lar algebraic varieties. Then one has g4 o f+ = (go f)+, as functors from D ()
to D*(27).

Proof. Let M® € D*(25) be any complex of right Zx-modules. By definition,
. . L L
g+(f+M*) =Ry, (Rf* (M® ®ay Dxoy) Qay @YAZ)

(go f)+M* =R(go f)*(M. é@X —@X%Z)

We clearly need a relation among the three transfer modules to compare these two
expressions. Here is the relevant computation:

Dx—z = 0x @gopy-10, (90 f) "' Dz
= Ox @10y (F71 0y ®p-19-10, 797 P2)
~0x Qf-10y f_l(ﬁY Qg-10, g_lgz)
=0x @510, ' Dy 2z
= (Ox Qp-r0y [T 'Dy) Op10y [T Dyoz
=Dxy 19y [ Dy_z

In fact, since 2z is locally free as an &'z-module, the higher derived functors of all
the tensor products in the above calculation are trivial, and we even have

L
(17.9) Dx sz = Dxy Qf-19, [ Dy
Because R(g o f)« = Ryg. o Rf,, it will therefore be enough to show that

. L L . L L .
Rf.(M® ®ay Dxy) @ay Dy—z = Rf(M® Qo Dxy Qp-10y [~ Dy —2z)
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is an isomorphism (in the derived category of right g~!Zz-modules). Setting
L
A=M"* Ry Dx_y € Db(fil.@;ip) and B=%y_,z € Db(.@y),
this is a consequence of the “projection formula” in the following lemma. O
Lemma 17.10. If A € D*(f~'9y") and B € D*(%y), then
L L .

RfiARg, B — Rf*(A Rp-1gy f B)

is an tsomorphism.

Proof. This is a local question, and so we can assume that Y is affine. We can then
resolve B by a complex of free Zy-modules, and thereby reduce the problem to the
case where B is a free Yy-module. But the result is obvious in that case because
all the functors preserve direct sums. O

Exercises.
Ezercise 17.1. The de Rham complex of a left Zx-module M is defined as

DR(M) = [M 5 Qe Box M= = Q) Doy M],
with differentials given in local coordinates z1, ..., z, by the formula

n
dla®@m) =da®@m + (—1)ds Z dz; N a® (0;m).
j=1

Here n = dim X. Recall from Lecture 12 that 2% ®4, M = wx ®¢, M has the

structure of a right Zx-module. Show that the Spencer complex of 7% ®g, M is
isomorphic to the de Rham complex of M.

Exzercise 17.2. Continuing from the previous exercise, show that
H"DR(M)={sel(X,M) |ds=--=0,s=0}
is the space of global sections of M that are annihilated by all vector fields.



89

LECTURE 18: APRIL 15

Direct images and coherence. Last time, we defined the direct image functor
(for right Z-modules) as the composition

L
Db(@){){p) RDx 5y Db(filg}ofp) Rf.«

w

where f: X — Y is any morphism between nonsingular algebraic varieties. We also
showed that g4 o f4 = (go f)+.

Today, our first task is to prove that direct images preserve quasi-coherence and,
in the case when f is proper, coherence. The definition of the derived category
D*(2%?) did not include any quasi-coherence assumptions. We are going to denote
by Dgc(@;’(p ) the full subcategory of D*(2y"), consisting of those complexes of right
P x-modules whose cohomology sheaves are quasi-coherent as 0x-modules. Recall
that we included the condition of quasi-coherence into our definition of algebraic
Z-modules in Lecture 10. Similarly, we denote by D , (2y) the full subcategory
of Db(_@)o(p ), consisting of those complexes of right Zx-modules whose cohomology
sheaves are coherent Zx-modules (and therefore quasi-coherent &x-modules). This
category is of course contained in D} (2).

D¥(7y")

Theorem 18.1. Let f: X — Y be a morphism between nonsingular algebraic
varieties. Then the functor fy takes Db (%) into D}.(2yF). When f is proper,
it also takes D, (2%) into D%, (247).

coh

We are going to deduce this from the analogous result for &x-modules. Recall
that if # is a quasi-coherent @x-module, then the higher direct image sheaves
RI f,.7 are again quasi-coherent @y-modules. Moreover, if .% is coherent and f is
a proper morphism, then each R’ f,.% is a coherent @y-module. The first result
is fairly elementary; the second one, due to Grauert in the analytic setting and to
Grothendieck in the algebraic setting, takes more work to prove.

To go from Ox-modules to Zx-modules, we work with “induced Z-modules”.
The construction is straightforward. Given any ¢x-module .#, the tensor product

F Qo Dx

is a right Zx-module in the obvious way. Right Zx-modules of this form are called
induced Z-modules. If ¥ is quasi-coherent, then ¥ ®¢, Zx is quasi-coherent as
an Ox-module; if .# is coherent, then .# ®¢, Px is a coherent Zx-module.

Lemma 18.2. Every (quasi)coherent Px-module admits a resolution by (quasi)-
coherent induced Px-modules. The same thing is true for complezes.

Proof. The point is that every (quasi)coherent Zx-module is the quotient of a
(quasi)coherent induced Zx-module. Indeed, if M is a right Zx-module that is
quasi-coherent over Ox, then we can use the obvious surjection

M®p, Ix — M.

If M is a coherent right Zx-module, we showed in Lecture 11 that there exists a
coherent Ox-module % C M with the property that .% - Zx = M. This says that

F Qox Ix - M

is surjective. The kernel of the morphism is again either quasi-coherent or coherent,
and so we can iterate the construction to produce the desired resolution

= F Qe Dx = Fo Qex Ix - M — 0.
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Keep in mind that the morphisms % ® g, Ix — Fr—1 Qo Px are typically not
induced by morphisms of &x-modules %, — Fp_1.

To deduce the result for complexes, one can then apply the usual Cartan-
Eilenberg construction. O

Direct images of induced Z-modules are very easy to compute. Indeed,

L L L
(F ®ox Ix) Qax Dx—y = F Qox Dxoy =F Qox (Ox Qp-16y [ Dy)
L
2T Qp10y [ Dy =F Qp-10y [ Dy,

due to the fact that Py is locally free, hence flat, over &y . Now the usual projection
formula (for €y-modules) gives

er(egf Ko @)() = Rf. (ﬁ' Qf-10y f_lgy) = Rf*y &K oy Dy .

All cohomology modules of this complex are therefore again induced Zy-modules
of the form R f,.# ®4, Py . They are quasi-coherent as Oy-modules if .Z is quasi-
coherent; and coherent as Zy-modules if % is coherent and f is proper. This proves
the theorem for all induced Z-modules.

Proof of Theorem 18.1. Let us first prove the assertion about quasi-coherence. By
the lemma, every object in Dgc (2% is isomorphic to a complex of of quasi-coherent
induced Zx-modules, of the form

..._>§'p®6,x@X%yp"rl@ﬁx@x_)...

let me stress again that the differentials in this complex are Zx-linear, but not
induced by @x-linear morphisms from .Z? to .ZP+!. If we apply the direct image
functor f; to this complex, and use our calculation for induced Z-modules from
above, we obtain a spectral sequence with

E;f’q = (qu*gzp) Koy Dy

that converges to the cohomology sheaves of f (ﬁ *®ey @X). Each EP? is quasi-
coherent as an Oy-module, and so the cohomology sheaves of the direct image are
also quasi-coherent as Oy-modules.

The proof for coherence is similar. By the lemma, every object in D(C’oh(@;’(p )
is isomorphic to a complex of coherent induced Zx-modules; this means that we
can choose all the .#P as coherent & x-modules. If f: X — Y is proper, then each
RIf,ZP is a coherent Oy-module. But then each EY"? is a coherent Zy-module,
and the spectral sequence implies that the cohomology sheaves of the direct image
are also coherent Zy-modules. [l

Example 18.3. Suppose that X is proper over Speck. Then Theorem 18.1 says
in particular that the hypercohomology groups of Sp(M) are finite-dimensional k-
vector spaces for every coherent right Zx-module M. In particular, the algebraic de
Rham cohomology groups H?,(X/k) are finite-dimensional whenever X is proper
over Speck. (We will see later that this is actually true without properness!)

Ezample 18.4. Our calculation for induced Z-modules shows that the direct image
of a coherent Zx-module by a non-proper morphism is usually not coherent. For
example, if f: X — Speck is not proper, the j-th cohomology module of f, Zx is
isomorphic to H’ (X, Ox), which is typically not finite-dimensional over k.
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Preservation of holonomicity. The direct and inverse image functors
f: Dgo(2%) = Deo(2y") and Lf*: Dgo(Py) — Dy (Zx)

only preserve coherence with some extra assumptions. For Lf*, we need the non-
characteristic property; for f, we need properness. A small miracle of the theory
is that both functors nevertheless preserve the most interesting class of Z-modules,
namely the holonomic ones. We have already seen one special case of this phe-
nomenon back in Lecture 3, namely that the localization k[z1,...,z,,p~!] along a
nonzero polynomial P € k[z1,...,%,] is holonomic over the Weyl algebra A, (k).
By analogy with quasi-coherent and coherent Z-modules, we use the notation
D! (Zx) for the full subcategory of D? , (Zx), whose objects are those complexes
of Zx-modules whose cohomology sheaves are holonomic. This category contains
all bounded complexes of holonomic Zx-modules, of course, but also injective or
flat resolutions of such complexes; we need to work in this larger category in order
to define f; or Lf*. Fortunately, Beilinson has shown that the inclusion functor

Db (MOdh(.@)()) — Dg(-@X)

is an equivalence of categories. This means concretely that every complex of
P x-modules with holonomic cohomology sheaves is isomorphic, in DZ(@X), to
a bounded complex of holonomic Zx-modules.

Theorem 18.5. Let f: X — Y be a morphism of nonsingular algebraic varieties.
(a) The functor fi takes D2(2) into DL(257).
(b) The functor Lf* takes Db (Py) into D2 (Zx).

Let me remind you about the case of closed embeddings.

Lemma 18.6. Leti: X — Y be a closed embedding, and M® € Db, (2). Then
one has M® € D2(2) if and only if io M® € D2(Dy7).

Proof. The naive direct image functor iy M = i, (/\/l Ry .@X_>y) is exact, and so
HE(iy M®) =2 iy (HEM®).

This reduces the problem to the case of a single coherent right Zx-module M. We
showed back in Lecture 13 that i, M is a coherent right Zy-module, and that

dim Ch(iy M) = dim Ch(M) 4+ dim Y — dim X.
It follows that M is holonomic if and only if ¢y M is holonomic. O

The proof of Theorem 18.5 is done in two stages. First, there are a certain
number of (formal) steps that reduce the general problem to the case of modules
over the Weyl algebra. Second, one uses the Bernstein filtration to do the required
work for modules over the Weyl algebra. Let me go over the reduction steps rather
quickly, without paying too much attention to the details.

The crucial observation is that (a) follows from the special case of a coordinate
projection AZ'H — A7. Let me explain how this works. First, we observe that it is
enough to consider a single holonomic Zx-module M. The reason is that, as with
any complex, one has a convergent spectral sequence

Bt = HP f (HIM®) = HPVI M,
and as long as each HPf(HIM?®) is holonomic, it follows that all cohomology
sheaves of f; M?* are holonomic. Second, we can factor any morphism as
X Yy Xxy 2y
f



92

into a closed embedding followed by a projection. Since we already know that
(i5)+M is again holonomic, we only need to consider the case where X = Z x Y
and f: Z xY — Y is the second projection.

Third, we can further reduce the problem to the case where X = 7 xY and Y
are both affine. Since the statement is local on Y, we can obviously assume that Y’
is affine. Choose an affine open covering Z = Z; U --- U Z,,, such that each Z \ Z;
is a nonsingular divisor in Z. Set U; = Z; x Y, and for each subset o C {1,...,n},
denote the resulting open embedding by

joi Ua = JU;j = X.
JEa
For any sheaf of &'x-modules, and in particular for our holonomic right Zx-module
M, we have the Cech resolution

0—Co(M)—=C*(M)—---,

whose terms are given by

M) = @ () (M, ).

la|=k
Since j, is an affine morphism, we have

(Ga)s (M|, ) = Rlja)« (M|, ) = (a)+ (M]y, ),

and so the Cech complex is actually a resolution of M by right Zx-modules. It is
therefore enough to show that each

f+(ja)+(M|U(,) = (foja)+(M|Ua)

is a complex of Zy-modules with holonomic cohomology sheaves. Since the restric-
tion of M to the affine open subset U, is holonomic, this reduces the problem to
the case of a morphism between nonsingular affine varieties.

Fourth, the result for coordinate projections on affine space implies the result
for all morphisms f: X — Y between nonsingular affine varieties. To see this, let
us choose closed embeddings ix: X < A™ and iy: Y < A". We then have a
commutative diagram

x—1 vy
[

X xY iy

jix X1y
A™ x A" P2 AM
where all vertical morphisms are closed embeddings. The lemma says that f, M
belongs to D! (2y?) if and only if (iy o f)+ M belongs to D} (2,%). Since we already
know that the closed embeddings i and ix X 7y preserve holonomicity, we only
have to consider what happens for ps: A™ x A” — A™. This can be factored as a
composition of m coordinate projections, and so we have successfully reduced the
proof of (a) to the special case of a coordinate projection A"+l — A",

The second observation is that the statement for the inverse image functor in
(b) is a formal consequence of (a). As before, we only have to consider a single
holonomic left Zy-module M, and since we know that pulling back along a smooth
morphism preserves holonomicity, the general problem reduces to the case of closed
embeddings. Locally, we can factor any closed embedding as a composition of
closed embeddings of codimension one, and so we only have to prove that if M is a
holonomic left Zy-module, and i: X — Y a closed embedding of codimension one,
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then Li*M € D} (Zx). Let j: U — Y be the open embedding of the complement
U =Y\ X. Ignoring the difference between left and right Z-modules,
is again a Zy-module, due to the fact that j is affine. Provided that we know (a)
for the open embedding j: U < Y, it follows that j*(/\/l’U) is affine. We will show
next time that we have an exact sequence of Zy-modules

0= iy (L7 M) = M = j.(M]|,) =iy (L% M) = 0,

where I am again ignoring the difference between left and right Z-modules. It
follows that each iy (L~7i* M) is a holonomic Zy-module, and by the case of closed
embeddings, this implies that L=7i* M is a holonomic Zx-module. This is what
we wanted to show.

Excercises.

Exercise 18.1. Morihiko Saito observed that every right Zx-module M has a canon-
ical resolution by induced Zx-modules. Recall that the Spencer complex Sp(Zx)
is a resolution of Ox by locally free left Zx-modules.

(a) Show that each term of the complex
Sp(M) ®oy ZIx

has the structure of a right Zx-module. (Hint: See Lecture 12.)
(b) Construct an isomorphism of right Zx-modules

M@0y (7x @0y /k\ﬂx) = (M@0, /k\ﬂx) Rox Px

to show that each term in above complex is an induced Zx-module.
(c¢) Show that the above complex is a resolution of M by induced Zx-modules.

Ezxercise 18.2. Let . and ¢ be two Ox-modules. We have a morphism
Homg, (ﬂ ®eyx Dx,9 Qoy @)() — Homeg (ﬂ,g Koy @)() — Homg (F,9),

obtained by composing with 4 ®g, Zx = 4, u® P — u - P(1). Show that this
morphism is injective. The image is called the space of differential morphisms from
F t0 9.
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LECTURE 19: APRIL 17

Proof of Theorem 18.5. Today, we are going to finish the proof of Theorem 18.5.
The statement is that, for any morphism f: X — Y between nonsingular algebraic
varieties, one has:

(a) f: DY(2F) — DY(25F)
(b) Lf*: D}(%y) — D;(Zx)
Last time, I sketched the argument that reduces both statements to the special case

of a coordinate projection p: A®Tt — A™. Let me first fill in the proof of a crucial
lemma that we used.

Lemma 19.1. Let i: X — Y be a closed embedding of codimension one, and
j:U=Y\ X <Y the complementary open embedding. Then for any holonomic
right Py -module M, one has an exact sequence

0= i (L7 M) = M = (M|,,) = iy (L% M) — 0.

We had defined the pullback functor for left Z-modules. To compute Li* M,
one first converts M into a left Zy-module by Homg, (2%, M), then applies the
pullback functor Li*, and then converts the resulting left Zx-module back into a
right Zx-module by tensoring with Z%.

Proof. We are only going to prove the local version, since that is all that we need
for the proof of Theorem 18.5. Suppose then that Y is affine, with coordinates
YosY1,---,Yn, and that X is the closed subscheme defined by yo = 0. Set A =
I'(Y,0y) and M = I'(Y, M), which is a holonomic right D(A)-module. After
carrying out the left-right conversions, Li* M corresponds to the complex of D(B)-
modules

(19.2) ML M
placed in degrees —1 and 0; here B = I'(X, Ox). On the other hand, j is affine,
and 5o j, (M|,) = j.(M],) is the localization
M @a Alyg ']
We therefore have to analyze the kernel and cokernel of the natural morphism
o: M — M®a Alyy'].

Let us first consider ker . It consists of all m € M such that myf = 0 for some
¢ > 1. This submodule is supported on X, and by Kashiwara’s equivalence, it is
the direct image of a D(B)-module My. Here

MO:{m€M|my0:0}

which is the D(B)-module corresponding to L~1i* M by (19.2). Next, we consider
coker . It consists of all finite sums of the form

d_mi®up,
j=0

with m; € M, modulo the image of M. This is again the direct image of a D(B)-
module My, by Kashiwara’s equivalence, where M; is the submodule annihilated
by yg. A short computation gives

M, = {m0®1—|—m1®y51 | mg, my € M}/M%M/Myo,
and again by (19.2), this is the D(B)-module corresponding to L%* M. O
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In fact, the lemma generalizes to arbitrary closed embeddings i: X — Y. If we
again let j: U < Y be the open embedding of the complement U = Y \ X, then
we have a distinguished triangle (= short exact sequence)

RHx(F) = .F = Rj.(Z|,) = RHx(F)[1],

for every sheaf of Oy-modules .%, where where Hx is the functor of “sections
with support in X”. Concretely, RH x (%) is computed by choosing an injective
resolution of % and applying the functor Hx to each sheaf in the resolution. When
M is a right Zy-module, we have Rj*(./\/l|U) = j+(/\/l|U), and the distinguished
triangle becomes

RHx (M) = M — j (M|, )RHx (M)[1].

Then the fancy version of the lemma is that RH x (M) is isomorphic to i, Ri* M,
up to a shift by the codimension dimY — dim X.

Coordinate projections. To prove Theorem 18.5, it remains to treat the case of
a coordinate projection p: A"! — A™. We need to show that if M is a holonomic
right Zyn+1-module, then all cohomology sheaves of p, M are holonomic ZDyn-
modules. This brings us back to modules over the Weyl algebra. Let us first look
at a concrete example.

Example 19.3. Consider the special case p: A’ — Speck. The pushforward of a
right A;-module M is computed by the Spencer complex

M —25 M
and the theorem is claiming that when M is holonomic, both the kernel and cokernel
of multiplication by 0 are finite-dimensional k-vector spaces. One approach would
be to take a good filtration Fe M and pass to the associated graded k[z, d]-module
gr” M. Tts support is one-dimensional, but unfortunately, the kernel and cokernel
of multiplication by d can fail to be finite-dimensional. (This happens for example
with M = k[z].)
Let me show you an ad-hoc argument for why

ker 0 = {mEM ’ m6:0}
has finite dimension over k. Consider the A;-submodule
ker O - A1 Q M

generated by ker d. Since M is finitely generated over A;, this submodule is also
finitely generated. The commutation relation [0, z] = 1 implies that, for any m €
kerd and any P € Aj, the element m - P equals m - f(x) for some polynomial
f(x) € k[z]; and if this element is nonzero, then by applying a suitable power of
d, one can recover m. Since ker 0 - A; is finitely generated over Aj, it follows that
ker @ must be finitely generated over k, hence finite-dimensional.

Bernstein’s idea for the general case is to use an algebraic analogue of the Fourier
transform. Recall that the usual Fourier transform (on functions) interchanges
partial derivatives and multiplication by coordinate functions. We can imitate this
algebraically by the following definition. Let M be a right A,-module. Its Fourier
transform is a left A,-module M, defined as follows: as a k-vector space, one has
M = M, but with A,-action defined by

zj-m=md; and 0;-m = mz;.

To show that this gives M the structure of a left A,-module, one has to check the
relation [0;, x;] = d; ;. This holds because

[8,‘, ﬂjj} sm = c’?i(xjm) - xj(aim) = majazi — mxi(’)j = m[ajwi] = 5i,jm.
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Its usefulness for studying direct images comes from the following lemma.
Lemma 19.4. Consider a coordinate projection and its dual closed embedding
pr AP S AT p(xo,xn, .. 2n) = (21,0, 2),
it A" A" iz, x) = (0,20, .., Tp).

If M is a holonomic right A,1-module, then

Hip M =~ LJi* M
for every j € Z.
Proof. By pretty much the same calculation that we did in Lecture 17, the direct

image p4 M is computed by the relative version of the Spencer complex; in the case
at hand, this is the complex of right A,,-modules

M -2 M
Its cohomology lives in degree —1 and O:
ker(0g: M — M) if j =—1,
Hop, M = { coker(9p: M — M) if j =0,
0 otherwise.

The right A,-module structure on H’p, M is induced by the right A, ,;-module
structure on M in the obvious way. On the other hand, the inverse image Li* M is
computed by the complex of left A,,-modules

Its cohomology also lives in degree —1 and 0:
ker(zo: M — M) if j =—1,
LIi* M = { coker(xo: M — M) if j =0,
0 otherwise.

Here the left A,-module structure on L7 i* M is induced by the left A, ;-module
structure on M in the obvious way. Since left multiplication by zg on M is, by
definition, the same as right multiplication by 9y on M, we have Hip, M = Lii* M
as k-vector spaces. The additional Fourier transform makes sure that the right
A,-module structures on both sides agree. O

The Fourier transform preserves holonomicity.

Lemma 19.5. A right A, -module M is holonomic if and only if its Fourier trans-
form M is holonomic as a left A,-module.

Proof. We use the characterization of holonomicity in terms of Hilbert polynomials
(from Lecture 3). Recall the definition of the Bernstein filtration

FP A, ={P =3 capatd” ’ ol + 181 < j }.

If Fo M is a good filtration, compatible with the Bernstein filtration, then for j > 0,
the function j — dimy F; M is a polynomial in j; the degree of this polynomial is
denoted by d(M). We showed in Lecture 6 that M is holonomic (in the sense that
its characteristic variety has dimension n) if and only if d(M) = n. The proof of
the lemma is now a triviality: simply observe that a good filtration Fy M is also a
good filtration F, M, due to the fact that the Bernstein filtration is symmetric in

Z1,...,Tn and Oy, ..., 0. It follows that d(M) = d(M), and so M is holonomic iff
M is holonomic. 0
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The last thing we need to check is that localization preserves holonomicity.
Lemma 19.6. Let M be a holonomic left A, +1-module. Then
N = k[xg, ..., o, x5 "] Oklzo,....an] M
is again a holonomic A, 41-module.

Proof. The argument is the same as in the proof of Proposition 3.10. We are going
to make use of the numerical criterion for holonomicity in Lemma 3.11: Suppose
that N is a left A, 11-module, and F,N a filtration compatible with the Bernstein
filtration on A, 1, such that

. & . .
dimy, FjN < T e+ 1)”

(n+1)
for some constants ¢,c; > 1. Then N is holonomic.
A suitable filtration on N is obtained by setting

F;N =257 @ Foj M

for every j > 0. It is easy to see that this filtration is compatible with the Bernstein
filtration. Let us check that it is exhaustive. Any element of N can be written in
the form ;7 ® m for some m € M and some j > 0. Since F, M is exhaustive, we
have m € F,M for some k > 0. Now

. (i
yoj®m:y0 (j+)®(y(l;m)a

and since y§m € Fy4,M, this element will belong to Fj,N as long as k+£ < 2(j+¢)
or, equivalently, as long as ¢ > k — 2j.

Let us count dimensions. Since M is holonomic, we have dimy F;M = x(j),
where x(t) € Q[t] is a polynomial of degree d(M) = n + 1. But then

dimy, F; N = dimy, Fo; M = x(2j)

is still a polynomial of degree n + 1; by the numerical criterion, this implies that N
is again holonomic. O

Let us now put everything together and prove Theorem 18.5. By the argument
from last time, it suffices to show that if M is a holonomic right A,,41-module, and

p: AmHL 5 AT P(To, X1y .y Tpn) = (T1,. -, Tp)

the coordinate projection, then H’p, M is holonomic for every j € Z. Let M be
the Fourier transform of M; by Lemma 19.5, this is a holonomic left A,,;-module.
According to Lemma 19.4, we have

Hip,. M =~ LJi*M,

and so again by Lemma 19.5, it will be enough to prove that each Lii*M is a
holonomic left A,-module. By Lemma 19.1, the two potentially nonzero modules
(for j = —1 and j = 0) are the kernel and cokernel of the morphism

M — k[:EOa CIE 7xnax61] ®k[x0

.....

The localization is again holonomic (by Lemma 19.6), and so the kernel and cokernel
are holonomic modules. This suffices to conclude the proof.
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Consequences. Let me point out a few interesting consequences of the result we
have just proved.

First, consider the case where f: X — Speck is the morphism to a point. Given
a holonomic right Zx-module M, the direct image f M is computed as the hyper-
cohomology of the Spencer complex Sp(M). Thus Theorem 18.5 is saying that the
hypercohomology of Sp(M) is a finite-dimensional k-vector space. In the special
case M = wy, this says that the algebraic de Rham cohomology groups H: Z r(X/k)
are finite-dimensional even if X is not proper. (When k = C, this also follows from
the isomorphism HéR(X/(C) =~ HJ(X,C) and some basic facts about the topology
of nonsingular algebraic varietes.) One way to think about this is to consider the
hypercohomology of Sp(M) as being something like the cohomology of X with co-
efficients in M; the theorem is claiming that this cohomology is finite-dimensional
whenever M is holonomic.

Second, consider the case of a closed embedding i: Z < X. Here, the statement
is that Li* M is holonomic for every holonomic left Zx-module M, even if M does
not have the non-characteristic property. In particular, we can pull back along

ig: Speck — X

for any closed point z € X(k), and for any holonomic %y-module M, or any
complex in DZ(@y), the inverse image Li} M is holonomic on Speck, hence has
finite-dimensional cohomology. This is another important finiteness property of
holonomic modules. It is obvious on the open subset where M is a vector bundle
with integrable connection, but not at other points of Y.

Note. In fact, one can show that when k is algebraically closed, holonomic com-
plexes are characterized by this finiteness property: an object M® € ch’,oh(@X)
belongs to the subcategory D} (Zx) if, and only if, for every closed point x € X (k),
the complex Li}M® has finite-dimensional cohomology. We don’t have time to

prove this, unfortunately.
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LECTURE 20: APRIL 22

Fuchsian differential equations. Our next topic is regularity. Let me try to
motivate the definition by talking about another classical topic, namely Fuchsian
differential equations. We work over the complex numbers, and take X to be a
small open disk containing the origin in C. Consider a differential equation of the
form Pu = 0, where

P =ao(2)0™ + a1 ()0™ + -+ am ()

is a differential operator of order m with holomorphic coefficients a;(x). If ag(0) #
0, then the equation has m linearly independent holomorphic solutions, determined
by the initial conditions u(0),u/(0),...,u™~1(0). Another way to say this is that
the Px-module Zx/%x P is isomorphic to ﬁ;‘?m, where the isomorphism takes a
vector (ug, ..., Um_1) to the image of ug +u10 + - -+ + uy,_10™ L. Here Px is the
sheaf of linear differential operators with holomorphic coefficients.

If ap(0) = 0, then the story becomes more complicated.

Example 20.1. Suppose that P = 20 — « for some o € C. Here the solution

u =2 = e*°87% is really only defined on sectors, because of the term log .
Ezample 20.2. Suppose that P = 229 — 1. Here the solution u = e~/

valued, but has an essential singularity at the origin. This is bad.

is single-

We need some terminology to talk about the solutions to the equation Pu = 0.
Let us denote by R the ring of holomorphic functions on X, and by K its fraction
field; elements of K are meromorphic functions. Further, we use R to denote the
ring of multi-valued holomorphic functions on X \{0}; by this we mean holomorphic
functions on the universal covering space. Using the exponential function

C—C*, t— et

the universal covering space of a disk of radius r minus the origin is the half-plane
Imt > 5-log(1/r). This means that R is the ring of holomorphic functions on a
suitable half-plane. For example, logz = 2mit and z® = 2™t belong to R.

We want to avoid essential singularities; this can be done by controlling the rate
of growth of solutions near the origin. We say that a multi-valued holomorphic
function f € R has moderate growth near the origin if on any sector

Sz{xE(C‘O<|x|<5and90§argx§91},

there is an integer k£ > 0 and a constant C' > 0 such that

C
[f(2)] < Tl

for every € S. Let R™? C R be the subring of multi-valued functions with
moderate growth near the origin. The functions z® and (log z)* belong to R™°? for
every « € C and ¢ € N.

Ezxample 20.3. Suppose that f is a single-valued holomorphic function on the punc-
tured disk X \ {0}. Then f has moderate growth near the origin iff f is meromor-
phic; the reason is that z* f extends to a holomorphic function on X by Riemann’s
extension theorem. Thus moderate growth prevents essential singularities.

Let me now remind you of the classical theorem by Fuchs. After shrinking X,
if necessary, we can assume that the origin is the only zero of ag(z); we can then
divide through by ag(x) to get a differential operator with meromorphic coefficients.

Theorem 20.4 (Fuchs). Let P = 9™ + ay(2)0™ ! + -+ + a,,(z) be a differential
operator of order m with a;(x) € K. The following two conditions are equivalent:
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(a) All multi-valued solutions u € R of the differential equation Pu = 0 have
moderate growth near the origin.

(b) For j =1,...,n, the function a;j(z) has a pole of order at most j at the
origin.

If the conditions in the theorem are satisfied, the differential equation Pu = 0
is said to be regular at the origin. There is another way to formulate the algebraic
condition in (b). Using identity 2797 = (29)(z0 —1)--- (20 — j + 1), we get

2™P = (20)™ + by (z)(x0)™ L + - + by (2),
and (b) becomes the condition that by(x),- - , b, (x) are holomorphic functions.

Systems of differential equations and regularity. We will prove Theorem 20.4
by turning the problem into a system of first-order differential equations. If we set
UL = U, Uy = OU, ..., Uy = 0™ lu, then Pu = 0 is of course equivalent to the
system of m first-order equations

aul = U2

BUQ = Us

8umfl = Um
O, = —(amur + - + a1ty,)

More generally, let us consider a first-order system of the form
m
8ui=Zai,juj, i:l,...,m,
j=1

with m unknown functions u,,..., 4, and meromorphic coefficients a; ; € K. We
can also write this in the form QU = AU, where U is the column vector with entries
U, ..., Um, and A is an m X m-matrix whose entries are meromorphic functions.

Ezample 20.5. If condition (b) is satisfied, we can instead look at the m functions
V1 = U, Vg = XU, . .., Uy, = (20)™ Lu; the equation Pu = 0 is then also equivalent
to the following system:

zOV] = Vg

10v9 = U3

xavm—l = Um
2OV = —(bppv1 + -+ + biuy,)

In matrix notation, this becomes 0V = BV, where the entries of the m x m-matrix
B are now holomorphic functions.

Now let us describe the multi-valued solutions of such a system oU = AU. We
can pull the system back to the universal covering space of X\ {0}, which amounts to
setting x = e2™*. This gives us a system of first-order equations with holomorphic
coefficients on a half-space; by Cauchy’s theorem, it has m linearly independent
holomorphic solutions @!,...,4™; here each @’ is a column vector with entries in
R. Let us denote by S’(t) the m x m-matrix whose columns are @',...,%™. Since
the coefficients of the system are invariant under the substitution ¢ — ¢ + 1, the
columns of S(t + 1) form another basis for the vector space of solutions, and so

St+1) = 3¢)C
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for a certain matrix C' € GL,(C). This matrix is called the monodromy matric
of the system, because it describes how the multi-valued solutions to the system
transform when going around the origin.

Choose a matrix I' with the property that C' = €2™I'; such a matrix always
exists, and is unique if we require that the eigenvalues of I" have their real part in a
fixed interval of unit lengt, such as [0,1). The matrix S(t)e~ 27T
under the substitution ¢t — ¢ 4+ 1, and so

S«(t)e—eritF — 2(627”'1&)’

where X(x) is an m x m-matrix whose entries are holomorphic functions on X \ {0}.
Replacing 27it by log x, we see that the columns of the matrix

S(z) = Z(m)elog”’F

form a basis for the space of multi-valued solutions to the system oU = AU.

Changing the basis in the vector space of solutions amounts to conjugating C' and
I’ by the change-of-basis matrix. Since we are working over C, we can therefore
choose our basis in such a way that I' is in Jordan canonical form. Thus I is
block-diagonal, with blocks of the type

is now invariant

a 1
a 1

a 1
«

which means that e'°8*T" is block-diagonal, with blocks of the type

1 L1 (JT) LQ(Z‘) R Lm_l(JT)
1 Ll(z) e LnL—Z(x)
1. Ll-(l‘)
1

where now L;(z) = 7(logz)’. This gives a fairly concrete description of what
multi-valued solutions look like.

Example 20.6. A corollary of the discussion so far is that any m-th order differen-
tial equation of the form Pu = 0 has a solution of the form z*h(z), where h(x)
is holomorphic outside the origin, and o € C has the property that e2™® is an
eigenvalue of the monodromy matrix C.

Now our goal is to prove a version of Theorem 20.4 for systems.
Definition 20.7. We say that two systems OU = AU and 0V = BV are equivalent
if there is a matrix M(x) € GL,,(K) with meromorphic entries such that
B=0M -M"'+MAM™".
This means that U solves the first system iff V' = MU solves the second one.

Here is the analogue of Theorem 20.4 for systems.

Theorem 20.8. Let A be an m X m-matriz with entries in K. The following three
conditions are equivalent:
(a) All multi-valued solutions of OU = AU have moderate growth near the
origin, meaning that the individual components of U do.
(b) The system OU = AU is equivalent to a system of the form OV = 2~ 'T'V,
where I' is an m X m-matrix with constant entries.
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(¢c) The system OU = AU is equivalent to a system of the form 0V =z~ 1BV,
where B is an m X m-matrix with holomorphic entries.

A system satisfying these equivalent conditions is called regular at the origin.

Proof. Let us show that (a) implies (b). We already know that a fundamental
system of solutions is of the form S(z) = %(x)e!°8*T. By assumption, the entries
of the matrix S(z) have moderate growth near the origin. Since powers of logx
have moderate growth, it follows that the entries of

X(z) = S(m)e‘logxr

also have moderate growth near the origin. The entries of ¥(x) are therefore mero-
morphic functions, and so ¥(z) € GL,,(K). After replacing U by V = ¥~ !(2)U,
we obtain the equivalent system

1

oV =TV,

x

which is what we wanted to show.
It is clear that (b) implies (c), and so it remains to prove that (c) implies (a).

Let V' be any multi-valued solution of the system x0V = BV. Here V is a column

vector with entries vy,...,v,, € R. To prove that vy,...,v,, € ]:'im"d, we need to
understand their asymptotic behavior on any sector

S:{xG(C!O<|x|<5and00§arg(x)§91}.

Let us set [|[V]|2 = |v1|2 + -+ + |vm|? and z = re?. Since the entries of B are
holomorphic, they are bounded on S. A short calculation using 0V = = BV gives

m

9 1
VIS o ) 20
or 2V ; J

where C' > 0 is an upper bound for the matrix norm of B on the sector S. After
integrating over r, this becomes

9vi| o
ar | —

Vel < Vo) + [ Sivise)as
for any 0 < 7 < rg < e. Now we apply Gronwall’s inequality to conclude that
Vol < Voo exp [ s = vy (2)°
This means exactly that all entries of V' have moderate growth at the origin. [

Note. Gronwall’s inequality says that an integral inequality of the form
r0<c [ oo
for a real function f(t) implies that O
f(t) < Cexp /ttg(s) ds.
0

We are now in a position to prove the theorem of Fuchs from the beginning.
Proof of Theorem 20./4. Consider a differential operator
P=0"+ai(x)0" " + -+ am(x),

with a; € K. Suppose that each a; has a pole of order at most j at the origin. As
we remarked before, we can rewrite ™ P = (£0)™ + by (2)(20)™ 1 + -+ + by (1),
with b; € R holomorphic. Setting vy = u,vy = 2u, ..., v, = (zd)™ u, it follows
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that the column vector V = (v1, ..., vy,) solves a system of the form OV = 2~!BV.
By Theorem 20.8, the multi-valued functions v, ..., v, have moderate growth near
the origin, and so in particular u € Rmod
Let us prove the converse. Suppose that all multi-valued solutions of Pu = 0
have moderate growth near the origin. If we write the corresponding system in the
form QU = AU, then we have
t"™ fart™ 4+ a,, = det(tid —A),

and so we can recover the coefficients of P from the characteristic polynomial of the
matrix A. It is not hard to see that all solutions of QU = AU also have moderate
growth near the origin. By Theorem 20.8, our system is equivalent to a system
of the form 0V = 27 !'T'V, where I' is an m x m-matrix with constant entries.
Consequently, there exists a matrix M € GL,,(K) such that

1
A=0M-M~'4+-MI'M',
x
After clearing denominators, we get M = 2/ N, with N € GL,,(R). Then
1
A= f(Nerl + Eid) FON-NY,
x

and if we now compute the characteristic polynomial, we find that the j-th coeffi-
cient a; has a pole of order at most j at = 0 (being equal to a sum of j x j-minors
of the matrix on the right-hand side). O

The theorem we have just proved has another interesting consequence.

Corollary 20.9. Two reqular systems are equivalent if and only if their monodromy
matrices are conjugate.

Proof. The proof of Theorem 20.8 shows that any regular system is equivalent to
a system of the form

1

oU = =T'U,

x
where I' is an m X m-matrix with constant entries, such that the monodromy matrix
of the system is e?™ T, If two such systems have conjugate monodromy matrices,
then they are easily seen to be equivalent (via a constant matrix M.) To prove the
converse, it is of course enough to consider systems of this special type. Suppose

that two such systems with matrices I' and I” are equivalent. This means that
there exists a matrix M € GL,,(K) such that

1 1
TV =0M -M'+ MM,
X X

Write M = 2N, with N € GL,,(R). After clearing denominators, we get
I"=2ON -N'+ N +¢id)N*,
and since I' and I are constant, we can now set z = 0 to obtain
I =N +¢id) N~
Since €27 = 1, this implies that ¢2™ 1" = Ne2m T N—L, O
Exercises.

Exercise 20.1. Show directly that if two systems OU = AU and 0V = BV are
equivalent, then their monodromy matrices are conjugate to each other.
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LECTURE 21: APRIL 24

Regularity for holonomic Z-modules. Last time, we considered differential
equations of the form Pu = 0, where P = ag(z)0™ + a1 ()™ 1 + - + a;(z) is a
differential operator of order m with holomorphic coefficients, such that ag(0) = 0.
We showed that all multi-valued solutions have moderate growth near the origin iff

(21.1) 2™ P = (20)™ + by (x)(x0)™ L + - + by (2),

with by(x), ..., by, (z) holomorphic. In that case, one says that the equation Pu =
0 has a regular singularity at the origin. Let us now reformulate this algebraic
condition in terms of the left Zx-module M = Zx/Px P. For the time being, Zx
again means the sheaf of linear differential operators with holomorphic coefficients.

We first observe that the characteristic variety of M is defined by the principal
symbol ., (P) = ag(2z)&™, where x and £ are the natural coordinates on the cotan-
gent bundle. Since ag(0) = 0, it follows that Ch(M) is the subset defined by the
equation € = 0. This means that if Fe. M is any good filtration of M, for example
the one induced by the order filtration on Zyx, then some power of £ annihilates
grf’ M. Let me now show you how (21.1) can be used to construct a particular
good filtration with better properties.

Suppose that we have (21.1) with by(x),..., by, () holomorphic. Then we can
define a good filtration Fy M by setting

m—1
M = Z Fr.9x - ($6)j + 9xP.

§=0
It is not hard to see that this is indeed a good filtration; moreover,

for every k € N, by virtue of (21.1). This means that grf’ M is annihilated by the
first power of z€.

Kashiwara and Kawai introduced the notion of holonomic Z-modules with reg-
ular singularities as a generalization of this case. From now on, we let X be a
nonsingular algebraic variety (over a field k of characteristic zero). For a coherent
left Zx-module M, we denote by Zcpag) € Or+x the ideal sheaf of the character-
istic variety. Recall that

ICh(M) = \/Al’ll’lng@X ng./\/l,

where Fe M is any good filtration. It follows that there is some (usually large)
integer N such that Iévh(/\/t) -grf M = 0. Roughly speaking, we say that M is
regular if we can find a good filtration for which N = 1. For technical reasons, we
have to be slightly more careful. Suppose first that X is proper over Speck.

Definition 21.2. Let X be a nonsingular algebraic variety that is proper over
Spec k. A holonomic left Zx-module M is called regular (in the sense of Kashiwara
and Kawai) if it admits a good filtration Fy M such that Zcp(ag ~grf M =0.

If P € F.9x is a differential operator of order k, then oy (P) belongs to Zcn )
if and only if oy (P) vanishes along the characteristic variety of M. The condition
in the definition is therefore saying that whenever P is a differential operator of
order k such that o (P) vanishes along Ch(M), then

P-FKMC Fipp M

for every j € Z.
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The original definition by Kashiwara and Kawai is only asking that a good
filtration with Zcy ) - grf” M = 0 should exist locally on X; but they show that
M then actually has a globally defined good filtration with this property.

One can prove (with a lot of work) that direct images by proper morphisms, and
inverse images by arbitrary morphisms, preserve regularity. If we used the above
definition to define regularity when X is not proper, we would run into the problem
that direct images by open embeddings do not necessarily preserve regularity.

Ezample 21.3. Consider the holonomic Aj-module M = A;/A;(0 — 1). The filtra-
tion induced by the order filtration certainly has the property in the definition (and
the differential equation du = u has a regular singularity at the origin). The prob-
lem occurs near the point at infinity. Indeed, if we consider the open embedding
A! < P! and look at M in the other affine chart with coordinate y = 2!, we get
9y —1=—y?9, — 1. The A;-module

Al/Al(yQGy + 1)

is not regular in the above sense; indeed, the differential equation y?9,u +u = 0
does not satisfy the condition in Theorem 20.4.

Ezample 21.4. A more well-behaved example is M = A;/A;(z0 — «), for a € k.
Since x0r = —y0,, this becomes A;/A;(ydy + ) in the chart at infinity, which
again has a regular singularity.

Since we would like direct images by arbitrary morphisms to preserve regularity,
we need to include open embeddings into the definition. Let X be a nonsingular
algebraic variety. Since k has characteristic zero, Nagata’s theorem implies that
we can always embed X into a nonsingular algebraic variety X that is proper over
Spec k. We can always arrange that X \ X is a divisor; using embedded resolution
of singularities, we can moreover achieve that this divisor only has normal crossing
singularities. In either case, j: X < X is an affine morphism, and so if M is a
holonomic left Zx-module, the direct image j4 M = j,.M is again a holonomic left
P5-module.

Definition 21.5. Let X be a nonsingular algebraic variety. A holonomic left Zx-
module M is called regular (in the sense of Kashiwara and Kawai) if, for any affine
open embedding j: X <+ X into a nonsingular algebraic variety X that is proper
over Speck, the direct image j. M is regular on X.

In fact, it suffices to check this for a single embedding j: X <+ X. Here is
why. Given any two affine open embeddings j: X < X and j': X < X', one can
take the closure of the image of (j,5'): X — X x X', and resolve the resulting
singularities to obtain a third embedding j”: X < X’ such that j = f o j” and
j' = f" o §" for two proper morphisms f: X” — X and f’: X" — X’. Since direct
images by proper morphisms preserve regularity, it follows that j; M is regular on
X if and only if j%, M is regular on X'.

Regularity and solutions. Over the complex numbers, one can also detect reg-
ularity by looking at solutions. The idea is that a left Zx-module M is regular
if and only if all formal power series solutions of M are convergent. Let us make
this precise. We now assume that X is a complex manifold of dimension n, and we
denote by Zx the sheaf of differential operators with holomorphic coefficients. If
M is a holonomic left Zx-module, we can define regularity as above by the (local)
existence of a good filtration such that Zcy ) -grf M = 0. Fix a point = € X, and
denote by Ox , the local ring of holomorphic functions that are defined in some
neighborhood of z, and by & x ¢ its completion with respect to the maximal ideal.
Concretely, 0 x,o are formal power series in local coordinates z1,...,z,, and the
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subring O'x , consists of those power series that actually converge in a neighorhood
of the given point. The stalk M, is a holonomic left Zx ,-module. In particular,
it is coherent, and so we can think of M, as being obtained from a system of linear
partial differential equations (by choosing a presentation of M,). As we discussed
in Lecture 1, the space of holomorphic solutions to the system can be described as

Homg, ,(My, Ox ).
Roughly speaking, regularity of M means that the natural morphism
HOIH@X'I (Mm ﬁX,I) — Hom@X,z (Mﬂm ﬁAX,CD)

is an isomorphism. In other words, every convergent power series solution actually
converges. This is not quite true, but it becomes true if we replace the naive solution
functor by its derived version

R Homg, , (M, ﬁX7ac)~

Concretetly, this is computed by choosing a resolution of M, by free Zx ,-modules
of finite rank, and then applying the functor Homg, ,(—, Ox ).

Theorem 21.6 (Kashiwara-Kawai). Let X be a complex manifold, and M a holo-
nomic left Dx-module. Then M is regular, in the sense that it (locally) admits a
good filtration Fe M with Zcyam) gt M =0, iff the morphism

R Homg, (M, Ox ) — RHomg, (M., Ox)
is an isomorphism in the derived category, for every point x € X.

We do not have the tools to prove this, so let me instead illustrate the result by
a simple example.

Ezample 21.7. On X = C, consider the left Z-module M = 2/2(x%0 — 1), which
is clearly not regular at the point x = 0. Let us see how the solution functor detects
this. A free resolution of M is given by

9 z20—1 9

and so we need to compare the cohomology of the two complexes

Vi z20—1 o

[ [

A~ 2871 A~
02" 0

The horizontal differential takes a (convergent) power series Y. - anz™ to the
(convergent) power series

(20— 1) Z apx’ = Z((n —Danp—1 — an)x"
n=0 n=0

where a_; = 0 (to simplify the notation). It is easy to see that the kernel of 229 —1
is trivial: from the relations (n — 1)a,—1 — a, = 0 for every n € N, one obtains
a0=a1=a2:~-~:O.

The behavior of the cokernel is more interesting. On 0, the operator 220 — 1 is
surjective. Indeed, if ZZOZO b,x™ is any formal power series, then the equation

i bpa" = (2°0 — 1) i anz"
n=0 n=0
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means that (n — 1)a,—1 — a, = by, and this can be solved recursively. But on &,
the operator is no longer surjective. For instance, if we try to solve

= (2?0 1) Z anz",

n=0
we obtain ag = 0, a; = —1, and a, = (n — 1)a,—1 for n > 2, from which it follows
that a, = —(n — 1)! for n > 1. The resulting series

— Z(n —Dl-a2”
n=1

clearly has radius of convergence equal to zero.
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LECTURE 22: APRIL 29

Today, I would like to discuss a very useful class of examples, namely regular
holonomic Z-modules of “normal crossing type”. We will show that these objects
have a simple combinatorial description in terms of vector spaces and certain linear
maps between them. We will describe them both on affine space and on projective
space. Before we can do that, we need to review a few basic results about Z-modules
on projective space.

Z-affine varieties. We have already seen that algebraic Z-modules on affine space
are the same thing as modules over the Weyl algebra A,, (k). Somewhat surprisingly,
a similar result holds on projective space. In fact, projective space turns out to be
Z-affine, in the following sense.

Definition 22.1. A nonsingular algebraic variety X is called Z-affine if it satisfies
the following two conditions:
(a) The global section functor
I'(X,-): Modg(Z2x) = Mod(I'(X, Zx))
is exact.

(b) If I'(X, M) = 0 for some M € Mod,.(Zx), then M = 0.

Here Mod,.(Zx ) denotes the category of left Zx-modules that are quasi-coherent
as Ox-modules; earlier on, we used the term “algebraic Z-modules”.

Ezxample 22.2. Any nonsingular affine variety is Z-affine; in fact, the global sections
functor is exact on all quasi-coherent &'x-modules in that case.

Suppose that M is a left Zx-module. The space of global sections I'(X, M) is
then naturally a left module over the ring of global differential operators I'(X, 2x).
On a Z-affine variety, this gives an equivalence of categories between algebraic
Z-modules and modules over the ring I'(X, Zx).

Theorem 22.3. Let X be a nonsingular algebraic variety that is D-affine.

(1) Any M € Mod,.(Zx) is generated by its global sections.

(2) The global sections functor

I'(X,—): Modg(Z2x) — Mod(I'(X, Zx))
is an equivalence of categories, with inverse Zx Ar(x,z5) (—)-
Proof. To simplify the notation, set R = T'(X,%2x). For (1), we need to show
that the natural morphism Zx ®p I'(X, M) — M is surjective. Let Mg C M be
the image. Since the global sections functor is exact by (a), we get a short exact
sequence
0—I'(X,Mp) = I'(X,M) = I'(X, M/ M) — 0.

The first two spaces are equal by construction, and so T'(X, M/M;) = 0, from
which it follows by (b) that My = M. This proves (1).

Now we turn to (2). The claim is that the inverse functor is given by sending a
left T'(X, Zx)-module V to the left Zx-module Zx ®r V. It suffices to show that
the two natural morphisms

QM Dx ®RF(X,M) — M
Bv:V =-T(X,Zx ®r V)
are isomorphisms for every M € Mod,.(Zx) and every V € Mod(R). Let us first

prove that Sy is an isomorphism. This is clearly the case when V is a direct sum
of copies of R. When V is an arbitrary R-module, we choose a presentation

R®! R®/ 1 0
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where T and J are two (possibly infinite) sets. We then get the following diagram
with exact rows:

REBI R@J Vv
= = [

X, 2%") — I(X,2%7) —— T(X,2x @r V) —— 0

The bottom row is exact because tensor product is right-exact, and because the
global sections functor is exact by condition (a) in the definition. Now the 5-lemma
implies that By is an isomorphism.

It remains to show that aaq is an isomorphism. We already know that a is
surjective; setting IC = ker anq, we have a short exact sequence of Zx-modules

0K —=92xrT(X,M) 5> M—=0

and therefore, again by (a), a short exact sequence of R-modules

0— T(X,K) > T(X, Z2x ®r T(X, M)) 5 T(X, M) 0.
Since we have already shown that 8 = Sp(x, a4 is an isomorphism, it follows that

I'(X,K) =0, and hence by (b) that K = 0. This concludes the proof of (2). O

As you would expect, coherent Zx-modules correspond to finitely generated
I'(X, Zx)-modules.

Corollary 22.4. If X is D-affine, then
F(X, 7) : MOdcoh(-@X) — Modfg (F(X, QX))

is also an equivalence of categories.
Proof. We keep the notation R =T'(X, Zx). If V is a finitely generated R-module,
then Zx @i V is clearly a coherent Zx-module. Thus we only have to show that
I'(X, M) is a finitely generated R-module whenever M € Mod ., (Zx). Concretely,
we have to find finitely many global sections that generate M as a Zx-module.

Since M is coherent, the restriction of M to any affine open subset U C X is

generated as a Py-module by finitely many sections in I'(U, M). The isomorphism
Px QrT(X, M) 2 M in the theorem gives

U, Zx) @ T(X,M) =2 T(U, M),

and so M|U is generated as a Yy-module by finitely many sections in I'(X, M).
Now X is quasi-compact, hence covered by finitely many affine open subsets; it
follows that finitely many global sections generate M as a Zx-module. In other
words, we have a surjective morphism

2" — M — 0.
Because the global sections functor is exact by (a), we get a surjection
R =1(X,2%") — I'(X, M) — 0,
and so I'(X, M) is a finitely generated R-module. O
We are now going to show that projective spaces are Z-affine.
Theorem 22.5. The projective space P} is Z-affine.

Proof. Let me begin with a preliminary discussion about global sections on P". On
A" we have coordinates zg,1,...,2,. Let X C A1 be the open complement
of the origin. Then P" is the quotient of X by the G,,-action that rescales the
coordinates. We denote the quotient morphism by 7: X — P7; the open embedding
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by j: X < A™!: and the closed embedding of the origin by i: Speck — A"t!.
Here are the three morphisms in diagram form:

X Ly pntl Spec k

y

P’n

The Euler vector field 6 = 2¢Oy +x101+- - - +x,0, is tangent to the fibers of 7. Now
suppose that M is a left Zpn-module. Then G,,, acts on the space of global sections
of ™M = Ox ®r-14,, T *M, and this gives us a direct sum decomposition

D(X, 7 M) = P To(X, 7" M);
LeZ
here G,,, acts on the subspace I';(X,7* M) with the character z — z¢. It follows
that 0 operates on I'p(X, 7* M) as multiplication by ¢. We have
(22.6) (P", M) = T(X, 7" M)®m = To(X, 7*M);

indeed, pullbacks of global sections from P™ are clearly G,,-invariant, and con-
versely, any G,,-invariant section on X descends to a global section on P". Also
note that multiplication by z; takes I'y into I'y41, and multiplication by 9; takes
I'y into I'y_y; the reason is that [0, z;] = z; and [0, 0;] = —0;.

Now let us start proving that P" satisfies the two conditions in (a) and (b). We
first show that the global sections functor is exact. Let

0—- My > My —>M3z—0

be a short exact sequence of quasi-coherent Zpr-modules. Since 7 is smooth, the
pullback functor 7* is exact, which means that

0—)7T*M1 ~>7T*M2*>7T*M3 —0

is a short exact sequence of quasi-coherent Zx-modules. Because j: X — A™t! ig
an open embedding, j+ = Ry, (after the appropriate conversion between left and
right 2-modules). Thus we get an exact sequence of quasi-coherent Z+1-modules

0 — jum* My = jum* My = jum*Ms — R "M — - -

The global sections functor on the affine space A™! is exact, and so we finally
obtain an exact sequence of A,,;1-modules

0— I(X,7*M;) = D(X,m* M) = T(X, 7*M3) = T(A" T R'j.m*My) — -

Now R'j.m*M; is a quasi-coherent Z4n+:-module supported on the origin, and
so by Kashiwara’s equivalence (from Lecture 13), it must be the direct image of a
quasi-coherent Zgpec -module. Concretely, we have

(A", RYjur* My) = k[0, D1, .., 0] @1 V,

where V' is a k-vector space. The key point is now that 6 acts on the right-hand
side with strictly negative eigenvalues. Indeed, for any o € N**1 we have

0-8”‘@1):230]-8]--8"‘@1}22—(@]-—1—1)8“@1):—(|a|+n+1) -0Y®w.
§=0 =0
The conclusion is that
0= To(X, 7" M;) = To(X,7*Msz) = To(X, 7" M3) = 0

is short exact; because of (22.6), this proves that I'(P™, —) is an exact functor.
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All that is left is to show that T'(P", M) = 0 implies M = 0. Here we argue by
contradiction and assume that M # 0. Since m: X — P” has a section over each
of the n + 1 basic affine open subsets, we must have 7* M # 0, and therefore

DX, 7" M) =T (A", j,m* M) # 0.
It follows that there is some ¢ € Z such that I'y(X,7*M) # 0. On the other hand,

we have T'o(X, 7* M) = 0 by (22.6). We will show that this leads to a contradiction.
Suppose first that £ > 1. Take any nonzero element s € I'y(X, 7*M). Then

n
Os = ijﬁjs =/{s #0,
j=0
and so at least one 0;s € I'y_1 (X, 7* M) must be nonzero. Repeating this argument,
we eventually arrive at I'g(X, 7* M) # 0, which is a contradiction. The remaining
possibility is that £ < —1. Since s € T'(X,7*M) and 7*M is quasi-coherent, we
cannot have ;s = 0 for every j. It follows that I'y4q (X, 7* M) # 0, and as before,
this leads to a contradiction after finitely many steps. O

This result says, in particular, that coherent Zp»-modules are the same thing as
finitely generated modules over the ring of differential operators T'(P™, Zpn). Let
us briefly discuss the structure of this ring. We have

L(P", Zpn) 2 To(X, Zxpn),

where Px_pn = 7" PDpn is the transfer module. Recall from Lecture 16 that, in
the case of a smooth morphism, Zx_,p~ is the quotient of Zx by the submodule
generated by the relative tangent bundle. In our setting, Zx _,prn = Px/Px0, and
so we recover the fact, already stated in Lecture 9, that I'(P™, Zp») consists of all
differential operators on A"*! that are homogenous of degree 0, modulo multiples
of the Euler vector field 6.

One can turn this into a very concrete presentation by generators and relations,

as follows. For ¢,j € {0,1,...,n}, set D, ; = x;0;. A short calculation gives
D;;—D;; ifk=jand/{=ri,
D;, ifk=jand/?¢#1,
(22.7) [Di j, Dy.e] = N . ] 7 .
=Dy ; if k# jand £ =1,
0 if k # j and £ # i.

We also have § = Do + D11+ -+ + Dy . Then T'(P", Zpn) is generated as a
non-commutative k-algebra by the D; ;, and all the relations are generated by the
above commutator relations and the additional relation Dy o+D1 1+ -+ Dy = 0.

Regular holonomic Z-modules of normal crossing type. We now turn to
the classification of regular holonomic Z-modules of normal crossing type. Let
me first explain what I mean by “normal crossing type”. On A™, we can inter-
sect the various components of the normal crossing divisor z; -- -z, = 0 to obtain
a total of 2" nonsingular closed subvarieties. (Here we use the convention that
the empty intersection equals A™.) Their conormal bundles give us 2" conical La-
grangian subvarieties of the cotangent bundle T*A"™. In the usual coordinate system
T1y---,Tn,&1,-..,&, on the cotangent bundle, the union of all these Lagrangians is
exactly the closed subset
Z(x1€1, .-, 2nén)s

indeed, on each component, we have either x; =0 or §; =0, for every j =1,...,n.
We say that a (necessarily holonomic) Zy»-module M is of normal crossing type if
its characteristic variety satisfies

Ch(M) Q Z(l‘lfl, e ,Jjnfn)
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Ezample 22.8. On A?, the condition is that the characteristic variety has at most
four irreducible components: the zero section, the conormal bundles to the two
axes, and the cotangent space to the origin.

Here is a typical example, to get started.

Ezample 22.9. Consider the A,-module M = A, /A, (2101 — a1,..., 000 — ay),
where «q,...,q, € k are scalars. The characteristic variety is defined by the
principal symbols of the n operators, hence is exactly the set Z(x1&1,. .., 2nén). In
particular, M is holonomic; I will leave it as an exercise to check that M is regular
in the sense of Kashiwara and Kawai.

The analogous definition on P™ has to include the hyperplane at infinity. In ho-
mogeneous coordinates xg, x1, ..., Ty, we are therefore looking at the closed subset

Z(xoéo, x1&1, - - -y nén) € TP,

note that even though the cotangent bundle is not trivial, the notation still makes
sense because each x;0; is a globally defined vector field on P". We then say that
a (necessarily holonomic) Zp»-module M is of normal crossing type if

Ch(M) C Z(z080, 161, -+ Tnén)-

Our goal is to describe explicitly all regular holonomic Zpr-modules of normal
crossing type, at least when k is algebraically closed. It will help us that P™ is
P-aftine. Our starting point is the following lemma.

Lemma 22.10. Let M be a holonomic left Dprn-module that is regular and of nor-
mal crossing type. Then there is a finite-dimensional k-vector space V. C T'(P™, M)
that generates T'(P™, M) as a T'(P™, Dpn)-module, and is preserved by xo0y, . . . , £ 0.

Proof. Regularity means that there is a global good filtration FyM such that
Zen(am) annihilates gr” M. Since Ch(M) C Z(20&o, 11, - - -, #,&y), this says con-
cretely that we have
for every j =0,1,...,n and ¢ € Z. Since F;M is a coherent Oprn-module,

re", ;M) CT(P", M)

is a finite-dimensional k-vector space that is preserved by x¢0dp,...,x,0,. We
showed during the proof of Corollary 22.4 that M is generated as a Zpr-module
by finitely many global sections. If we choose i large enough, these sections will be
global sections of F; M, and so the subspace V = I'(P", F; M) actually generates
(P, M) as a module over T'(P™, Zpn). O

Now z¢0y, . . ., n 0y, are commuting endomorphisms of the finite-dimensional k-
vector space V. Assuming that k is algebraically closed, we get a decomposition

v= P V.
a€kntt
into generalized eigenspaces, where V,, C V consists of all vectors v € V' such that
(2;0; —a;)™v =0for j =0,1,...,n and m > 0. In other words, x;0; — «; acts
nilpotently on the subspace V,,. Of course, only finitely many of the V,, are actually
nonzero; also note that we must have ag + a1 + - - - + a,, = 0, due to the fact that
0 = x90y + -+ + x,0, acts trivially on V. If we define

A:{aek”H|ao+a1+~-+an:0},

then the direct sum above is actually indexed by a finite subset of A. Since V'
generates I'(P", M), we get a similar decomposition for the entire space of global
sections.
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Lemma 22.11. Let M be a holonomic left Ppn-module that is regular and of
normal crossing type, and set M = T'(P", M). We have a decomposition

M= M,
acA
into finite-dimensional k-vector spaces My, such that the operator x;0; — «; acts
nilpotently on M, for j =0,1,... n.
Proof. To be completely precise, we define, for every a € A, the subspace
M, = {SGM | (x;0; —aj)™s=0for j=0,1,...,n andm>>0}.

Since different M, are easily seen to be linearly independent, it suffices to prove
that every s € M can be written as a sum of elements in finitely many M,. This
is true for elements of V' by the discussion above; and for other elements, it follows
from the fact that M is generated by V as a T'(P"”, Zp» )-module. Indeed, T'(P", Zpn)
is generated as a k-algebra by the operators D; ; = x;0;, and since we already have
the desired decomposition for elements of V', we only have to prove that

Dij My C Mote;—e;

where e; is the i-th coordinate vector in k"*1. But as zxdy = Dy, this follows
quite easily from the commutator relations

0 ifk=i=jork#1i,j,
[Di,j;Dk,k] = Diyj if k :j and k 75 i,
_Di,j 1fk;:zandk7éj
that we had proved earlier. O
Exercises.

FEzercise 22.1. Prove that D; j - My C Maye,

Ezercise 22.2. Verify the relations in (22.7), and prove that I'(P™, Zpn) does have
the claimed presentation by generators and relations.

—ej-
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LECTURE 23: MAy 1

Regular holonomic Z-modules of normal crossing type. Let me briefly recall
what we did last time. We first showed that P™ is Z-affine, which meant that the
global sections functor

I'(P"*, —): Modge(Zpn) — Mod(I‘(P”, %pm))
is an equivalence of categories. In other words, algebraic Z-modules on P™ are
uniquely determined by their space of global sections, which is a module over the

ring T'(P", Pp»). We also showed that the ring of differential operators on P™ is
generated by the (n+1)? operators D; ; = x;0;, subject to the commutator relations

D;;—D;; ifk=jand/{=1,

D; if k=4 and ¢ # 1,
(23.1) Dy, Did = =g end £
—Dy, if k#jand ¢ =1,
0 if k# j and £ # 1,

and the extra relation 0 = Do+ D11+ -+ + Dy, = 0. We then showed that if
M is a regular holonomic Zpr-module whose characteristic variety is contained in
the set Z(xo&o, x1&1, - - Xn&n) € T*P™, then we get a decomposition

T(P", M) = P M,
acA
where A = {a € kntl ’ ag+a; + -+ a, = O}. Here each M, is a finite-
dimensional k-vector space, consisting of those global sections of M on which the
n + 1 operators D; ; — a; act nilpotently.
How about the converse? Suppose we are given a collection of finite-dimensional
k-vector spaces My, indexed by o € A. What extra information is needed to turn

the direct sum
M= @ M,

acA
into (the space of global sections of) a regular holonomic Zp»-module of normal
crossing type? First, M should be a left module over the ring I'(P", Zp~ ), and so
we need to have linear operators

Dijj: Mo — Mate,—e;

for every a € A and every 4,5 € {0,1,...,n}. These operators should satisfy the
commutator relations above, as well as the identity Do o + D11+ -+ Dy = 0.
We also want M to be finitely generated, which means that finitely many of the M,
should generate M as a I'(P", Zp» )-module. Finally, the operator D; j — c; should
act nilpotently on M, for every j € {0,1,...,n}. It is then not hard to show that
the corresponding Zpr-module is regular holonomic of normal crossing type.

Other variants. There are some useful variants of the classification above. One
is regular holonomic Z-modules of normal crossing type on affine space A™. Let
M be a holonomic Z,»-module with the property that

Ch(M) C Z(x1&1, ..., xn&n) CTTA™.
In that case, we say that M is of normal crossing type. Recall that M is regular, in
the sense of Kashiwara and Kawai, if the direct image j M is regular on P™, where
j: A™ — P™ is the open embedding. One can show that if M is regular holonomic
of normal crossing type on A", then j; M is regular holonomic of normal crossing
type on P". Thus we obtain a decomposition

F(AnaM) = F(anjJrM) = @ M.,

ackn
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which we are now indexing by « € k™. (This is okay because cg = —(ay +- - -+ ),
so there is no loss of information.) Again, each M, is a finite-dimensional k-vector
space, consisting of all global sections of M on which the n commuting operators
x;0; — a; act nilpotently. This time, we have

Tj: My — Maye;, and 0j: My — My e

for every j = 1,...,n; this follows from the commutator relation [9;,z,] = 1.
Conversely, given a collection of finite-dimensional k-vector spaces M, indexed by
a € k™, and a collection of linear operators x;: My — Myye; and 0;: My — My,
subject to the relations [0;, z;] = d; ;, the direct sum

M:@Ma

ackn

becomes a module over the Weyl algebra T'(A™, Zyn); if this module is finitely
generated, and if each x;0; — a; acts nilpotently on M,, then the corresponding
Pan-module is regular holonomic of normal crossing type.

There is also a local analytic version of the classification, for k = C. Let Zcn o
denote the ring of linear differential operators with holomorphic coefficients that
are defined in some neighborhood of the origin in C™. We say that a holonomic
Den p-module M is of normal crossing type if its characteristic variety Ch(M) is
contained in the set Z(z1&1,...,2,&,). We say that M is regular if it satisfies
the condition from Lecture 21, meaning if there exists a good filtration Fy M such
that each FyM is a finitely generated Ocn g-module stable under the action by
2101, ...,2p0,. Define

Ma:{se./\/l ’ (xjaj—ozj)ms:Oforj:O,l,...,nandm>>0}.

Each M, is a finite-dimensional C-vector space, and their direct sum

M:@Ma

aeCn

is a regular holonomic module over the Weyl algebra A, (C), of normal crossing
type. Then one can show (with a lot of extra work) that

M = @Cn’o ®An((C) M.

In other words, the Zc» g-module structure on M is completely determined by the
much simpler algebraic Z-module M. Note that this result is only true in the local
analytic setting. The following example explains why.

Ezample 23.2. Consider the Zji-module M = Dp1/P51(0 — 1). It is easy to
see that Ch(M) is the zero section, and that M is actually a line bundle with
integrable connection. Except for regularity at infinity, M is therefore regular
holonomic of normal crossing type. But it is not true, not even Zariski-locally,
that T'(A', M) = A;/A;1(0 — 1) has a decomposition into generalized eigenspaces
for z0; in fact, you can check for yourself that xd does not have any nontrivial
eigenvectors. What goes wrong is that we need a solution to du = u to get an
isomorphism between M and &,1. But the solution is u = e®, which is not an
algebraic function, because it has an essential singularity at infinity. Another way
to say this is that M is not regular at infinity.

Solutions. Let us discuss a few more properties of the classification on A™. For
simplicity, I will assume from now on that k = C. Consider a regular holonomic
Z-module of normal crossing type, with decomposition

M= @Ma.

aecCnr
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Here each M, is a finite-dimensional C-vector space. By construction, x;0; —a; acts
nilpotently on M,, and so x;0; is an isomorphism as long as «; # 0. Consequently,

0j: Mo — My—e; and xj: My o, — M,

are injective respectively surjective for «; # 0. Likewise, 0j2; — a; — 1 acts nilpo-
tently on My, and so J;x; is an isomorphism as long as «; # —1. Thus

0j: Moye; = Mo and  xj: My — Myye,

are surjective respectively injective for a; # —1. We can summarize this by saying
that 0;: My — Mg, is an isomorphism for a; # 0, and that z;: My — Maqe,
is an isomorphism for a; # —1.

This implies of course that those vector spaces M, with

—1<Rea; <0 foreveryj=1,...,n
determine all the others. Since M is finitely generated over A, (C), the set
F:{QG(C" | Ma#OandflgReajg()forallj}

must be finite. Thus M is generated as an A, (C)-module by the direct sum of
those M, with o € F.
Recall that any holonomic A,-module has finite length, meaning that it has
a finite composition series whose subquotients are simple. Let us describe more
explicitly what simple regular holonomic Z-modules of normal crossing type look
like. Suppose that M is simple but nonzero. Choose some a € F, so that M, # 0
and —1 < Rea; <0 for all j. Since each x;0; — «; acts nilpotently on M, we can
find a common eigenvector s € M, such that z;0;s = ;s for every j =1,...,n.
Since M is simple, we must have A, s = M. Because s is an eigenvector, it is not
hard to see that A, s intersects M, exactly in the subspace Cs. Thus M, = Cs is
one-dimensional. Now there are two special cases:
(1) One case is that a; = 0. Then z;0;s = 0, and so the submodule A, (C)9;s
does not contain s. Since M is simple, this forces 9;5 = 0.
(2) The other case is that o; = —1. Then 0;x;s = 0, and for the same reason
as before, this forces ;5 = 0.

We conclude that M is generated as an A,-module by s € M,, and that s is
annihilated by (z,;0; — o) for a; # —1,0, by 0, for a; = 0, and by z; for a; = —1.
It is easy to see that there cannot be any other relations, and so we get
M=A,/I,
where I, C A, is the left ideal generated by the n differential operators
z;0; —aj; for a5 #—1,0,
0 for a; = 0,
x; for a; = —1.
We see that M is supported on the linear subspace
Supp M, = ﬂ Z(z),
[e%] =—1
and so by Kashiwara’s equivalence, it is the pushforward of a regular holonomic
2-module of normal crossing type on Supp M,. Outside of the union of the hyper-
planes Z(z;) with o; # —1, 0, the latter is a line bundle with integrable connection;
this connection has a regular singularity at each of the hyperplanes in question, with
monodromy €%,
Now let see what we can say about the solutions of regular holonomic Z-modules

of normal crossing type on C". Since algebraic differential equations typically do
not have algebraic solutions, we need to work in the analytic topology; we use the
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notation Ocn for the sheaf of holomorphic functions on C”, and the notation Zc¢n
for the sheaf of differential operators with holomorphic coefficients. Let us write
M = PDen ®4, M for the analytic Zen-module determined by the A, (C)-module
M. Recall that we have the (derived) solutions functor

Sol(M) = RHomg,.. (M, Ocr).

It can be computed for example by choosing a resolution of M by free Zcn-modules,
and then applying the usual solutions functor term by term. For simple modules
of normal crossing type, this is easily done. Fix a multi-index o € F' as above. To
keep the notation simple, let me set

xj(’)j — Oéj if aj 75 —1707
P]’ = Bj if Qj = 0,

l‘j if OZj =—1.
Then our simple Zcn-module has the form
Mo = Den | Den (P, ..., Pr),

The Koszul complex for Py, ..., P, gives a resolution by free Zcn-modules:

Den — DET — -+ — 93(2') — P& — Den
Consequently, Sol(M,,) is represented by the complex

(23.3) Ocn — OS5 — ﬁ?,L(Z) — = OS5 — Ocn,

placed in degrees 0, 1,...,n, and with a Koszul-type differential, induced by the n
operators f +— T; f. We are interested in computing the cohomology sheaves of this
complex.

Ezxample 23.4. For n = 1, there are three cases. If a = 0, the complex looks like
ﬁ(c L ﬁ(c.

By the holomorphic Poincaré lemma (or by a direct computation with power series),
this complex only has cohomology in degree 0, where we get the constant sheaf C.
If o = —1, the complex looks like

ﬁc =z ﬁc.

It only has cohomology in degree 1, where we get a one-dimensional skyscraper
sheaf at the origin. Lastly, if a # —1,0, the complex looks like
Oc 22=% 0.

This only has cohomology in degree 0. Away from the origin, the multi-valued
holomorphic function z® solves the equation (zd — a)f = 0, and so we get a
locally constant sheaf on C*, with monodromy e>™*®. At the origin, the function
x* does not make sense, and in fact, the equation (20 — «)f = 0 does not have
a solution that is holomorphic in a neighborhood of the origin. So in this case,
the 0-th cohomology sheaf of the complex is a so-called constructible sheaf: it is
locally constant on C*, but with a different stalk at the origin. Note that in each
case, exactly one cohomology sheaf is nonzero; and if the nonzero cohomology sheaf
occurs in degree 0, it is supported on all of C; if it occurs in degree 1, then it is
supported at the origin.
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By working with power series, one can show that the complex in (23.3) is (locally)
quasi-isomorphic to a product; thus its cohomology is described by what happens
for each of the n operators Tj individually. The conclusion is that (23.3) has exactly
one nonzero cohomology sheaf, say in degree k (where & is the number of j such that
a; = —1); moreover, that cohomology sheaf is supported on the linear subspace

N Z()),
oj=—
whose codimension is exactly k. It is also a constructible sheaf, meaning locally
constant (of rank 0 or 1) on each stratum of the natural stratification on C™.
From this, we can deduce what happens for Sol(M) in general. Recall that M
has a finite composition series whose subquotients My, ..., M, are simple.

Example 23.5. Suppose that M has a composition series of length two:
0> M - M-—=>My—0
Since the solutions functor is contravariant, we obtain a long exact sequence
H 7 Sol(M1) — H' Sol(Ms) — HPSol(M) — HP Sol(M;) — HT! Sol(My)

Since Sol(M;) and Sol(M3) each have only a single nonzero cohomology sheaf, it

follows that Sol(M) can have at most two nonzero cohomology sheaves, both con-
structible with respect to the natural stratification on C". Moreover, dim Supp H* Sol(M) >
i. The inequality can be strict, for example if #¢ Sol(Mz) # 0 and H~! Sol(M;) #

0; then H? Sol(M) is a quotient of the constructible sheaf H? Sol(My), whose sup-

port is a linear subspace of codimension 4. It follows that H¢Sol(M) is still con-
structible, but its support may be smaller than than of H*Sol(My).

In general, we have a spectral sequence
EP? = HPTISol(M,,) = HP 9 Sol(M).
Each Sol(M,,) has exactly one nonzero cohomology sheaf, which is constructible
for the natural stratification on C"; if H7 Sol(M,,) # 0, then it is supported on a
linear subspace of codimension j. Since kernels and cokernels of morphisms between

constructible sheaves are again constructible, we see that all cohomology sheaves
of Sol(M) are constructible; it also follows, as in the example, that

codim Supp H’ Sol(M) > j.
Exercises.

Ezxercise 23.1. Suppose that we are given a family of k-vector spaces M, indexed
by a € A, and a family of linear mappings D; j: Mo — Maye,—e;-
(1) Show that if the relations in (23.1) hold, and Do+ D11 +---+Dppn =0,
then the direct sum
M= M,

acA
becomes a left module over R = I'(P", Zpx).

(2) Suppose that M is finitely generated as an R-module, and that each oper-
ator D; ; — «; acts nilpotently on M,. Show that the characteristic variety
of M = Zpn @ M is contained in the set Z(zo&o, 2181, - .., Tn&n)-

(3) Show that M is a regular holonomic Zp-»-module of normal crossing type.

FEzercise 23.2. Find the decomposition of I'(P", M) in the following cases:
(2) M =j, 0y, where U =P"\ Z(xoz1 - 2p)
(3) M =i, Opn-1, where P~ = Z(z).
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Exercise 23.3. Let M be a regular holonomic Zpn-module of normal crossing type.
Given the decomposition for I'(P", M), determine the resulting decomposition for
the holonomic dual of M.
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LECTURE 24: MAY 6

The Riemann-Hilbert correspondence. Last time, we showed that the solu-
tion complex of a regular holonomic Z-module of normal crossing type has several
special properties: its cohomology sheaves are locally constant on the strata of the
divisor, and the dimensions of their supports satisfy a collection of inequalities.
This is a special case of the Riemann-Hilbert correspondence, which relates regular
holonomic Z-modules and constructible sheaves.

Let us begin with a few basic definitions. Let X be a nonsingular algebraic
variety over the complex numbers. A stratification is a decomposition

X:|_|Xa

a€cA

into locally closed algebraic subsets, called strata, such that each X4, is nonsingular,
and such that the Zariski-closure of each X, is a union of finitely many other strata.
The same definition makes sense on complex manifolds, taking each X, to be a
locally closed complex submanifold.

Ezxample 24.1. The divisor x; - - - &, = 0 induces a natural stratification on A™ with
2" strata, indexed by subsets I C {1,...,n}. The stratum corresponding to the
subset I consists of those points where x; = 0 for every ¢ € I, and x; # 0 for every

1¢ 1.
Example 24.2. We can stratify A2 according to the singularities of the nodal curve

C = Z(y? — 2* — 23), into a 2-dimensional stratum A%\ C, a 1-dimensional stratum
C'\ {(0,0)}, and a 0-dimensional stratum {(0,0)}.

We also need the notion of constructibility for sheaves. It is necessary to work
in the classical (or analytic) topology, because the Zariski topology is too coarse to
allow for interesting locally constant sheaves. Given a nonsingular algebraic variety
X, we denote by X" the associated complex manifold, with the topology induced
by the usual Euclidean topology on C™. Let F' be a sheaf of finite-dimensional
C-vector spaces on X*. This means that for every open subset U C X" the
space of sections I'(U, F) is a finite-dimensional C-vector space. We say that F' is
constructible if there is a stratification

X:|_|Xa

acA

such that the restriction of F' to each stratum X2" is a locally constant sheaf.
(Constructible sheaves on arbitrary complex manifolds are defined in a similar way.)
Every locally constant sheaf is constructible, of course, but the point is that the
usual functors on sheaves preserve constructibility. (Going from locally constant
sheaves to constructible sheaves is very similar to going from locally free sheaves to
coherent sheaves, in that sense.)

Ezxample 24.3. If f: X — Y is a proper morphism between nonsingular algebraic
varieties, and if f%": X% — Y% denotes the resulting proper holomorphic map-
ping between complex manifolds, then the sheaves R'f3"Cxw are constructible.
The reason is that one can find a stratification for Y, in such a way that the
restriction of f to each stratum of Y is a topological fiber bundle.

Ezxample 24.4. 1f j: U — X is an open embedding, and j**: U*" — X" denotes
the resulting embedding of complex manifolds, then the sheaves Rj3"Cpan are
constructible. This is easy to show in the case where X \ U is a normal crossing
divisor; the general case follows by using resolution of singularities and the result
in the previous example.
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More generally, one can show that the usual direct and inverse image functors
on sheaves preserve constructibility: if f: X — Y in any morphism between non-
singular algebraic varieties, and F any constructible sheaf on X", then R'fa"F
is a constructible sheaf on Y %". Likewise, if G is any constructible sheaf on Y "
then (f%)~1G is a constructible sheaf on X %". One can say the same thing in the
language of derived categories. Denote by D%(Cx:) the derived category of (coho-
mologically) constructible sheaves; its objects are complexes of sheaves of C-vector
spaces on X% whose cohomology sheaves are constructible (and zero in all but
finitely many degrees). Then if f: X — Y is any morphism between nonsingular
algebraic varieties, the usual derived pushforward of sheaves gives an exact functor

Rf™: DY(Cxw) — DY(Cyaw),
and the usual inverse image of sheaves gives an exact functor
(f*)~": DL(Cym) — DY(Cxon).

We can now state the first general result about solution complexes of regular
holonomic Z-modules. Let Zx be the usual sheaf of differential operators on X,
and denote by Zxa the sheaf of differential operators with holomorphic coefficients
on the complex manifold X*. Given a coherent Zx-module M, we denote by
M the associated analytic Zxe-module; this can be constructed using local
presentations of M, for example. The following result was proved by Kashiwara in
his thesis; it is usually called “Kashiwara’s constructibility theorem”.

Theorem 24.5. Let X be a nonsingular algebraic variety, and M a holonomic left
Dx -module. Then the solution complex

SOI(M) = R'HOTIL@XL”L (MGTL7 ﬁXﬂn)
is constructible, hence an object of D2(Cxan).

In fact, Kashiwara proves this result for holonomic Z-modules on complex man-
ifolds. One consequence is that one has an exact (contravariant) solutions functor

Sol: D} (2x) — DY(Cxan )P

that associates to every complex of Zx-modules with holonomic cohomology a
constructible complex of solutions. We saw a very special case of this result last
time, namely solutions of regular holonomic Z-modules of normal crossing type.

The solution functor is contravariant, but there is also a covariant version of
Kashiwara’s theorem. Recall that the Spencer complex

n 2
Sp(7x) = |Zx @ox \ Tx =+ = Dx By [\ Tx = Ix oy Tx = D]
is a resolution of &x by locally free left Zx-modules; likewise, Sp(Zxan) is a reso-
lution of Oxan by locally free left Zxe-modules. Thus
Sol(M) = RHom g an (./\/l‘m, ﬁxm)
~ RiHoma,n, (M, Sp(Zxon)
= RHoM Gy un (M™, Dxen) @pyan SP(Dxon).

Now suppose that M is holonomic. Then the complex RHomg, (M, Zx) only has
cohomology in degree n, and

Eatyy (M, Dx) = M*
is the holonomic dual (which is a holonomic right Zx-module). Consequently,

RHomag, (Man’ @X‘m> ~ M*,an[_nL
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and after plugging this into the relation from above, we get
(24.6) Sol(M) = M**[—n] @z a SP(Zxen) = Sp(M*™¥)[—n).

Under the conversion between right and left Z-modules, the Spencer complex of a
right Z-module goes to the de Rham complex of a left Z2-module. This leads to
the following equivalent formulation of Kashiwara’s constructibility theorem: If M
is a holonomic left Zx-module on a nonsingular algebraic variety X, then the de
Rham complex

DR(Man) — [Man N Q%{M ®Man RGN Q’I’)L(wu ®Man ,
placed in degrees —n, ..., 0, is constructible. More generally, the de Rham functor
DR: D} (Zx) — D(Cxa)

is an exact covariant functor.
Kashiwara’s theorem makes no assumptions about regularity, but the price to
pay is that many different Z-modules can have the same solution complex.

Ezample 24.7. Here is the simplest example of this phenomenon. On A!, consider
the family of Z41-modules My = PDp1/PD41(0 — N), indexed by A € C\ {0}. We
have already seen that these Z-modules have an irregular singularity at infinity.
The solution complex of M is

Or 222 6.

The kernel of & — A is clearly spanned by the function e**, while the cokernel is
trivial; this means that the solution complex is always isomorphic to the constant
sheaf C, independently of A. On the other hand, M and M, are not isomorphic
as P1-modules for A # p.

If one imposes the condition of regularity, then this problem goes away, and
the solutions functor (as well as the de Rham functor) becomes an equivalence of
categories. This is the content of the famous Riemann-Hilbert correspondence.

Theorem 24.8. Let X be a nonsingular algebraic variety. Then the functors
Sol: D} (Zx) — D(Cxan)°P
DR: D} (Zx) — D(Cxan)

are equivalences of categories.

This result again holds more generally on complex manifolds. There are three
proofs: an analytic proof by Kashiwara; a more algebraic proof by Mebkhout; and a
completely algebraic proof by Bernstein (which only works on algebraic varieties).
The Riemann-Hilbert correspondence also respects the various functors on both
sides: for example,

DRof; 2Rf.oDR and DRoLj* = !'oDR.

These isomorphisms do not hold without the assumption of regularity. The Riemann-
Hilbert correspondence therefore establishes a direct link between algebraic objects
(regular holonomic Z-modules) and topological objects (constructible sheaves).

Ezxample 24.9. The holonomic dual also has a natural interpretation in terms of the
Riemann-Hilbert correspondence. On D%(Cxan ), one has Verdier’s duality functor

Dy : DY(Cxan) = DY(Cxan )P, F — RHome o (F, Cxa[2n]),

where n = dim X. One can show that, for any holonomic Zx-module M, one has
an isomorphism

D xcan (DR(Man)) o Sp(M*,an)
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which means that the Riemann-Hilbert correspondence turns holonomic duality
into Verdier duality.

Perverse sheaves. The Riemann-Hilbert correspondence works on the level of the
derived category. Where do regular holonomic Z-modules go under the equivalence
of categories? We saw last time that the solution complex of a regular holonomic
2-module of normal crossing type satisfies a collection of inequalities: the j-th
cohomology sheaf of Sol(M) is supported on a union of strata of codimension at
least j. Kashiwara proved that this is true for arbitrary holonomic Z-modules: if
M is a holonomic Z-module on a nonsingular algebraic variety (or, more generally,
on a complex manifold), then

codim Supp R’ Sol(M) > j
for every j € Z. Using the identity in (24.6), an equivalent formulation is that
dim Supp H? DR(M") < —j

for every j € Z. One gets a similar collection of inequalities also for the Verdier
dual Dxan DR(M?"), because of the identity in Example 24.9. This motivates the
following definition.

Definition 24.10. A complex F € D?(Cxa) is called a perverse sheaf if
dimSuppH/F < —j and dimSuppH? Dy (F) < —j
for every j € Z.

Ezample 24.11. If M is a holonomic Zx-module, then DR(M?") is a perverse
sheaf. This is simply a rewording of Kashiwara’s theorem. Note that regularity is
not needed here.

The definition (and the somewhat strange name) of perverse sheaves is due to
Beilinson, Bernstein, Deligne, and Gabber. They showed that the collection of per-
verse sheaves forms an abelian category contained in D%(Cxa). The collection of
inequalities in the definition had actually appeared in two completely independent
places: once in Kashiwara’s study of holonomic Z-modules, and then again in the
intersection homology theory of Goresky and Macpherson. This circumstance is
of course explained by the Riemann-Hilbert correspondence. In fact, once Theo-
rem 24.8 is known, purely formal reasoning implies that the de Rham functor

DR: D} (Zx) — D(Cxan)

takes the abelian category of regular holonomic Zx-modules isomorphically to the
abelian category of perverse sheaves. Unfortunately, I cannot offer you any good
explanation of what perverse sheaves really are, other than saying that they are
the image of the regular holonomic Z-modules under the Riemann-Hilbert corre-
spondence. From this point of view, the crucial result is the equivalence between
the two derived categories; the collection of inequalities is just what one gets when
one goes from one side to the other.

Exercises.

Ezercise 24.1. Show that if A # p, then My = Pu1/P41(0 — A) is not isomorphic
to M, as a Zx1-module.
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LECTURE 25: MAY 8

Meromorphic connections. Before the full Riemann-Hilbert correspondence was
proved, Deligne established an important special case. It has to do with the rela-
tionship between locally constant sheaves and vector bundles with integrable con-
nection. Suppose that X is a nonsingular and proper algebraic variety over the
complex numbers. If we are given a vector bundle of rank r with integrable connec-
tion, then the subsheaf of flat sections is a locally constant sheaf of rank m (with
respect to the analytic topology). Conversely, given a locally constant sheaf of rank
m, say E, we can form the holomorphic vector bundle & = Ox ®c¢ E, which has
the same (locally constant) transition functions as E. The formula

Vifes)=df®s

defines an integrable connection on &, and the subsheaf of V-flat sections is of
course isomorphic to E. Lastly, X is proper, and so the pair (&, V) actually comes
from an algebraic vector bundle with intgrable connection (by a version of Serre’s
GAGA theorem). The conclusion is that the (a priori topological) object E is
actually algebraic.

Deligne’s version of the Riemann-Hilbert correspondence generalizes this to not
necessarily proper varieties. It goes through an intermediate class of objects, called
meromorphic connections. Here is the definition. Let X be a complex manifold,
and D C X adivisor. For simplicity, we are only going to consider the case where D
has simple normal crossing singularities: D is a union of nonsingular hypersurfaces
meeting transversely. In suitable local coordinates x4, ..., x,, the equation defining
D is of the form 1 --- 2, = 0. We let

ﬁx (*D)
be the sheaf of meromorphic functions on X that are holomorphic on X \ D; it
is naturally a subsheaf of j.O0x\p, where j: X \ D < X is the inclusion of the
complement. The notation *D is supposed to remind you of the pole order along

D. Locally, Ox(+D) is isomorphic to €x|t]/(ht — 1), where h is a local equation
for D; it follows that Ox (xD) is still a coherent sheaf of Ox-algebras.

Definition 25.1. A meromorphic connection is a coherent Ox (xD)-module M,
together with an integrable connection

V:M— QY @6, M
that satisfies the Leibniz rule V(fs) = df ® s+ fVs and the integrability condition
Vo, Vo] = Voo

Note. In the Leibniz rule, we are considering only f € Oy, but the same formula
works for every f € Ox(xD). To make this precise, define Q% (*D) as the sheaf of
meromorphic one-forms on X that are holomorphic on X \ D, so that

QL (xD) = Q% ®p, Ox(xD).
We can then consider V as a C-linear morphism

V: M — Q% (*D) ®¢y («p) M,
and now the Leibniz rule makes sense for f € Ox (D).

A meromorphic connection is naturally a left Zx-module, since the two identities
imply that the left action by Jx extends to a left action by Zx (see the discussion
in Lecture 10). On X \ D, the Z-module is coherent, and therefore a holomorphic
vector bundle with integrable connection. In that sense, a meromorphic connection

is an extension of a vector bundle with integrable connection on X \ D to an object
on X with singularities along D.
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Definition 25.2. If (M, V) and (NN, V) are two meromorphic connections, then a
morphism @: (M,V) — (N, V) is a morphism of &x (xD)-module p: M — N that
is compatible with the connections, in the sense that

V(go(s)) = (id®y)(Vs).

We denote by Conn(X, D) the category of meromorphic connections on (X, D).
It is an abelian category. There are two simple but useful observations about
morphisms in Conn(X, D). The first says that morphisms are determined by what
their restriction to X \ D.

Proposition 25.3. Let ¢: (M,V) — (N, V) be a morphism of meromorphic con-
nections. If @’X\D s an isomorphism, then ¢ is an isomorphism.

Proof. The kernel and cokernel of ¢ are meromorphic connections whose support
is, by construction, contained inside D. It is therefore enough to prove that a
meromorphic connection (M, V) such that Supp M C D must be trivial. Let s be
any local section of M, and h a local equation for D. The subsheaf Ox - s C M
is coherent over Oy, and its support is contained inside D, and so h™s = 0 for
m > 0. But then s = h="(h"™s) = 0, proving that M = 0. O

The second observation is useful for functoriality questions. Suppose that (M, V)
and (N, V) are two meromorphic connections. Then

'Homﬁx(*D) (M, N)
is again an Ox (xD)-module in a natural way, and the formula

(Ve)(s) = (id@p)(Vs) = V(e(s))

defines an integrable connection that makes Homg, (»py(M, N) into a meromor-
phic connection. You should check that morphisms of meromorphic connections
@: (M,V) — (N, V) are exactly the same thing as V-flat global sections of Hom ¢, («py(M, N).

Deligne’s theorem on meromorphic connections. Deligne proved that locally
constant sheaves on X \ D correspond to meromorphic connections on (X, D) that
are reqular along D. Regularity was originally defined by restricting to curves, but
in the case where D is a normal crossing divisor, we can use another definition that
is closer to the Kashiwara-Kawai notion of regularity for Z-modules.

Definition 25.4. A meromorphic connection (M, V) is called regular if there is a
locally free &x-module L with

M = ﬁx(*D) ®ﬁx L,

such that in any local trivialization of L, the connection has at worst logarithmic
poles along D.

More precisely, suppose that eq, ..., e, form a local trivialization for L. Then
the condition is that

for certain holomorphic functions aﬁ ;- Since L is then preserved by the differential
operators £101, - - . , 0y, this means that M, viewed as a left Zx-module, is regular
in the sense of Kashiwara and Kawai. The letter L comes from the fact that L is
traditionally called a lattice.

Keeping the notation from above, we let A € Mat,, . (Ox) be the matrix with
entries af; ;- The restriction of AF to the divisor Dy, defined by the equation z;, = 0,
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is a well-defined endomorphism of the locally free sheaf L Dy called the residue of
V along Dj. We use the symbol '

Resék (V)= Ak’Dk_

to denote the residue. We may drop the superscript L when the lattice is clear from
the context.

Lemma 25.5. Let (M,V) be a meromorphic connection with lattice L.

(a) On Dy N Dy, the residues Resp, (V) and Resp, (V) commute.
(b) The eigenvalues of Resp, (V) are locally constant along Dy.

Proof. In the notation from above, we have

k
i
€1,...,em, we therefore have Vs, = A¥/z;. The integrability condition for the
connection is [V, , Vg,] = 0, which expands out to
a (A At AF 0 [AF Ak A*
— (=) +===— (=) +=—=—.
Oxr \ 2y Ty Tp O0xy \ z T Xy
After rearranging the terms, this becomes
20k (AY) + AYAF = 2,0,(AF) 4 AF A"

and so the restriction of the two matrices A and A¢ to the set zr = a2y = 0
commute with each other.

For the proof of the second assertion, denote by L the restriction of L to the
divisor Dy; similarly, A* is the restriction of A, and so on. The formula

and AF is the m x m-matrix with entries a With respect to the trivialization

gkl
defines an integrable connection with logarithmic poles on L, and one checks that

A* is a horizontal section of Homep, (L,L). Tt follows that the eigenvalues of A
must be locally constant. O

Deligne’s main theorem is that every bundle with integrable connection on U can
be uniquely extended to a regular meromorphic connection on (X, D); in fact, even
the lattice is more or less unique, except for a small ambiguity in the eigenvalues
of the residues.

Theorem 25.6. Let X be a complex manifold, and D C X a divisor with simple
normal crossing singularities. Set U = X \ D, and fiz a section 7: C/Z — C of the
projection C — C/Z. Given (M,V) € Conn(U), there is a unique locally free sheaf
L, on X with the following three properties:

(a) One has LT’U =M.
(b) The connection V: M — Qf; ®¢, M extends to
V: M, = Q% ®¢, M,
where M, = Ox (D) Qg L.
(¢) At each irreducible component of D, the residue of V has eigenvalues in the
set 7(C/Z) C C.
Moreover, with the above choice of L., the restriction mapping
(X, M)V - T(U MY

from V-flat sections of M, to V-flat sections of M is an isomorphism.
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Proof of Deligne’s theorem. The proof of Deligne’s theorem has two parts. The
first part is to prove that L. is unique (up to isomorphism). The second part is
to construct a suitable lattice L, locally on X; the local objects can then be glued
together into a global lattice using uniqueness.

Let us start with the local existence, since that is easier. Since we are working
locally, we can assume that X = A" where A C C is an open disk containing
the origin. The divisor D will be given by the equation z;---z, = 0, and so
U = (A*)" x A™". By the correspondence between vector bundles with integrable
connection and locally constant sheaves, (M, V) € Conn(U) corresponds to a locally
constant sheaf on U, hence to a representation m1(U) — GL,,(C), where m is the
rank of M. Since the fundamental group of U is abelian, this is equivalent to giving

r commuting matrices C*,...,C" € GL,,(C). (These are the monodromy matrices
of the locally constant sheaf.)
It is a simple exercise to show that there are matrices 'y, ..., € Mat,, xm(C),

uniquely determined by the following three conditions:

(1) e27ri1“1 — Cj,

(2) the eigenvalues of IV lie in the set 7(C/Z),

(3) TY,...,T" commute.
We can now define L, = ﬁ;‘?"ﬂ and put a meromorphic connection on the free
Ox (xD)-module M, = Ox (xD)®™ by the formula

dx
vei=2rﬁjw—:®ej.
7,k

From the construction, it is clear that this has the three properties in the statement
of the theorem. What about flat sections? A V-flat section of M is the same thing

as a monodromy invariant vector v € C™, meaning one with Clv = --- = C"v = v.
This is equivalent to I''v = --- = I'"v = 0, and so v also represents a V-flat section
of M.

The more demanding part of the proof is the uniqueness of L. You will see that
the argument is very similar to what we did for the theorem of Fuchs (in Lecture 20).
The problem is local, and so we continue to assume that X = A™, with coordinates
Z1,...,Zn, and D defined by z7 -+ -z, = 0. Suppose that L and L’ are two lattices
that both have the three properties stated in the theorem. Denote by V and V' the
logarithmic connections on L and L’. With respect to a trivialization e, ..., e,
for L, we can write

dx
— k k
Ve; = a; j— ®ej,
- Tk
7k
where a¥ ; are holomorphic functions on X; we set
dl‘k
w= g AR R
x
- k

which is an m x m-matrix of logarithmic one-forms. We use primes to denote the
corresponding objects for (L', V’).

By assumption, (L,V)|U = (L’,V’)’U. After a short calculation, the isomor-
phism between the two bundles with connection translates into the existence of an
invertible matrix S € GL,,(0y) such that

dS = Sw — W'S.

The entries of S are holomorphic functions on U = X \ D, possibly with essential
singularities along D. To prove the uniqueness statement, it is enough to show
that S € GL,,(0x), meaning that the entries of S should extend to holomorphic
functions on X. By Hartog’s theorem, holomorphic functions extend over subsets
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of codimension > 2, and so we only need to to prove that the entries of S extend
over the generic point of each irreducible component of D. To keep the notation
simple, we will check this at points of

Di\ | Dx,

k#1

meaning at points where 1 = 0 but o - - - x, # 0. Write

W:A1@+2A’f%

Z1 k>2 Tk
CUI:A/I@‘FZA”C%
X1 k>2 Tk
The relation dS = Sw — 'S gives
oS
25.7 — =SA' - A4S
(25.7) o ,

and after taking the matrix norm of both sides, we obtain

08
. |l < C.
- |5 | < o181,

where C' > 0 is a constant that depends on the size of the (holomorphic) entries
of the two matrices A' and A’'. As in Lecture 20, we can now apply Gronwall’s
inequality to deduce that the entries of S have moderate growth near z1, hence are
meromorphic functions on the set where x5 - - - x,. # 0.

It remains to show that the entries of S are actually holomorphic functions for
o+ -z, # 0. Consider the Laurent expansion

S= i Sj],
j=p

where S, # 0 is the leading term. After substituting this into (25.7), we get

o0 oo

> iSia =) (S;A' - A"S;)a].

j=p j=p
The coefficients at z] equate to

pSp = Sp - Al} o All‘ Sp=5p- Reslél (V) - Resg1 (V') - Sp-

1120 1120 ’

Since both Resél(V) and Resgl(v/) have their eigenvalues contained in the set
7(C/Z), this relation forces p = 0. Indeed, suppose that v is a nontrivial eigenvector
for Res}, (V), with eigenvalue \. Then

P(Spv) = A(Spv) — Resh, (V')(Spv),

and so Spv is an eigenvector for Resgl(V’), with eigenvalue A — p. (Since S is
invertible, we must have Spv # 0). As the difference of the two eigenvalues is
an integer, this can only happen for p = 0. The conclusion is that S extends
holomorphically to all of X, proving the desired uniqueness.
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Deligne’s Riemann-Hilbert correspondence. We are now ready for Deligne’s
version of the Riemann-Hilbert correspondence. Let Loc(X \ D) denote the category
of locally constant sheaves (of finite-dimensional C-vector spaces) on X \ D.

Theorem 25.8. Let X be a complex manifold, and D C X a divisor with simple
normal crossing singularities. Then the restriction functor

Conn(X, D)™ — Loc(X \ D)
is an equivalence of categories.

Here we associate to a meromorphic connection (M, V) € Conn(X, D) the locally
constant sheaf of V-flat sections of M |U, where U = X \ D. The proof is very easy
at this point. First, every locally constant sheaf on X \ D is the sheaf of V-flat
sections of some (M,V) € Conn(U). By Theorem 25.6, there is an extension of
(M, V) to a regular meromorphic connection on (X, D): for any choice of 7, the pair
(M., V) will do. This shows that the restriction functor is essentially surjective.

It remains to prove that it is also fully faithful. The functor of V-flat sections
gives an equivalence of categories between Conn(U) and Loc(U), and so it suffices
to prove that Conn(X, D)™ — Conn(U) is fully faithful. Let (M,V) and (N,V)
be meromorphic connections, and set H = Hom e (+p)(M, N); recall that (H,V)
is again a meromorphic connection. As we saw earlier, we have an isomorphism

HOInConn(X,D) <(M7 v)7 (Na v)) = F(X7 H)v

between the set of morphisms in the category Conn(X, D) and the set of V-flat
sections of H. Similarly,

Homoun(w) (M. V)], (V. V)|, ) = D(U, H)Y,
and so the problem reduces to showing that
(X, H)Y - TU H)Y
is an isomorphism.

Lemma 25.9. Let (M,V) € Conn(X, D) be a regular meromorphic connection.
Then the restriction morphism

(X, M)V —T(U, M)V
is an isomorphism, where U = X \ D.

Proof. Since (M,V) is regular, there is a lattice L with M = Ox(xD) ®¢, L,
such that V has logarithmic poles. Pick any section 7: C/Z — C, for example
with Re7 € [0,1). By Theorem 25.6, there exists L, with (L,V)’U = (LT,V)‘U.
Arguing as in the proof of Theorem 25.6, we find that the isomorphism is locally
given by a matrix with meromorphic entries, and hence that (M, V) is isomorphic
to (M;,V) as a meromorphic connection. Now the assertion about flat sections
follows from the last sentence of Theorem 25.6. O

Deligne’s Riemann-Hilbert correspondence again leads to an interesting alge-
braicity result. Suppose that X is a nonsingular proper variety. Then every locally
constant sheaf on X \ D comes from a meromorphic connection on (X, D), and
hence (by a version of Serre’s GAGA theorem) from an algebraic object. Since we
have resolution of singularities, we can write every nonsingular algebraic variety
in the form X \ D. Thus every locally constant sheaf on a nonsingular algebraic
variety comes from an algebraic vector bundle with integrable connection.
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Exercises.

Ezercise 25.1. Let (M,V) and (N, V) be meromorphic connections. Check that
("Homﬁx(*p) (M,N), V) is a meromorphic connection, and that p: (M, V) — (N, V)
is a morphism of meromorphic connections if and only if, when viewed as a global
section of Hom g, (»p)(M, N), it satisfies Vi = 0.

Ezercise 25.2. Let C € GL,,,(C). Show that there is a unique I' € Mat,, xm (C)
such that e2™' = C and such that the eigenvalues of T lie in the set 7(C/Z).
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LECTURE 26: MAy 10

One-forms on varieties of general type. In the final two lectures, I am going to
show you an application of Z-module theory to a problem in algebraic geometry. It
has to do with holomorphic one-forms and their zero loci. Recall that on a smooth
projective curve of genus g > 1, every holomorphic one-form has exactly 2g — 2
zeros, counted with multiplicity. The situation for surfaces is less clear, but one
can still show that every holomorphic one-form on a surface of general type must
have a non-empty zero locus. (We'll see a proof of this fact in a second.) This
lead Christopher Hacon and Sandor Kovécs (and, independently, Tie Luo and Qi
Zhang) to conjecture that the same result should hold on any variety of general
type; they also proved their conjecture for threefolds. A few years ago, Mihnea
Popa and I used Z-modules to prove the conjecture in general. The proof I am
going to present is a simplified version of our original argument that Chuanhao Wei
and I found sometime afterwards.

Theorem 26.1. Let X be a smooth projective variety over the complexr numbers.
If X is of general type, then every holomorphic one-form on X has a non-empty
zero locus.

To be precise, for any w € H°(X, QL ), we define the zero locus to be
Zw)={reX |wT,X)=0}.

Then the theorem is claiming that if X is of general type, in the sense that
dim H°(X,w%®) grows like a constant times m¥™ X then necessarily Z(w) # 0
for every w € H°(X, Q% ). Another motivation for thinking that this might be true
is that one-forms are dual to vector fields, and zero loci of vector fields are of course
related to the topology of X. (For example, if X admits an everywhere nonzero
vector field, then its Euler characteristic must be zero.)

Ezxample 26.2. Let us consider the case of surfaces. Suppose that X is a smooth
projective surface of general type. Suppose that there was a holomorphic one-form
w € H°(X, Q%) with empty zero locus. We will use some of the many numerical
identities for surfaces to produce a contradiction.

First, we observe that X must be minimal. Otherwise, X would be the blowup
of a smooth projective surface Y at some point, and since H%(X, Q%) = HO(Y,Q},),
the one-form w would be the pullback of a one-form from Y. But then w has to
vanish at some point of the exceptional divisor, contradiction. Now the fact that X
is a of general type means that c;(X)? > 1; together with the Bogomolov-Miyaoka-
Yau inequality, we get

3ca(X) > er(X)? > 1.

But ¢2(X) is the topological Euler characteristic of X, and so e(X) # 0.
Now the contradiction comes from the fact that a surface with a nowhere vanish-
ing holomorphic one-form must have e(X) = 0. To see this, consider the complex

0— O0x =5 0% =5 0% — 0
where the differential is wedge product with w. This is a Koszul complex, and

since Z(w) = 0, the complex is exact, and so its hypercohomology is trivial. The
hypercohomology spectral sequence

EVY = HY(X, Qg()
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therefore converges to zero. This gives

e(X) = Z(—l)p+q dim HY(X, Q%) = Z(_l)pﬂ dim EP?

p,q p,q
= (~1)P*dim EZY =0,
p,q

since the alternating sum of the dimensions is preserved under taking cohomology.

Let us make a few general observations about Theorem 26.1. The condition that
X is of general type can be restated as follows: for any ample line bundle L on X,
there is some m > 1 such that w% ® L~ has a section.

Example 26.3. In the special case m = 1, we can use the Nakano vanishing theorem
to give a simple proof of Theorem 26.1. Suppose that H%(X,wx @ L~!) # 0,
and that there is a holomorphic one-form w € H?(X, Q%) with Z(w) = 0. Let
n = dim X. As before, the complex

0— Ox 50 2% - 5 0% —0
is exact, and so the hypercohomology spectral sequence
P — H9(X, 0% 0 L)
converges to zero. Since L is ample, the Nakano vanishing theorem tells us that

EP? =0 for p+ q < n. In particular, all the differentials going into the term in the
position (n,0) vanish. But then

EM0 = EPY = HY(X,wx @ LY #0,

which is a contradiction. Unfortunately, this simple argument totally breaks down
once m > 2. But we will see that it is still basically a vanishing theorem that is
responsible for Theorem 26.1.

Another observation is that holomorphic one-forms are closely related to abelian
varieties. Indeed, we always have the Albanese mapping
alb: X — Alb(X) = HY(X,Q4)*/H,(X,Z)
to an abelian variety of dimension h°(X, QY ), and by construction,
H(X,QY) = H°(Alb(X), Q}Ub( x))-

It thus makes sense to consider more generally an arbitrary morphism f: X — A
to an abelian variety A, and to ask about the zero loci of the holomorphic one-
forms f*w, for w € H°(A,QY). Of course, we should replace the assumption “X of
general type” by the condition that w% ® f*L~! has sections for m > 1, where L
is an ample line bundle on A. This suggests the following more general result.

Theorem 26.4. Let f: X — A be a morphism from a smooth projective variety
to an abelian variety. If HO(X, w2 ® f*L™1) # 0 for some m > 1 and some ample
line bundle L on A, then one has Z(f*w) # 0 for every w € HY(A4,QY).

Set W = HO(A, 9}4), and consider the incidence variety
Zy={(z,w) € X xW |z € Z(f'w)} C X x W.

The theorem is claiming that the second projection ps: Zy — W is surjective.
Since A is an abelian variety, we have T*A = A x W, and so the usual diagram of
morphisms between cotangent bundles becomes:

XxW -4, mx

lfxid
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With this notation, we have Z; = df ~1(0). When we looked at direct images for
Z-modules (in Lecture 13), we encountered the set

Sp = (f x id)(df 1(0)) = (f x id)(Zy).

It contains the characteristic varieties of the direct image Z-modules H’ f1wx. (In
Lecture 13, we proved this for closed embeddings.) Concretely,

Sr={(a,w) e AxW | fTHa)NZ(fw)#0},

and so Z(f*w) # 0 for every w € W is equivalent to the surjectivity of po: Sy — W.
This suggests the following strategy for proving Theorem 26.4: find a Z4-module
whose characteristic variety Ch(M) is contained in the set Sy, and then use results
about Z-modules to show that pa: Ch(M) — W must be onto.

We could not actually get this idea to work, but we found a good replacement
for it, based on work of Viehweg and Zuo. Here is a rought outline for the proof of
Theorem 26.4. On the cotangent bundle T*A = A x W, we construct a morphism
ZF — 4 between two coherent sheaves, with the following three properties:

(a) The support of .Z is contained in the set Sy.

(b) The induced morphism H?(A x W,.%#) — H°(A x W,¥) is nontrivial.

(¢) The coherent sheaf (p2),¥ on W is torsion-free.
Here p1: AXxW — A and py: A x W — W are the two projections. We will see
next time that ¢ is (almost) the coherent sheaf coming from a Z4-module M with
a good filtration Fe M.

Lemma 26.5. Such a morphism % — & can only exist if po(Sy) = W.

Proof. Consider the induced morphism

(p2)«F — (p2):9.
Both sheaves are coherent (by properness of ps), and the support of (p2)«.Z is
contained in the set p2(Sy). Now suppose that p2(Sy) # W. Then (p2)..Z is a

torsion sheaf, and so the morphism to the torsion-free sheaf (p2).¥ must be trivial.
Taking global sections, we find that

HO(A X W, Z) = HY(W, (p2)..7) — HO(W, (p2).9) = HO(A x W, %)
is trivial; but this is a contradiction. [l

Filtered Z-modules and the Rees construction. For the proof of Theo-
rem 26.4, it is important to work with pairs (M, Fe M), where M is a coherent
Z-module, and Fe M a good filtration. Here the filtration is not just a tool to
study Z-modules, but an essential piece of data. One can define the direct image
and duality functors for filtered Z-modules by analogy with the unfiltered case, as
follows.

Let X be a nonsingular algebraic variety over a field k (of characteristic zero).
We can combine Zx with its order filtration FyZx into a single sheaf of algebras

o0
Ix = @ FyDx,
k=0
called the Rees algebra of Px. This is a sheaf of non-commutative graded algebras,
with multiplication defined in the obvious way. We denote by z € @X,l the image
of 1 € F19x; then P contains a copy of Ox|z]. Tt is easy to see that

9}(/9}((2 — Zo) ~ 9y

for every zg # 0, because in the quotient, each F, Zx gets identified with its image
in Fp419x. Likewise,
9}(/@){2 = gI“F@)(,
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because in the quotient, the image of F,Zx in Fj11%x goes to zero. We can
therefore think of the Rees algebra Dx as a family of algebras over the affine line
Spec k[z], in which Zx deforms into gr’ Zx.

Given a coherent left (or right) Zx-module M and a good filtration Fe M, we
can form the Rees module

M =RpM =P FM.

kEZ

This is a graded left (or right) module over Zx in the obvious way; since the
filtration is good, M is coherent over Zx. As before, one checks that

M/(Z - ZQ)M =M
for every z¢ # 0, whereas
M)z M = grf M.
An important point is that not every graded Zx-module comes from a filtered
P x-module.

Lemma 26.6. A graded 9x -module M is the Rees module of a filtered Px -module
if and only if it has no z-torsion.

Graded Zx-modules without z-torsion are called strict. Since Speck[z] is one-
dimensional, this condition is equivalent to flatness over k[z].

Proof. Tt is easy to see that a graded Zx-module of the form RpM does not have
any z-torsion. Let us prove the converse. Suppose for the time being that M is
any graded left Zx-module. Define

M=M/(z-1)M,

which is a left module over Zx /Zx (z—1) = Px. The image of the k-th graded piece

M,, defines a subsheaf F,M C M, with the property that F;9x - FyM C Fj ;M.

It follows that the Rees module RpM is a graded @X—module without z-torsion.
Now we have a morphism of graded Zx-modules

©: M — RFM,

that takes My to FjM; by construction, this morphism is surjective. One checks
that ker ¢ consists exactly of those sections of M that are killed by some power of
z. In particular, ¢ is an isomorphism whenever M does not have any z-torsion. [

Functors for Rees modules. One can define all the usual functors for Z-modules
also for modules over the larger algebra 2. The two functor we need are the direct
image functor and the duality functor. Given a morphism f: X — Y, we define
the transfer module

Dxy = Ox Qf-10y 19y
by the same formula as for Z-modules. It is again a (@X, ffléy)—bimodule. We
can then define the direct image functor

F(0) = RE(= B Fxy): DL (GF) = Db (FF)

g9,q¢

between the derived categories of quasi-coherent graded right Z-modules. As in the
case of Z-modules, one can use induced Z-modules to show that the direct image
by a proper morphism preserves coherence.

If we specialize to z = 1, for example, by taking the (derived) tensor product
with 2/ (z — 1), we recover the usual direct image functor for right Z-modules.
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On the other hand, we can specialize to z = 0, by taking the (derived) tensor
product with 2/%z. This gives us a functor

gr’: D} (2%) = D} o(&r” 7x),

g.qc
with takes a Rees module of the form RpM to the associated graded module grf’ M.
By computing what happens to the transfer module, one checks that the following
diagram is commutative:

50 f+ =0
D!l; QC(‘@XP> D_zl; qc(-@Yp)

[ Jo

Db (erf 9x) —— D (erf Dy)

g9,4q¢ g,qc¢

Here the arrow on the bottom is the functor

L
Rf.(— Qgray [ (er" Dy)): D) . (er" Zx) = D} ,.(er" Dy).

If we forget about the grading, then quasi-coherent sheaves of grf”Zx-modules are
the same thing as quasi-coherent sheaves of O« x-modules on the cotangent bundle.
The geometric interpretation of the above functor is then

R(p2): o L(df)*: Dgo(Or-x) = Dio(Or-y),

where the morphisms between cotangent bundles are as in the diagram below.
X xy Ty =2 X

2

™Y
The direct image functor for Rees modules therefore interpolates between the usual
direct image functor for Z-modules, and the natural functor on the level of cotan-
gent bundles. One subtle point is that even if we start from a Rees module RpM,
the direct image )
f+(RFM) € Dg qc(‘@l(;p)

might have z-torsion (= not be strict). If that happens, it means that fi (RpM)
has more cohomology that the complex of right Zy-modules fi M. (The extra
cohomology is z-torsion, of course.) Equivalently, it means that the complex of
graded grf’ @y -modules

RS (" M Sy [ (& Ty )
has some additional cohomology that is not visible to the direct image f M of the
underlying Z-module.
One can also define a duality functor for Z-modules. As with Z-modules, the
tensor product wx ey QX has two commuting structures of right @X modules. If
M is a right Zx-module, then

Homg, (M,wx @6y Ix)

still has the structure of a right Px-module. Passing to derived categories, we
obtain the (contravariant) duality functor

Dx = RHomg (- wx ®oyx x)n]: D}, (23) = Db (DE).

g qc 9,q¢
Here [n] means shifting to the left by n = dim X steps. If we specialize to z = 1, we
recover the usual duality functor for Zx-modules; if we specialize instead to z = 0,

we obtain the functor

RHomng@x (_an Reox ng@X)[ } DS qc(ng'@X> - D; qc(ng@X)op



136

We can again express this in geometric terms: if 4 denotes the coherent sheaf on
T*X corresponding to gr’” M, then the above functor is

RHome,.  (¥4,p"wx)[n],

where p: T*X — X is the projection. As before, Dx(RprM) can acquire z-torsion.
For instance, suppose that M is a holonomic right Zx-module. Then

RHomg, (M,wx @6, Zx)n]

only has cohomology in degree zero (where we get the holonomic dual M*). But
the complex Dx(RrpM) might have cohomology in other degrees as well (which
will then be z-torsion). In fact, one can show that Dx (Rrp.M) is again strict if and
only if the complex

RHomgr g, (gr" M,wx ®e, gr¥ Zx)[n]

only has cohomology in degree zero; in commutative algebra terminology, this is
equivalent to grf M being a Cohen-Macaulay module over grf’ Zy.

Hodge modules. You can think of Hodge modules as being a special class of
filtered Z-modules that behave well under the various functors. More precisely, a
Hodge module on a nonsingular algebraic variety X is a (regular holonomic) right
P x-module M together with a good filtration Fe M. There is some extra data,
too, and several very restrictive conditions have to be satisfied, which make sure
that the pair (M, Fe M) comes from a polarizable variation of Hodge structure.

Ezample 26.7. The pair (wx, Fewx ), with the filtration defined by F_,,_jwx =0
and F_,wx = wy, is an example of a Hodge module. That this is so is a deep
theorem by Morihiko Saito, who created this theory.

For our purposes, the following three facts are important. (Again, all three are
difficult theorems due to Saito.) First, if (M, Fe M) is a Hodge module on X, and
if f: X = Y is a proper morphism between nonsingular algebraic varieties, then all
cohomology modules of the complex f (RpM) are strict, and the resulting filtered
Py-modules are again Hodge modules on Y. In particular, we can compute their
associated graded modules:

. . L
grf "I f M= RIf, (ng/\/l QgrF 9y f*(gI‘ng».

Second, the duality functor preserves Hodge modules: the complex Dx (RpM) only
has cohomology in degree zero, which is strict, and the resulting filtered Zx-module
(M’ F, M) is again a Hodge module on X. Once again, this means that we can
compute the associated graded module:

grf M’ 2 R"Homgr g, (1" M, wx @0y gr” Dx).

Third, Hodge modules on projective varieties satisfy a vanishing theorem similar to
the Kodaira vanishing theorem. Given a Hodge module (M, Fe M), we can form
the Spencer complex

sp(M):[M®/TL\yX—>--.—>M®9X—>M}

which lives in degrees —n, ..., 0. (Since M is regular holonomic, Sp(M) is actually
a perverse sheaf, by Kashiwara’s theorem.) The Spencer complex is filtered by the
family of subcomplexes

FeSp(M) = [FoaM@ \ Zx -+ > FoiMe Ix - B,
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and the k-th subquotient

gri Sp(M) = [grinM @ \Ix = = grf JMe TIx — grf M

is a complex of coherent &x-modules. For example, for the pair (wx, Fewx ), the
Spencer complex is the holomorphic de Rham complex, and the (—p)-th subquotient
is Q% , placed in degree n — p.

Theorem 26.8 (Saito’s vanishing theorem). Let X be a nonsingular projective
variety, and L an ample line bundle. If (M, FeM) is a Hodge module on X, then

Hi(X, gri Sp(M) ® L) =0 for everyi >0,
H"(X7 gri Sp(M) ® L_l) =0 foreveryi<D0.

Hodge modules on abelian varieties. Let us now return to abelian varieties.
Suppose that A is an abelian variety and L an ample line bundle on A. Since the
tangent bundle of A is trivial, one can prove a much stronger vanishing theorem.
Let me explain how this works. Fix a Hodge module (M, Fe M) on A, and for
simplicity, suppose that F_1 M =0 and FyM # 0. Then

grg Sp(M) = gri M,
and so Saito’s vanishing theorem gives
(26.9) HY(A,grfM®L)=0 foralli>0.
The next subquotient of the Spencer complex is
grf'Sp(M) = [groFM ® Ta — grf/\/t}.
Since T4 = ﬁi‘fg, where g = dim A, the term gri’ M ® Z4 has no higher cohomology
by (26.9). On the other hand, the vanishing theorem says that
H'(A,gr{Sp(M)® L) =0 for all i > 0.
If we put these two facts together, we find that

(26.10) Hi(A,grfM®L)=0 foralli>D0.
Continuing in this manner, we arrive at the conclusion that
(26.11) HY(A,grf M®L) =0 foralli>0,

and so all graded quotients gr,f M satisfy the same Kodaira-type vanishing theorem.

Now recall that T*A = A x W, where W = H°(A, Q). The vanishing theorem
can be used to produce torsion-free sheaves on W. Suppose that (M, FoM) is a
Hodge module on A. Denote by ¢ the coherent sheaf on the cotangent bundle
corresponding to the associated graded module grf’ M. Also let p;: A x W — A
and py: A X W — W be the two projections.

Lemma 26.12. If L is an ample line bundle on A, then (p2)«(4 ®p{L’1) is a
torsion-free coherent sheaf on W.

Proof. Coherence is clear (because ps is proper). Let us first analyze what happens
when we tensor by L instead of L~!. The higher direct images sheaves

R'(p2)+(% ®piL)
are coherent, and since W is affine, we have
H°(W,R'(p2)+(9 @ piL)) = H'(Ax W, 9 @ p{L) = H' (A, (p1).4 @ L).

This vanishes for every i > 0 because of (26.11) and the fact that (p;).¥ = grf’ M.
The conclusion is that the complex

R(p2)+(4 @ piL)
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is actually a single coherent sheaf in degree zero.

Now let us turn to the sheaf (ps). (¢ @piL~1). If we apply Grothendieck duality
for the proper morphism p,, we get
RHom gy, (R(p2)«(4 @ piL "), Ow) = R(pa).RHome, .\, (4 © pi L', pjwalgl),

since the relative dualizing sheaf is w g w/w = pjwa. We can rewrite the right-hand
side in the more compact form

R(p2).(¥" @ piL),
where we have introduced the new complex
Y =RHome,,., (4, piwa)lg).

We can now use the results about the duality functor. They imply that ¢’ is actually
a coherent sheaf; more precisely, we have Dx (RpM) = Rp M’ for a Hodge module
(M, F,M’), and ¢’ is the coherent sheaf associated to grf’M’. According to the
discussion above,

RHome,, (R(p2)(4 @ pi L"), Ow) = (p2)« (9" @ piL)
is therefore a coherent sheaf in degree zero. After dualizing again, we get

(p2)«(¢ @ piL™") = Home,, ((p2)(4' @ piL), Ow),

which is reflexive, hence torsion-free. O
Exercise.

Ezercise 26.1. Let M be a coherent graded left Zx-module. Define M = M/(z —
I)M, and let F, M be the image of M.
(a) Show that Fe M is a good filtration.
(b) Show that the kernel of the morphism p: M — RpM consists exactly of
those sections that are killed by some power of z.
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LECTURE 27: MAy 17

Today is the last class of the semester. We are going to finish the proof of
Theorem 26.4. Let me state the result again.

Theorem. Let f: X — A be a morphism from a smooth projective variety to an
abelian variety. If HO(X,w% @ f*L™Y) # 0 for some m > 1 and some ample line
bundle L on A, then one has Z(f*w) # 0 for every w € H(A, Q).

Last time, we introduced the set

Sp={(a,w) e AxW | fTHa)NZ(f*'w) #0} = (f x id)(df)~"(0)),

where the notation is as follows:

XxW -4, mx

lfxid

We also observed that the result about one-forms is equivalent to the surjectivity
of po: Sy — W. Finally, we talked briefly about filtered Z-modules and Hodge
modules, and we showed that if (M, Fe M) is a Hodge module on the abelian
variety A, and if ¢ is the coherent sheaf on T*A = A x W corresponding to grf’ M,
then for any ample line bundle L,

(p2)«(4 @ piL7")

is a torsion-free coherent sheaf on W. This was a consequence of Saito’s vanishing
theorem, ultimately. Today, I will show you how to construct the required objects
from the hypothesis that W% ® f*L~! has a section.

Base change. Whenever the m-th power of a line bundle has a section, one can
construct a cyclic covering. We can put ourselves in this situation with the help
of a very useful small trick. On the abelian variety A, we have the multiplication
homomorphism

ml: A=A, a—a+---+a,

%./_/
m times

for any m € Z. It is finite and étale, of degree equal to m?9™ 4 which is the
same as the number of m-torsion points in A. The effect of pulling back by [m] is
to make line bundles more divisible. In fact, if L is symmetric, in the sense that
[-1]*L = L, then one has [m]*L = L™ if L is anti-symmmetric, in the sense that
[~1]*L = L1, then one still has [m]*L = L™. Since we can write any line bundle
as the product of a symmetric and an anti-symmetric one, it follows that

[2m]*L = L'

for some other line bundle L’. Now consider the fiber product diagram

L
A2 g
Because 1 is finite and étale, we get ¥*wx = wx/, and therefore
(W@ fFLY) 2 (wx @ L)
Again because 1) is finite and étale, it does not affect the zero loci of holomorphic
one-forms; more precisely, we have

VTZ(ffw) = Z(fw),
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because [2m]*w = 2m-w. For the purpose of proving Theorem 26.4, we can therefore
safely replace f: X — A by its base change f’: X' — A; this allows us to assume
that the m-th power of the line bundle B = wy ® f*L~! has a nontrivial global
section.

Cyclic coverings. Suppose for a moment that we have a nonsingular algebraic
variety X and a line bundle B, as well as a nontrivial global section s € H(X, B™)
for some m > 2. In that case, one can construct a finite morphism

Y - X

with the property that 7*B has a global section sy such that si' = ms. Since the
group of m-th roots of unities naturally acts on Y, this is called the cyclic covering
determined by the section s.

Ezxample 27.1. When B is the trivial bundle, s is just a regular function on X; in
that case, Y is the closed subscheme of X x A! defined by the equation t™ = s,
where t is the coordinate on A!. Here ¢ serves as the m-th root of s.

The construction in the general case is similar. Let p: V = V(B) — X be the
algebraic line bundle (whose sheaf of sections is the locally free sheaf B). The
pullback 7*B has a tautological section so € H°(V,7*B), and one defines Y C V
as the closed subscheme cut out by the section sg* — 7*s of the line bundle 7*B™.
By construction, the morphism 7: Y — X is finite of degree m, and 7*B has a
global section sg such that sj* = 7*s. (This construction has a simple universal
property, which I will leave to you to formulate and prove.)

Unless the divisor of s is nonsingular, the cyclic covering Y will be singular, but
we can resolve its singularities. In this way, we obtain a proper morphism

p: Z =X,

generically finite of degree m, from a nonsingular algebraic variety Z, such that the
line bundle ¢* B has a section sy € H%(Z, ¢*B) with sj* = ¢*s.

Sheaves. If we apply the cyclic covering construction to B = wx ® f*L™!, we
obtain the following diagram:

Here Z is a nonsingular projective variety of dimension dim Z = dim X = n, and
@ is generically finite of degree m. We may view the resulting nontrivial section of
©*B = p*wx ® h*L~! as a nontrivial morphism

(27.2) 'L — p wx.

We can use the morphism from Z to A to construct a filtered Z-module on the
abelian variety. The underlying Z4-module is simply the direct image M =
H°hywz. Since (wz, Fywyz) is actually a Hodge module on Z, the graded Da-
module M = H°h, (Rpwy) is strict, and so there is a good filtration Fy M such
that M = RpM. Moreover, (M, F,M) is again a Hodge module on A. If we
denote by ¢ the associated coherent sheaf on 7% = A x W, then we know from last
time that
(p2)« (¢ @ piL7")

is a torsion-free coherent sheaf on W.

Since we constructed ¢ from the morphism h: Z — A, which is more singular
than the original morphism f: X — A, the support of ¢ has nothing to do with
the set Sy C T A that we are interested in; in fact, one has Supp¥ C S5},, which is
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much larger in general. But we can use the existence of (27.2) to construct another

coherent sheaf . with Supp.# C S;. Consider again the “big” diagram

dh

ZxW — ZxxT*X —25 177

J{Lp xid J{pz

Last time, we said that for direct images of Hodge modules, one can compute the
corresponding sheaves on the cotangent bundle very explicitly. The characteristic
variety of wy is the zero section in 7% Z, and the resulting coherent sheaf is i,wz,
where i: Z <+ T*Z is the zero section. In the case of M = H’h wy, the formula
from last time says that ¢ is the 0-th cohomology sheaf of the complex

R(h x id). L(dh)* (iswy).

Let p: T*Z — Z be the projection. Since the zero section is exactly the vanishing
locus of the tautological section of p*Q}, the Koszul complex

Pyt = [p*@’z =P Q= p*Q’%}
is a locally free resolution of the coherent sheaf i wz on T*Z. Consequently,
L(dh) (iwz) = [pi07 = piQ% = -+ = piQ%].
which means that ¢ is the 0-th cohomology sheaf of the complex
R(h x id), [p;ﬁz S, pmg]

Now consider the morphism ¢: Z — X. For each p > 0, we have a pullback
morphism ¢*Qf — QL ; these fit together into a morphism of complexes

O 1 pi‘so*QS?] - [piﬁ’z = piQy == pTQ’z’]
In derived category notation, this means that we have a morphism
L(p x id)*L({df)* (iswx) — L(dh)* (i,wz).

Here i: X — T*X is the zero section, and p: T*X — X the projection. Since
1.Ox Qp*wx 2 i, (Ox Q1" p*wx) = i.wx by the projection formula, we can rewrite
this morphism in the more convenient form

pi(¢p*wx) @ L(p x id)* L(df)* (i« Ox ) — L(dh)* (i.wz).
Now we compose this with (27.2) to obtain a morphism
p1(h*L) ® L x id)*L({df)*(i+Ox) — L(dh)* (i,wz).

Move the line bundle factor to the other side, and use the adjunction between the
two functors L(¢ x id)* and R(¢ x id).. This gives an equivalent morphism

L(df)"(i.0x) = Rlp x id). (pi ("L ™) @ L(dh)" (i.wz) ).

Now push forward to A x W and use the projection formula to pull out the line
bundle factor. This finally gives us the following morphism

(27.3) R(f x id).L(df)*(i+Ox) — R(h x id)L(dh)* (i.wz) @ p{L"
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in the derived category D’C’Oh(ﬁ Axw). If we take cohomology in degree zero, we
therefore obtain a morphism of coherent sheaves
(27.4) F -9 epiL"

Here .# is the 0-th cohomology sheaf of the complex R(f x id).L(df)*(i+0x), and
as such, it is obviously supported inside the set

( % id) (4 1(0)) = 5.

Now all the pieces are in place to prove the theorem about one-forms.

Proof of Theorem 26.4. We are trying to show that p»: Sy — W is surjective.
Suppose, for the sake of argument, that po(Sy) # W. Then (p2)..Z is a coherent
sheaf on W whose support is contained inside a proper closed subset, hence a torsion
sheaf. Because (p2)«(4 ® pjL~1!) is torsion-free, the morphism

(P2)+F — (p2)+(4 @ pILTY)
must be trivial. Taking global sections, this means that the morphism
HY(AXxW,Z) = H (AxW,9 @ p; L")

is also trivial. Now both sides are actually graded modules, due to the fact that
(27.3) is constructed from sheaves on the zero section (which are stable under the
natural C*-action on the cotangent bundle). The first nontrivial graded piece (in
degree —n) comes out to be

H(X,0x) = H(Z,wz @ h*L™1)
But now we have a contradiction, because the composition h*L — ¢*wx — wyz
is not the zero morphism, due to the fact that (27.2) is nontrivial by assumption.

This means that we have a nontrivial section of wy ® h*L~!, and so the above
morphism cannot have been zero. The conclusion is that p2(Sy) = W. g
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