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In the mid-1990s, Seiberg-Witten theory revealed
that many of Donaldson’s previous results on
4-dimensional differential topology were intimately
related to the behavior of the scalar curvature.

Much of Donaldson’s work had focused on the study
of complex algebraic surfaces, where he had discov-
cred that certain algebro-geometric invariants were,
unexpectedly, also diffeomorphism invariants.

This talk focuses on the relationship between a complex-
analytic invariant called the Kodaira dimension, and

a diffeomorphism invariant called the Yamabe in-
variant (or sigma constant), which encodes infor-
mation about the scalar curvature.

The new results concern complex surfaces which do
not admit Kahler metrics, and thus are far-removed
from the original context.
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Notation. In this talk, s = scalar curvature

_J iy
S—Tj—RJ,,;j,

where = Riccl tensor.

A Riemannian metric g is called Einstein iff it has
constant Ricecl curvature — 1.e.

r=Ag

for some constant A € R.
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Variational Approach

If M smooth compact n-manifold, n > 3,
Gy = { smooth metrics g on M}

then Einstein metrics = critical points of normal-
ized Finstein-Hilbert action functional

é":QM%]R{

g —s V(2 / sodjig
M

where V' = Vol(M, ¢) inserted to make scale-invariant.
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Basic difficulty:

&(9) = V(Z_n)/n/ Sgditg
M

not bounded above or below.

Yamabe:
Consider any conformal class

v=1lg0] = {fgo | u: M — R"},

Then restriction &| is bounded below.
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Trudinger (1960s)
Aubin (1970s)
Schoen (1980s)

3 metric g € v which mimimizes &|.
Has s = constant.

Unique up to scale when s < 0.
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Y(M,~) = inf fM °g THy

g€y n—2’
(s dig)
If g has s of fixed sign, agrees with sign of Y (M, |g]).

Aubin:
Y(M,~) < &9", ground>

Schoen:
= only for round sphere.



Yamabe’s Dream



Yamabe’s Dream




Yamabe’s Dream




Yamabe’s Dream




Yamabe’s Dream




Yamabe’s Dream




Yamabe’s Dream

Too good to be true!



Yamabe’s Dream

Too good to be true! But ...



Definition. The Yamabe invariant of the smooth
compact n-manifold M s given by

@(M)ngpY(M,w



Definition. The Yamabe invariant of the smooth
compact n-manifold M s given by

o Jusg dig
(M) =supY(M,~)=sup inf —.

! T IS (fM dﬂg)T




Definition. The Yamabe invariant of the smooth
compact n-manifold M s given by

o Jusg dig
(M) =supY(M,~)=sup inf —.

! T IS (fM dﬂg)T

R. Schoen ('87): “sigma constant”
O. Kobayashi ('87): “mu invariant”



Definition. The Yamabe invariant of the smooth
compact n-manifold M s given by

o Jusg dig
(M) =supY(M,~)=sup inf —.

! T IS (fM dﬂg)T




Definition. The Yamabe invariant of the smooth
compact n-manifold M s given by

o Jusg dig
(M) =supY(M,~)=sup inf —.

! T IS (fM dﬂg)T

Y (M) >0 <= M admits g with s > 0.



Definition. The Yamabe invariant of the smooth
compact n-manifold M s given by

o Jusg dig
(M) =supY(M,~)=sup inf —.

! T IS (fM dﬂg)T

Y (M) >0 <= M admits g with s > 0.

% (M) >0 <= M admits unit-volume ¢
with s > —e, Ve > 0.



Definition. The Yamabe invariant of the smooth
compact n-manifold M 1s given by

o Jusg dig
(M) =supY(M,~)=sup inf —.

! ! gév(fifdﬂg)77_

Y (M) >0 <= M admits g with s > 0.

% (M) >0 <= M admits unit-volume ¢
with s > —e, Ve > 0.

Problem. What can we say about % (M) for
specific classes of manifolds?
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compact n-manifold M 1s given by

o Jusg dig
(M) =supY(M,~)=sup inf —.

! ! gév(fifdﬂg)77_

Y (M) >0 <= M admits g with s > 0.

% (M) >0 <= M admits unit-volume ¢
with s > —e, Ve > 0.

Problem. What can we say about % (M) for
specific classes of manifolds?

Problem. Compute actual value of % (M) for
concrete, interesting manaifolds.
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o Jusg diyg
(M) =supY (M,~)=sup inf —.

! T IS (fM dﬂg)T

Theorem (Gromov-Lawson /Stolz/Petean /Perelman).

Let M be a compact simply connected n-manifold,
n # 4. Then

(M) > 0.

Theorem (L. '96). There exist compact simply
connected 4-manifolds M ; with % (M ;) — —oo.

Moreover, can choose M j such that each %/ (M ;)
18 realized by an Finstein metric g;.
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Theorem (1.'99). Let M be the smooth 4-manifold
underlying any compact complex surface (M S )
of Kahler type. Then

Y (M) >0 <= Kod(M,.J)=—o0,

Y(M)=0 <= Kod(M,J)=0 orl,

Y (M) <0 <= Kod(M,.J)=2.

Kéhler-type <= b1(M) = 0 mod 2
<= deformation of algebraic surface.

Today: what happens when by (M) is odd?



Kodaira Classification



Kodaira Classification of Complex Surfaces



Kodaira Classification of Complex Surfaces

Most important invariant: Kodaira dimension.



Kodaira Classification of Complex Surfaces
Most important invariant: Kodaira dimension.

Given (M*,.J) compact complex surface,



Kodaira Classification of Complex Surfaces
Most important invariant: Kodaira dimension.

Given (M 1 ) compact complex surface, set

log dimI(M, O (K¢
Kod(M) = limsup og diml(M, OLK ™))
(—+00 log €



Kodaira Classification of Complex Surfaces
Most important invariant: Kodaira dimension.

Given (M?™, J) compact complex m-manifold

log dimI(M, O (K¢
Kod(M) = limsup og diml(M, OLK ™))
(—+00 log €

where K = A™V is canonical line bundle.



Kodaira Classification of Complex Surfaces
Most important invariant: Kodaira dimension.

Given (M 1 ) compact complex surface, set

log dimI(M, O (K¢
Kod(M) = limsup og diml(M, OLK ™))
(—+00 log €

where K = A%V is canonical line bundle.



Kodaira Classification of Complex Surfaces
Most important invariant: Kodaira dimension.

Given (M 1 ) compact complex surface, set

log dimI(M, O (K¢
Kod(M) = limsup og diml(M, OLK ™))
(—+00 log €

where K = A%V is canonical line bundle.

Then Kod(M, J) € {—00,0,1,2}



Kodaira Classification of Complex Surfaces
Most important invariant: Kodaira dimension.

Given (M 1 ) compact complex surface, set

log dimI(M, O (K¢
Kod(M) = lim sup og dimI (M, O(K ™))
(—+00 log €

where K = A%V is canonical line bundle.

Then Kod(M, J) € {—00,0,1,2} is exactly
max dimg Image(M --+ CPy)



Kodaira Classification of Complex Surfaces
Most important invariant: Kodaira dimension.

Given (M 1 ) compact complex surface, set

log dimI(M, O (K¢
Kod(M) = limsup og diml(M, OLK ™))
(—+00 log €

where K = A%V is canonical line bundle.

Then Kod(M, J) € {—00,0,1,2} is exactly
max dimg Image(M --+ CPy)
over maps defined by holomorphic sections of /& L
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Examples. Simply connected examples:

| XX X XX NS
X X X X X X X >
X X X X X X X X
X X X
> X >
X X X XX XS

M = (X1 % X9)/Zo

Kod (M) = Kod (31) + Kod (339)
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A complex surface X is called minimal if it is not
the blow-up of another complex surtace.

Any complex surface M can be obtained from a
minimal surface X by blowing up a finite number
of times:

M =~ X#kCP;
One says that X is minimal model of M.

The minimal model X of M is unique if
Kod(M) # —o0.
Moreover, always have
Kod(X') = Kod(M),

and Kod invariant under complex deformations.
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For b1 even:
Kod(X) X (X))
—oo | CPy, and CIPy bundles over curves |+, 0, —
0 K3, T 4, and quotients 0
1 most elliptic fibrations over curves 0
2 “general type” +
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Kodaira Classification of Minimal Surfaces

For by odd:
Kod(X) X (X))
— 00 “Class VII'” 0, —
0 covered by T2 bundles over T2 0
1 certain elliptic fibrations over curves| 0

“Fibration” allows singular fibers, so not fiber-bundle.
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Theorem (L '96). Let (M*, J) be a compact com-
plex surface of Kod = 2, and let (X,.J') be its
mainimal model. Then

V(M) =& (X) = —4m\[20:2(X, J') < 0.

Thus, blowing up doesn’t change ¢/ in this setting!

Seiberg-Witten theory: upper bound.
(Geometric construction: this is sharp.

[n fact, if X admits K-E metric, achieves %/(X).
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Theorem B. Let (M, J) be a compact complex
surface with Kod # —oo, and let (X,.J') be its
minimal model. Then

Y (M) =¥ (X).

When Kod # —oo, parity of by is unimportant.

We'll see that this isn’t so when Kod = —oc!
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[L 799 covers most pieces of Theorems A and B.
Completely covers the cases of Kod = 0 and 2.

Proves /(M) > 0 when Kod = 1.

Key point: Any elliptic M admits sequence g; of
metrics with s uniformly bounded, but volume “\, 0.

Indeed, minimal elliptic X admits sequence g; of
metrics with 7 uniformly bounded, and volume ™\, 0.

Missing piece:
Prove 2 (M) < 0 when Kod =1 and by is odd.
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Lemma C. Let (M,.J) be a compact complex
surface with by odd and Kod (M) = 1. Then M

does not admit a Riemannian metric of positive
scalar curvature.

Proposition. Lemma C = Theorems A & B.

Hidden in plain sight: Brinzanescu '94: In elliptic
surface with by odd, no fiber is a union of rational
curves. Minimal = at worst multiple fibers!
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We gave two very different proofs of Lemma C:
e Via stable-minimal hypersurfaces.

— Downward induction method of Schoen-Yau:

— 3 stable minimal hypersurface with ¢ < 0.

e Via an exotic form of Seiberg-Witten theory:.

— No Seiberg-Witten basic classes available.
— But we do have mock-monopole classes.

— Elucidates misunderstood result of Kronheimer.

[ will focus on second method in this lecture.
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Important special case:

If M admits an almost-complex structure ./,

then .J determines a specific spin® structure,
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Special Spin© Structures:
Let J be any almost complex structure on M.
Let L = A2 be its anti-canonical line bundle.

Vg on M, the bundles

V_|_ _ AO,O @/\072
V. = AO,l

can formally be written as
Ve =S4+ ® LY/ 2,
where S are left & right-handed spinor bundles.
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Every unitary connection 6 on L induces
spin® Dirac operator

DQ ) F<V+> — F(V_>
generalizing 0 + 0*.

Weitzenbock formula: VO € I'(V4),

1 S 9
(@, Dy* Dg) = S22 + [Vl + o)
+2<_iF9+7 O‘((I)»

where g™ = self-dual part curvature of 6, and
oc: Vi —=ATisa natural real-quadratic map,

()] = —=|5[2

22
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subject to Seiberg- Witten equations
Dgd =0
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This leads to non-trivial scalar curvature estimates.



consider both ¢ and 6 as unknowns,

subject to Seiberg- Witten equations
Dgd =0
FJ =io(®).

Weitzenbock formula implies

OA|D|? + 4|V yd|? + s|D|* + |D|*
2A|D? + 5| + |D|*

AVARI



consider both ¢ and 6 as unknowns,

subject to Seiberg- Witten equations
Dgd =0
FJ =io(®).

Weitzenbock formula implies

ON|D|? + 4|V D] + s|Df + |D[*
2A|D)? + s|D|* + |D[*
2D + (s_)|D]? + |

AVARAVARS|

s_ = min(s,0)
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consider both ¢ and 6 as unknowns,

subject to Seiberg- Witten equations
Dgd =0
FJ =io(®).

Weitzenbock formula implies

/ (5 Vdpy > 32521 (D))
M

where czl(L);r = self-dual part of harmonic rep.
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ented 4-manifold with by > 2. An element a €
H?(M,7Z)/torsion, is called a monopole class of
M iff there is some spin® structure ¢ on M with

first Chern class

ci(L) =a mod torsion

for which the Seiberg-Witten equations have a
solution for every Riemannian metric g on M.

o Witten's SW invariant (“Basic classes™)
e Bauer-Furuta mvariant

e Ozsvath-Szabo construction. . .
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Kronheimer 99 first introduced the concept of
a monopole class.

However, most of us failed to notice that he did not
actually claim to show that there were any on the
class of 4-manifolds he was studying!

However, with only a modicum of extra work, his
method proves the existence of the following. . .
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integral cohomology class a € H*(M,7Z) /torsion
will be called a mock-monopole class of M if every
Riemannian metric g on M satisfies the inequal-
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where
at =al e H(M,R)
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Proposition. Let M be a smooth compact ori-
ented 4-manifold with by > 2. If M carries a
non-zero mock-monopole class, then % (M) < 0.

Key point:
a, # 0 for a dense set of conformal classes [g] = 7.

So Y (M, ~) < 0 for a dense set of 7.
But Y (M, [g]) is a continuous function of ~.
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Corollary. Let X be a smooth compact oriented
4-manifold with by > 2, and let M = X#kCPs
for some k > 1. If M admits a mock-monopole
class, then neither M nor X can admit metrics
of positive scalar curvature.

On M = X#kCP5, mock-monopole a € H*(M, Z) /torsion
must be non-zero, because pairing with Poincaré
dual of the generator of Hy(CIP9, Z) must be odd.

Hence %/ (M) < 0.

Schoen-Yau, Gromov-Lawson:

Y(M)<0=—= #(X)<0.
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Proposition. If (M, .J) is any complex surface
with by odd and Kod = 1, there is a finite cover
M — M on which ci(M,.J) is a mock-monopole
class.

(Passing to a cover unnecessary if by (M) > 2.)

Key Point: Brinzanescu 94 = minimal model X
has unbranched covers diffeomorphic to N x St
where N — > Chern-class-1 circle bundle over >
of genus > 2.
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let M = X#kCPy. Then M carries a mock-
monopole class.

Idea of the proot hidden in Kronmheimer 99,
which did not define the concept or quite prove the
needed estimate. Objective was instead to estimate

/ s*dpig > / (s ) dpy.
M M
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carries a taut foliation. Set X = N x S', and

let M = X#kCPy. Then M carries a mock-
monopole class.

Kronheimer’s method is to construct approximate
solutions of the 5 equations on a sequence of high-
degree covers M — M.
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Proposition. Let N be a compact oriented con-
nected prime 3-manifold with bi(N) > 2 that
carries a taut foliation. Set X = N x S', and

let M = X#kCPy. Then M carries a mock-
monopole class.

Kronheimer’s method is to construct approximate
solutions of the 5 equations on a sequence of high-
degree covers M — M.

In limit, one obtains desired inequality

[ (50 duy > 3200
M

for any Riemannian metric g on M.



Lemma C. Let (M,.J) be a compact complex
surface with by odd and Kod (M) = 1. Then M

does not admit a Riemannian metric of positive
scalar curvature.



Theorem A. Let M be the smooth 4-manifold
underlying any compact complex surface (M4, J)
of Kodaira dimension # —oo. Then

Y(M)=0 <= Kod(M,J)=0 orl,

Y (M) <0< Kod(M,J)=2.



Theorem B. Let (M, J) be a compact complex
surface with Kod # —oo, and let (X,.J') be its
minimal model. Then

Y (M) = (X).



Theorem A. Let M be the smooth 4-manifold
underlying any compact complex surface (M4, J)
of Kodaira dimension # —oo. Then

Y(M)=0 <= Kod(M,J)=0 orl,

Y (M) <0< Kod(M,J)=2.



Theorem A. Let M be the smooth 4-manifold
underlying any compact complex surface (M4, J)
of Kodaira dimension # —oo. Then

Y(M)=0 <= Kod(M,J)=0 orl,

Y (M) <0< Kod(M,J)=2.

Why exclude Kod = —o0?



Theorem A. Let M be the smooth 4-manifold
underlying any compact complex surface (M4, J)
of Kodaira dimension # —oo. Then

Y (M)=0 <= Kod(M,J)=0 orl,
Y (M) <0< Kod(M,J)=2.

Why exclude Kod = —o0?

When by even, corresponds to % (M) > 0.



Theorem A. Let M be the smooth 4-manifold
underlying any compact complex surface (M4, J)
of Kodaira dimension # —oo. Then

Y (M)=0 <= Kod(M,J)=0 orl,
Y (M) <0< Kod(M,J)=2.

Why exclude Kod = —o0?
When by even, corresponds to % (M) > 0.

But when by odd, pattern breaks down.



Theorem A. Let M be the smooth 4-manifold
underlying any compact complex surface (M4, J)
of Kodaira dimension # —oo. Then

Y (M)=0 <= Kod(M,J)=0 orl,
Y (M) <0< Kod(M,J)=2.

Why exclude Kod = —o0?
When by even, corresponds to % (M) > 0.
But when by odd, pattern breaks down.

Class VIl is pathological!



Theorem A. Let M be the smooth 4-manifold
underlying any compact complex surface (M4, J)
of Kodaira dimension # —oo. Then

Y(M)=0 <= Kod(M,J)=0 orl,

Y (M) <0< Kod(M,J)=2.

Proposition. Class VIl includes both manifolds
with % (M) > 0, and manifolds with % (M) = 0.



Theorem A. Let M be the smooth 4-manifold
underlying any compact complex surface (M4, J)
of Kodaira dimension # —oo. Then

Y(M)=0 <= Kod(M,J)=0 orl,

Y (M) <0< Kod(M,J)=2.

Proposition. Class VIl includes both manifolds
with % (M) > 0, and manifolds with % (M) = 0.

For known classes of examples, sign of /(M) is left
unchanged by blowing up.



Theorem A. Let M be the smooth 4-manifold
underlying any compact complex surface (M4, J)
of Kodaira dimension # —oo. Then

Y(M)=0 <= Kod(M,J)=0 orl,

Y (M) <0< Kod(M,J)=2.

Proposition. Class VIl includes both manifolds
with % (M) > 0, and manifolds with % (M) = 0.

Global Spherical Shell Conjecture claims
that all possible diffeotypes are already known.



Theorem A. Let M be the smooth 4-manifold
underlying any compact complex surface (M4, J)
of Kodaira dimension # —oo. Then

Y (M)=0 <= Kod(M,J)=0 orl,
Y (M) <0< Kod(M,J)=2.

Proposition. Class VIl includes both manifolds
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Global Spherical Shell Conjecture claims
that all possible diffeotypes are already known. This
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has only been proved with bo(M) < 3.



Theorem A. Let M be the smooth 4-manifold
underlying any compact complex surface (M4, J)
of Kodaira dimension # —oo. Then

Y(M)=0 <= Kod(M,J)=0 orl,

Y (M) <0< Kod(M,J)=2.

Examples: Hopf surface 5% x St



Theorem A. Let M be the smooth 4-manifold
underlying any compact complex surface (M4, J)
of Kodaira dimension # —oo. Then

Y (M)=0 <= Kod(M,J)=0 orl,
Y (M) <0< Kod(M,J)=2.

Examples: Hopf surface 5% x St

Y (57 x S#ECPs) > 0.



Theorem A. Let M be the smooth 4-manifold
underlying any compact complex surface (M4, J)
of Kodaira dimension # —oo. Then

Y (M)=0 <= Kod(M,J)=0 orl,
Y (M) <0< Kod(M,J)=2.

Examples: Inoue-Bombieri surfaces:

Mapping tori of ¢ : N3 — N3



Theorem A. Let M be the smooth 4-manifold
underlying any compact complex surface (M4, J)
of Kodaira dimension # —oo. Then

Y (M)=0 <= Kod(M,J)=0 orl,
Y (M) <0< Kod(M,J)=2.

Examples: Inoue-Bombieri surfaces:
Mapping tori of ¢ : N3 — N3

N = T3 or circle bundle N° — T?



Theorem A. Let M be the smooth 4-manifold
underlying any compact complex surface (M4, J)
of Kodaira dimension # —oo. Then

Y (M)=0 <= Kod(M,J)=0 orl,
Y (M) <0< Kod(M,J)=2.

Examples: Inoue-Bombieri surfaces:
Mapping tori of ¢ : N3 — N3
N = T3 or circle bundle N3 — T?

Schoen-Yau methods proves. . .
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Theorem (Gursky-1, '98). Blowing up a primary
Hopf surface changes its Yamabe invariant:
Y (5% x SV = w(SY) = 8V6r
Y (157 x SH#CP,) = & (CPy) = 12v2n
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