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r=Ah

for some constant A € R.

A called Einstein constant.

Has same sign as the scalar curvature
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Recognition Problem:

Suppose M"™ admits Einstein metric A.
What, if anything, does h then tell us about M7

Can we recognize M by looking at h?

When n = 3, h has constant sectional curvature!

So M has universal cover 52, R3. H?. ..

But when n > 5, situation seems hopeless.

{Einstein metrics on S™} /~ is highly disconnected.

When n = 4, situation is more encouraging. . .
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& (M) = {Einstein h}/(Diffeos x RT)

Known to be connected for certain 4-manifolds:
M = T K3,  HYD, CHyT.

Berger, Hitchin, Besson-Courtois-Gallot, L.
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Four Dimensions is Exceptional

When n = 4, Einstein metrics are genuinely non-
trivial: not typically spaces of constant curvature.

There are beautiful and subtle global obstructions
to the existence of Einstein metrics on 4-manifolds.

But might allow for geometrization of 4-manifolds
by decomposition into Einstein and collapsed pieces.

One key question:

Does enough rigidity really hold in dimension four
to make this a genuine geometrization?
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Symplectic 4-manifolds:

A laboratory for exploring Einstein metrics.
Kahler geometry is a rich source of examples.

[f M admits a Kahler metric, it of course admits a
symplectic form w.

On such manifolds, Seiberg-Witten theory mimics
Kahler geometry when treating non-Kahler metrics.

Some Suggestive Questions. If (M*, w) is a
symplectic 4-manifold, when does M* admit an

FEinstein metric h (unrelated to w)? What if we
also require A > 07
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K3 = Kummer-Kahler-Kodaira surface.
Simply connected complex surface with ¢; = 0.

Typical model: Smooth quartic in CPs.

Calabi/Yau: Admits Ricci-flat Kéhler metrics.
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compact oriented 4-manaifold which admits a
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Einstein metric h with A > 0 if and only if
((CPQ#/C@Q, 0 <k<Sg,

52 x SQ,
K3,
di
M %ﬁ< K3/79,
T4

T4 )2, T )23, T )2y, T | Zs,
T (Zy ® L), T/ (23 © Z3), o T/ (Zy @ Ly).

Del Pezzo surfaces,
K3 surface, Enriques surface,
Abelian surtace, Hyper-elliptic surtfaces.
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Del Pezzo surfaces:

(M*,.J) for which ¢; is a Kahler class [w].
Shorthand: “c; > 0.”

Blow-up of CPy at k£ distinct points, 0 < k <8,
in general position, or CIPy x CIPy.

Theorem. Each Del Pezzo (M?,.J) admits a com-
patible conformally Kahler Einstein metric, and
this metric 1s unique up to automorphisms.

Existence: Tian, Odaka-Spotti-Sun, Chen-L-Weber.

Uniqueness: Bando-Mabuchi 87, L, "12.



Above the line:
Moduli space &(M) # @. But is it connected?

CPy#kCPy, 0< k<8,
S2 % S2.

K3,
K3/Zo,

T4

T4 )2, T )23, T )24, T* ) Zs,

TY)(Zo © 7o), T/ (Z3 ® Z3), or T*)(Zo  Zy).

Below the line:

Every Einstein metric is Ricci-flat Kahler.

Moduli space &(M) connected!
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Basic problem:
Understand all Einstein metrics on Del Pezzos.

[s Einstein moduli space connected?

Progress to date:
Natural characterization of known Einstein metrics.

Exactly one connected component of moduli space.
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On oriented (M4, h),
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where AT are (41)-eigenspaces of
%A% — A2,
w =1

AT self-dual 2-forms.
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Special character of dimension 4:

On oriented (M4, h),
A= AT @A™
where AT are (41)-eigenspaces of
%A% — A2,
w =1

AT self-dual 2-forms.
A7 anti-self-dual 2-forms.

Also because of this ...
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Hodge theory:

H*(M,R)={p e D(A°) | dp =0, d*p =0}
Since « is involution of RHS, =—

H*(M,R) =H} dH,,

where

Hy ={p e T(A") | dp = 0}
self-dual & anti-self-dual harmonic forms.
Notice these spaces are conformally invariant.
More generally, their dimensions

by (M) = dimH;

are completely metric-independent, and
are oriented homotopy invariants of M.
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Theorem (L. '15). Let (M, h) be a smooth com-
pact oriented Einstein 4-manifold that carries a
self-dual harmonic 2-form w such that

W (w,w) >0

everywhere on M. Then M 1s diffeomorphic to a
Del Pezzo surface, and h is conformally Kahler,
with Einstetn constant A > 0.

Conversely, every Del Pezzo surface admits Ein-
stein metrics with W (w, w) > 0.

Indeed, all known Einstein metrics on Del Pezzo
surfaces have have this property. They are

e the Kahler-Einstein metrics with A > 0:
o the Page metric on CPy#CP>: and

o the CLW metric on CPy#2CPs.
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Every del Pezzo surface has by =1. <

Up to sign, V h, d! selt-dual harmonic 2-form w:

dw = 0, *W = W, /wQ—l.
M

This allows us to associate the scalar quantity
W (w,w)

with any metric 4 on such a manifold.

Above result focuses on metrics h for which

W (w,w) >0

everywhere on /M.
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W (w,w) is non-trivially related to scalar curv s,

via Weitzenbock for self-dual harmonic 2-form w:

0=V*Vw — 2W T (w,-) + gw
Taking inner product with w and integrating:

[ wrwwin [ Spa
M M6

In particular, an Einstein metric with A > 0 has

W (w,w) >0

on average. But result requires this everywhere.
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But insisting that
W (w,w)> 0
everywhere trivially implies that
W0 and  w#0

everywhere. In particular, we are assuming from
the start that /M admits a symplectic structure!

Can one prove such a result, assuming only that
W (w,w)> 07

Yes — with a reasonable extra hypothesis on w. ..
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— 7Zero set / of w has codimension 3:
o 1
Z~ ] =1 ST,
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Definition. Let w be a self-dual harmonic 2-
form on a compact oriented Riemannian 4-manifold
(M, h). We will say that w is near-symplectic if
its image in AT — M is transverse to the zero
section.

Theorem (Taubes, et al). If b4 (M)=#£ 0, such forms
exist for an open dense set of metrics h on M.
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Theorem A. Let (M,h) be a compact oriented
FEinstein 4-manifold that carries a near-symplectic
self-dual harmonic 2-form w such that

W (w,w)> 0, W (w,w)# 0.

Then W (w,w)> 0 everywhere, M is diffeomor-
phic to a Del Pezzo surface, and

h = 5_29

for some extremal Kahler metric g on M with
scalar curvature s > 0.

Conversely, every Del Pezzo surface admaits an
Einstein metric h arising in this way.

Indeed, all known Einstein metrics on Del Pezzo
surfaces arise this way!
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Theorem B. Let (M, h) be a compact oriented
A > 0 Einstein 4-manifold that carries a near-
symplectic self-dual harmonzic 2-form w such that

W (w,w)> 0
everywhere. Then w+# 0, and h is conformal to

an extremal Kahler metric g on M with Kahler
form w. Moreover, M 1is diffeomorphic to

e a Del Pezzo surface,

e a K3 surface,

e an LEnriques surface,

e an Abelian surface, or

e a hyper-elliptic surface.

Conversely, these complex surfaces all admit A > 0
Einstein metrics h of the above type.
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Theorem C. The near-symplectic hypothesis in
Theorem A 1is essential: counter-exzamples show
the result fails without this assumption.

Moral: Taubes’ genericity result does not guarantee
genericity among metrics solving an equation!
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Before discussing Theorems A & B,

consider simpler case when W™ (w,w)> 0.
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