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Following geodesics from p defines a map

exp : IpM — M

which is a diffeomorphism on a neighborhood of 0:

Now choosing TpM — R™ via some orthonormal
basis gives us special coordinates on M.
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In these “geodesic normal” coordinates the metric
volume measure is given by

d,ug = |1 — % T]k ijxk + O(‘x‘g) d,uEuclidean)

where 7 1s the [ticci tensor 1. = Rijik.

The Ricct curvature is by definition the function
on the unit tangent bundle

STM ={veTM| gv,v)=1}

given by
v — (v, V).
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Definition. A Riemannian metric g s said to
be Einstein f it has constant Riccit curvature —
l.€.

r=Ag

for some constant A € R.

Generalizes constant sectional curvature condition,
but weaker.

Determined system:
same number of equations as unknowns.

Elliptic non-linear PDE after gauge fixing.
Azl =0 —= ik = %AgjknL (ots.
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Question  (Yamabe). Does every  smooth
compact simply-connected n-manifold admat
an Einstein metric?

What we know:
e When n = 2: Yes! (Riemann)

e When n = 3: <= Poincar¢ conjecture.
Hamilton, Perelman, ... Yes!

e When n = 4: No! (Hitchin)
e When n = 5: Yes?? (Boyer-Galicki-Kollar)
e When n > 6, wide open. Maybe???
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Einstein’s equations are “locally trivial:”

Einstein metrics have constant sectional curvature.
— If M3 carries Einstein metric, mo(M) = 0.

— Existence obstructed for connect sums M54 N3,

™S

DS

C X >

Ricci flow pinches off SZ necks.
First step in geometrization:

Prime Decomposition.
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There are many known Einstein metrics on S, n >
5 which do not have constant curvature.

In fact, the moduli space of Einstein metrics on S°
has infinitely many connected components, because
J sequences unit-volume Einstein metrics with A—07.

(Bohm, Collins-Székelyhidi)

Connected sums (S? x S3)# - - - #(S5% x §3) admit
Einstein metrics for arbitrarily many summands.
Moduli spaces typically disconnected.

Similar results for most simply connected spin 5-
manifolds. (Boyer, Galicki, Kollar, et al.)
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Theorem (Berger). Any Einstein metric on
A-torus T* is flat.

—> Moduli space of Einstein metrics is connected.

Theorem (Hitchin). Any Einstein metric on K3
15 Ricer-flat Kahler.

—> Moduli space of Einstein metrics is connected.
(Kodaira, Yau, Siu, Kobayashi-Todorov)

Theorem (Besson-Courtois-Gallot). There is only

one Einstein metric on compact hyperbolic
4-manafold 7—[4/F, up to scale and diffeos.

Theorem (L). There is only one Einstein met-
ric on compact complex-hyperbolic 4-manifold CHo /1,
up to scale and diffeos.
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Four Dimensions is Exceptional

When n = 4, existence for Einstein depends deli-
cately on smooth structure.

There are topological 4-manifolds which admit an
Einstein metric for one smooth structure, but not
for others.

But might allow for geometrization of 4-manifolds
by decomposition into Einstein and collapsed pieces.

Enough rigidity apparently still holds in dimension
four to call this a geometrization.

By contrast, high-dimensional Einstein metrics too
common; have little to do with geometrization.
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What'’s so special about dimension 47

The Lie group SO(4) is not simple:

s50(4) = s0(3) @ s0(3).
On oriented (M4, g), —
A=At @A~
where AF are (£1)-eigenspaces of
x 1 A% = A2
x> = 1.

AT self-dual 2-forms.
A7 anti-self-dual 2-forms.
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Riemann curvature of ¢
R: A% — A°
splits into 4 irreducible pieces:

AT* ATF

AT W_|_—|—1—82 r

s = scalar curvature
1 = trace-free Ricci curvature
W4 = self-dual Weyl curvature (conformally invariant)

W _ = anti-selt-dual Weyl curvature !
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K(P) = K(PY)
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4-dimensional Gauss-Bonnet formula

-] (2wt 18).
X =gz [l T e SR

for Euler-characteristic x (M) = Z(—l)j bi(M).
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For (M*, g) compact oriented Riemannian,

Euler characteristic
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Corollary. Any smooth compact simply connected
non-spin 4-manifold M 1s homeomorphic to a
connect sum

JCPy#kCPy = CPy# - - - #CPy # CPo# - - - #CPy
7 &
where j = by (M) and k =b_(M).




Corollary. Any smooth compact simply connected
non-spin 4-manifold M 1s homeomorphic to a

connect sum jCPy#kCP5.



Corollary. Any smooth compact simply connected
non-spin 4-manifold M 1s homeomorphic to a

connect sum jCPy#kCP5.

What about spin case?



Corollary. Any smooth compact simply connected
non-spin 4-manifold M 1s homeomorphic to a

connect sum jCPy#kCP5.

What about spin case?

Need new building block!



Corollary. Any smooth compact simply connected
non-spin 4-manifold M 1s homeomorphic to a

connect sum jCPy#kCP5.

What about spin case?

Need new building block!

K3 manifold. . .



K3 = Kummer-Kahler-Kodaira surface.



K3 = Kummer-Kahler-Kodaira surface.

—André Weil



K3 = Kummer-Kahler-Kodaira surface.

*...et de la belle montagne K2 au Cachemire.”

—André Weil, 1958



K3 = Kummer-Kahler-Kodaira surface.



K3 = Kummer-Kahler-Kodaira surface.

Simply connected complex surface with ¢; = 0.



K3 = Kummer-Kahler-Kodaira surface.
Simply connected complex surface with ¢; = 0.

Only one deformation type.



K3 = Kummer-Kahler-Kodaira surface.
Simply connected complex surface with ¢; = 0.

Only one diffeomorphism type.



K3 = Kummer-Kahler-Kodaira manifold.
Simply connected complex surface with ¢; = 0.

Only one diffeomorphism type.



K3 = Kummer-Kahler-Kodaira manifold.
Simply connected complex surface with ¢; = 0.
Only one diffeomorphism type.

Spin, y = 24, T = —16.
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Kummer construction:

Begin with 7% /Zo;

X X
@ T4
T? |
o
T2

Replace R* /75 neighborhood of each singular point
with copy of T*S2.

Result 1s a K 3 surtface.
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T* = Picard torus of curve of genus 2.
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K3 = Kummer-Kahler-Kodaira manifold.
Kummer construction:

Begin with 7" /2o Singular quartic in CP3.

Generic quartic is then a K3 surface. Example:

0= (22 +17+ 22— w?)? = §[(1 — 22 — 27[(1 + 22)? — 2



Theorem (Freedman/Donaldson). Two smooth com-
pact simply connected oriented 4-manifolds are
orientedly homeomorphic if and only if

e they have the same Euler characteristic x;
e they have the same signature 7; and

e both are spin, or both are non-spin.
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Corollary. Any smooth compact simply connected
non-spin 4-manifold M 1s homeomorphic to a

connect sum jCPy#kCP5.

Conjecture (11/8 Conjecture). Any smooth com-
pact simply connected spin 4-manifold M is (un-

orientedly) homeomorphic to either S* or a con-
nected sum jI34#k(S% x S?).

Equivalent to asserting that such manitfolds satisty

11
bo > —|7].
9 > 8\T|

Certainly true of all examples in this lecture!
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Question. Which smooth compact 4-manifolds
M* admit Einstein metrics?

Kahler geometry is rich source of examples.

On symplectic 4-manifolds, Seiberg-Witten theory
allows one to mimic Kahler geometry when treating
non-Kahler metrics.

Suggestive Question. If M* admits a closed
2-form w with w A w # 0 everywhere, when does
M* admit Einstein metric g (unrelated to w)?

Narrower Question. If (M* w) is a compact
symplectic manifold, when does M* admit an

FEinstein metric g (unrelated to w) with Einstein
constant A > 0¢
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Abelian surface, Hyper-elliptic surfaces.



Theorem (L. '09). Suppose that M is a smooth
compact oriented 4-manifold which admats a sym-

plectic form w. Then M also admits an Einstein
metric g with X > 0 if and only if

(CP,#kCPy, 0<Ek<S

52 x SQ,
K3,
di
M % K3/7,,
T4

T4 )2, T )23, T )2y, T | Zs,
T (Lo @ L), T /(L3 ® L3), or T" /(Lo ® Ly).




Theorem (L. '09). Suppose that M is a smooth
compact oriented 4-manifold which admats a sym-
plectic form w. Then M also admits an Einstein

metric g with X > 0 if and only if
(CPy#kCPy, 0< k<38,

52 x SQ,
K3,
di
M % K3/7,,
T4

T4 )2, T )23, T )2y, T | Zs,
T (Lo @ L), T /(L3 ® L3), or T" /(Lo ® Ly).

Existence: Yau, Tian, Page, Chen-L-Weber, et al.



Theorem (L. '09). Suppose that M is a smooth
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plectic form w. Then M also admits an Einstein
metric g with X > 0 if and only if
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di
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T4

T4 )2, T )23, T )2y, T | Zs,
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Existence: Yau, Tian, Page, Chen-L-Weber, et al.

No others: Hitchin-Thorpe, Seiberg-Witten, . ..
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Ricci-flat Kahler metrics:

(M?™ g): Ricci-flat Kéhler <= holonomy C SU(m)
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if M is simply connected.
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Theorem (Yau). A compact complex manifold
admits Ricci-flat Kahler metrics, compatible with
the given complex structure, if and only if

o it admits Kahler metrics, and
o its first Chern class ¢; € H*(M,R) is zero.

“Calabi-Yau metrics.”

Moreover, metric uniquely determined by

e complex structure .J; and

o Kihler class [w] € H?(M,R).

(Kéahler form w = g(.J-, -) is closed 2-form.)
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Above the line:
Moduli space &(M) # @. But is it connected?

CPy#kCPy, 0< k<8,
S2 % S2.

K3,
K3/Zo,

T4

T4 )2, T )23, T )24, T* ) Zs,

TY)(Zo © 7o), T/ (Z3 ® Z3), or T*)(Zo  Zy).

Below the line:

Every Einstein metric is Ricci-flat Kahler.

Moduli space &(M) connected!
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In the remaining cases, all known Einstein metrics
are conformally Kahler:

g =uh

for some Kahler metric h and a positive function .

These live on Del Pezzo surtaces, which are, in par-
ticular, oriented 4-manifolds with by = 1.
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(M*,.J) for which ¢; is a Kahler class [w].
Shorthand: “c; > 0.”

Blow-up of CPy at k£ distinct points, 0 < k <8,
in general position, or CIPy x CIPy.

Theorem. Each del Pezzo (M*,J) admits a
J-compatible conformally Kahler, FEinstein
metric, and this metric is geometrically unique.

Uniqueness: Bando-Mabuchi 87, L. "12.
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by some natural geometric criterion?
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Theorem (L '15). On any del Pezzo M*, the
conformally Kahler, Einstein metrics are exactly
characterized by the property that

W (w,w) >0

everywhere on M, for w any non-trivial global
self-dual harmonic 2-form.

Corollary. These known Einstein metrics on any
del Pezzo M* sweep out exactly one connected
component of the Einstein moduli space & (M ).
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Reasonably satistying result.
But W™ (w,w) > 0 is not purely local condition!

Involves global harmonic 2-form w.

Peng Wu proposed an alternate characterization
using only a purely local condition on W ™.

Wu's criterion:

det(W ) > 0.
Wu (2021): terse, opaque proof that <.
I (2021a): completely different proof.

L. (2021b): related classification result.
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a del Pezzo surface, and g is one of the confor-
mally Kahler Einstein metrics we ve discussed.
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Let aw > 3 > ~ be eigenvalues of W™

0

Wr=1| g8

~

a+f+v7=0
a>0 <0, HW"#£0
det(W™T) = aBy

det(W") >0 = o has multiplicity 1.

Get almost-complex structure .J on M or M by
w=h(J").
Claim: (M, g) compact Einstein = .J integrable.



Let aw > 3 > ~ be eigenvalues of W™

0

Wr=1| g8

~

a+8+v=0
a>0 <0, HW"#£0
det(W™T) = aBy

det(W") >0 = o has multiplicity 1.

Integrability proof based on Weitzenbock formula

0=V*VIVT + §W+ —6W T oW 4 oW 2T
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Theorem (Wu/lL 21). Let (M, g) be a simply-
connected compact oriented Einstein 4-manifold,
and suppose that its self-dual Weyl curvature

WT AT = AT
satisfies
det(W™") > 0
at every point of M. Then M s diffeomorphic to

a del Pezzo surface, and g is one of the confor-
mally Kahler Einstein metrics we ve discussed.

Simply connected hypothesis <= b4 (M) # 0.
Excludes 5 types with my = Zg and b4 (M) = 0.

Can also understand these by same methods.
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It’s a pleasure to be here!




