The Traveling Salesman Problem, Data Parametrization and Multi-resolution Analysis

Raanan Schul Stony Brook

The Traveling Salesman Problem, Data Parametrization and Multi-resolution Analysis - p.1/32

Motivation

(which I usually give to mathematicians)

- example:
 - use the web, and collect 1,000,000 grey-scale images, each having 256 by 256 pixels.
 - each picture can be thought of as a point in 65,536 dimensional space ($256 \times 256 = 65536$).
 - you have 1,000,000 points in \mathbb{R}^{65536} .
- If this collection of points has *nice* geometric properties then this is useful. (For example, this makes *image recognition* easier).
- One reason to hope for this, is that not all pixel configurations appear in *natural images*.

Motivation

- It is relatively easy to collect large amounts of data.
- **Data = a bunch of points** $\subset \mathbb{R}^D$, with *D* being large.
- It is useful to learn what the geometry of this data is.
- High dimension \implies hard to analyze.
 - a unit cube in \mathbb{R}^{10} has 2^{10} disjoint sub-cubes of half the sidelength
 - because of this, many algorithms have a complexity (take a time) which grows exponentially with dimension.
 - this is often called the curse of dimensionality
- Dimensionality Reduction.
- Note: the Euclidean metric may not be the right one!

Some Assumtions

Many data sets, while living in a high dimensional space, really exhibit low dimensional behavior.

■ $#(Ball(x_i, r) \cap X) \sim r^m$ (in the picture, m = 1 or m = 2, depending on scale).

The Main Point

- While D (ambient dimension) can be very large (say 50), m can often be very small (1,2,3,...).
- (Note that in different parts of that data, m can be different. Also, relevant r (scale) can be different.)
- For these sets of points we have more tools.
- We will focus on one of these tools.

Tool: Multiscale Geometry

- Use multiscale analysis. Quantitative rectifiability.
- Analyze the geometry on a coarse scale...
- ...and then refine over and over.
- Tools come from Harmonic Analysis and Geometric Measure Theory. They are used to keep track of what is happening.
- (the things I discuss are actually part of HA and GMT)
- On route we discuss
- quantitative differentiation
- metric embedings
- J TSP

Sample Questions:

- When is a set $K \subset \mathbb{R}^D$ contained inside a single connected set of finite length?
- Can we estimate the length of the shortest connected set containing K?
- What do these estimates depend on?
 - Number of points?
 - Ambient dimension (=D for \mathbb{R}^D) ?
- Can we build this connected set?
- Does this connected set form an *efficient network*. (Or, can it be made into one)

Related Questions:

(which we will not discuss today)

- What is a good way to go beyond curves (Lipschitz or biLipschitz surfaces)
- the Traveling Bandit Problem (rob many banks with a car while traveling a short distance)
- For now, we will discuss

curves, connected sets and efficient networks.

How much did the length increase by?

Motivation summery

- Approximating the geometry by a line is a way of reducing the dimension.
- This may not be good enough (even for 1-dim. data).
- Repeatedly refining this approximation may get closer.
- This process yields longer curves. (too long?)
- There is an interesting family of data sets where one can make quantitative mathematical statements about this. (And an extensive theory about them)

Quantitative Rectifiability

Intuitive Picture:

- A connected set (in \mathbb{R}^D) of finite length is 'flat' on most scales and in most locations.
- This can be used to characterize subsets of finite length connected sets.
- One can give a quantitative version of this using multiresolutional analysis.
- This quantitative version also constructs the curve.
- this quantity is also used to construct efficient networks

Efficient network

- Let Γ ⊂ \mathbb{R}^D be a connected, finite length set (a road system)
- Define $dist_{\Gamma}(x, y)$ as distance along the road system
- For $x, y \in \Gamma$, can we bound $\operatorname{dist}_{\Gamma}(x, y)$ in terms of $\operatorname{dist}_{\mathbb{R}^d}(x, y)$?
- in general, no... (think of a hair-pin turn)
- Theorem [Azzam S.]: There is a constant C = C(D)such that if we let $\Gamma \subset \mathbb{R}^D$ be a connected, then there exists $\tilde{\Gamma} \supset \Gamma$ such that for $x, y \in \tilde{\Gamma}$,
 - $\operatorname{dist}_{\tilde{\Gamma}}(x,y) \lesssim \operatorname{dist}_{\mathbb{R}^d}(x,y)$ and
 - $\ell(\tilde{\Gamma}) \lesssim \ell(\Gamma)$.
- note that x, y can be taken to be any two points in the new road system $\tilde{\Gamma}$ The Traveling Salesman Problem, Data Parametrization and Multi-resolution Analysis – p.18/32

A notion of curvature

Definition: (Jones β number)

$$\beta_{K}(Q) = \frac{1}{\operatorname{diam}(Q)} \inf_{L \text{ line } x \in K \cap Q} \operatorname{dist}(x, L)$$
$$= \frac{\operatorname{radius of the thinest tube containing } K \cap Q}{\operatorname{diam}(Q)}.$$

Quantitative Rectifiability

Theorem 1:[P. Jones D=2, K. Okikiolu D>2]
For any connected $\Gamma \subset \mathbb{R}^D$

• Theorem 2:[P. JONES] For any set $K \subset \mathbb{R}^D$, there exists $\Gamma_0 \supset K$, $\Gamma_0 \text{ connected, such that}$

Corollary:

More generally:

• This solves the problem in \mathbb{R}^D of how to parameterize data by a curve.

Two words about why we care

- After all, one can construct $\Gamma \supset K$ with a greedy algorithm
- This coarse version of curvature (β numbers) can be used (was used!) to understand the behavior of various mathematical objects.
- One example of how this can be useful which is very geometric: the "shortcuts" or "bridges" that were added when we turned a network into an 'efficient' one, were constructed based on a certain stopping rule which summed up β numbers.

Hilbert Space

Thm 1: \forall connected $\Gamma \subset \mathbb{R}^d$ $\sum_Q \beta_\Gamma^2(3Q) \operatorname{diam}(Q) \lesssim \ell(\Gamma)$ Thm 2: $\forall K \subset \mathbb{R}^d$, \exists connected $\Gamma_0 \supset K$, s.t. $\ell(\Gamma_0) \lesssim \operatorname{diam}(K) + \sum_Q \beta_K^2(3Q) \operatorname{diam}(Q)$

• "Theorem" :

One can reformulate theorems 1 and 2 in a way which will give constants **independent of dimension**

- (Actually, reformulated theorems are true for Γ or K in Hilbert space).
- Many properties of the dyadic grid are used in Jones' and Okikiolu's proofs, but in order to go to Hilbert space one needs to give them up and change to a different multiresolution.

Definitions

- ▶ let $K \subset \mathbb{R}^D$ be a subset with diam(K) = 1.
- $X_n \subset K$ is 2^{-n} net for K means
 - $x, y \in X_n$ then $dist(x, y) \ge 2^{-n}$
 - For any $y \in K$, exists an $x \in X_n$ with $dist(x, y) < 2^{-n}$
- In Take $X_n \subset K$ a 2^{-n} net for K, with $X_n \supset X_{n-1}$
- Define the multiresolution

$$\mathcal{G}^{K} = \{ B(x, A2^{-n}) : x \in X_{n}; n \ge 0 \}$$

 $\mathbf{\mathcal{G}}^{K}$ replaces the dyadic grid

Hilbert Space

Constants that make inequalities true are independent of dimension D (Theorems hold in Hilbert Spaces.)

 $\mathcal{O} \in \mathcal{C}^K$

• Theorem 1':(S.) For any connected $\Gamma \subset H, \Gamma \supset K$

"Total

Multiscale (Γ)

Curvature"

• **Theorem 2':(S.)** For any set $K \subset H$, there exists $\Gamma_0 \supset K$, Γ_0 connected, such that

 $\sum \beta_{\Gamma}^2(Q) \operatorname{diam}(Q) \lesssim \ell(\Gamma)$

Hilbert Space

- Corollary:
 - For any set $K \subset$ Hilbert Space

$$\begin{array}{ll} \text{``Total} \\ \text{diam}(K) + \text{Multiscale} & (K) \sim \ell(\Gamma_{MST}) \\ \text{Curvature''} \end{array}$$

where Γ_{MST} is the shortest curve containing *K*.

 This solves the problem in Hilbert space of how to parameterize data by a curve.

Non-parametric vs. parametric

- Non-Parametric: you are given data, and you know (or hope) that a curve can go through it, but you do not know how to draw such a curve
- Parametric: You are given such a curve (and your data is then the image of the curve)
- I-dim case: curves and connected sets of finite length. Go back and forth between the param. and non-param.:
 - parametric \rightarrow non-parametric:
 - $f:[0,1] \to \mathbb{R}^D$ is given , so consider the image, f[0,1].
 - non-parametric \rightarrow parametric:

Given Γ , construct $f : [0,1] \to \mathbb{R}^D$ such that $\Gamma = f[0,1]$. You can do so with $||f||_{Lip} \lesssim \ell(\Gamma)$.

continued

- non-parametric \rightarrow parametric: Given Γ , construct $f : [0,1] \rightarrow \mathbb{R}^D$ such that $\Gamma = f[0,1]$. You can do so with $\|f\|_{Lip} \lesssim \ell(\Gamma)$.
- As said before, you don't need much to do this (e.g. greedy algorithm).
- Keeping track of β numbers helps you do other things like add shortcuts in the "efficient network" result)
- β numbers are an analogue to wavelet coefficients.
 They allow analysis of a set.

Some obvious questions

- Can you have this discussion about sets of higher intrinsic dimension?
- You have parametrized using Lipschitz curves. Isn't bi-Lipschitz curves a more natural category? Can you say something about that?

The answer to all of the above questions is yes.

Lip vs biLip

- Theorem[Jones, David, S.] Let $\delta > 0$ and $n \ge 1$ be given. There constants $M = M(\delta, n)$, and c = c(n) such that if \mathcal{M} is a metric space and $f : [0, 1]^n \to \mathcal{M}$ is a 1-Lipschitz function satisfying $\mathcal{H}^n_{\infty}(f[0, 1]^n) \ge \delta$, then there is a set $E \subset [0, 1]^n$ such that the following hold
 - $\mathcal{H}^n(E) > \frac{\delta}{M}$
 - for all $x, y \in E$ we have

$$c\delta|x-y| < \operatorname{dist}(f(x), f(y)) < |x-y|$$

Notes

- Jones, David (80's): $\mathcal{M} = \mathbb{R}^D$.
- S.: M metric space (faking wavelet coeficients!!)

•
$$\mathcal{H}^n_{\infty}(K) = \inf\{\sum \operatorname{diam}(B_i)^n : \cup B_i \supset K\}$$

References

- J. Azzam and R. Schul. How to take shortcuts in Euclidean space: making a given set into a short quasi-convex set. Proc. London Math. Soc. (2012) arxiv:0912.1356.
- [2] G. David, Morceaux de graphes lipschitziens et integrales singulières sur une surface., Revista matemática iberoamericana 4 (1988), no. 1, 73.
- [3] G. David and S. Semmes, Analysis of and on uniformly rectifiable sets. Mathematical Surveys and Monographs, 38. American Mathematical Society, Providence, RI, 1993.
- [4] P. W. Jones, *Lipschitz and bi-Lipschitz functions*, Rev. Mat. Iberoamericana 4 (1988), no. 1, 115–121.
- [5] K. Okikiolu, Characterization of subsets of rectifiable curves in \mathbb{R}^n , Journal of the London Mathematical Society, **2**, 46(2):336–348, 1992.
- [6] R. Schul, Bi-Lipschitz decomposition of Lipschitz functions into a metric space, Rev. Mat. Iberoam. 25 (2009), no. 2, 521–531.
- [7] R. Schul. Analyst's traveling salesman theorems. A survey. In the tradition of Ahlfors and Bers, IV, volume 432 of Contemp. Math., pages 209–220. Amer. Math. Soc., Providence, RI, 2007.
- [8] R. Schul. Subsets of rectifiable curves in Hilbert space. Journal d'Analyse Mathématique 103 (2007), 331-375..