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Motivation

(which I usually give to mathematicians)

example:
use the web, and collect 1,000,000 grey-scale
images, each having 256 by 256 pixels.
each picture can be thought of as a point in 65,536
dimensional space (256× 256 = 65536).
you have 1,000,000 points in R

65536.

If this collection of points has nice geometric properties
then this is useful. (For example, this makes image
recognition easier).

One reason to hope for this, is that not all pixel
configurations appear in natural images.
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Motivation

It is relatively easy to collect large amounts of data.

Data = a bunch of points ⊂ R
D, with D being large.

It is useful to learn what the geometry of this data is.

High dimension =⇒ hard to analyze.

a unit cube in R
10 has 210 disjoint sub-cubes of half

the sidelength
because of this, many algorithms have a complexity
(take a time) which grows exponentially with
dimension.
this is often called the curse of dimensionality

Dimensionality Reduction.

Note: the Euclidean metric may not be the right one!
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Some Assumtions

Many data sets, while living in a high dimensional
space, really exhibit low dimensional behavior.

#(Ball(xi, r) ∩X) ∼ rm (in the picture, m = 1or m = 2,
depending on scale).
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The Main Point

While D (ambient dimension) can be very large (say
50), m can often be very small (1,2,3,...).

(Note that in different parts of that data, m can be
different. Also, relevant r (scale) can be different.)

For these sets of points we have more tools.

We will focus on one of these tools.
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Tool: Multiscale Geometry

Use multiscale analysis. Quantitative rectifiability.

Analyze the geometry on a coarse scale...

...and then refine over and over.

Tools come from Harmonic Analysis and Geometric
Measure Theory. They are used to keep track of what is
happening.

(the things I discuss are actually part of HA and GMT)

On route we discuss

quantitative differentiation

metric embedings

TSP
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Sample Questions:

When is a set K ⊂ R
D contained inside a single

connected set of finite length?

Can we estimate the length of the shortest connected
set containing K?

What do these estimates depend on?
Number of points?

Ambient dimension (=D for RD) ?

Can we build this connected set?

Does this connected set form an efficient network. (Or,
can it be made into one)
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Related Questions:

(which we will not discuss today)

What is a good way to go beyond curves (Lipschitz or
biLipschitz surfaces)

the Traveling Bandit Problem (rob many banks with a
car while traveling a short distance)

For now, we will discuss

curves, connected sets and efficient networks.
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Motivation examples
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Motivation examples
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Motivation examples
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Motivation examples
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Motivation examples
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Motivation examples

How much did the length increase by?
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Motivation examples
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Motivation summery

Approximating the geometry by a line is a way of
reducing the dimension.

This may not be good enough (even for 1-dim. data).

Repeatedly refining this approximation may get closer.

This process yields longer curves. (too long?)

There is an interesting family of data sets where one
can make quantitative mathematical statements about
this. (And an extensive theory about them)
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Quantitative Rectifiability

Intuitive Picture:
A connected set (in R

D) of finite length is ‘flat’ on
most scales and in most locations.
This can be used to characterize subsets of finite
length connected sets.
One can give a quantitative version of this using
multiresolutional analysis.
This quantitative version also constructs the curve.
this quantity is also used to construct efficient
networks
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Efficient network

Let Γ ⊂ R
D be a connected, finite length set (a road

system)

Define distΓ(x, y) as distance along the road system

For x, y ∈ Γ, can we bound distΓ(x, y) in terms of
distRd(x, y)?

in general, no... (think of a hair-pin turn)

Theorem [Azzam - S.]: There is a constant C = C(D)

such that if we let Γ ⊂ R
D be a connected, then there

exists Γ̃ ⊃ Γ such that for x, y ∈ Γ̃,
dist

Γ̃
(x, y) . distRd(x, y) and

ℓ(Γ̃) . ℓ(Γ).

note that x, y can be taken to be any two points in the
new road system Γ̃
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A notion of curvature

Definition: (Jones β number)

βK(Q) =
1

diam(Q)
inf
L line

sup
x∈K∩Q

dist(x, L)

=
radius of the thinest tube containing K ∩Q

diam(Q)
.
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Quantitative Rectifiability

Theorem 1:[P. Jones D=2, K. Okikiolu D>2]
For any connected Γ ⊂ R

D

“Total
Multiscale
Curvature”

(Γ)
∑

Q∈dyadic grid

β2

Γ(3Q)diam(Q) . ℓ(Γ)

Theorem 2:[P. Jones] For any set K ⊂ R
D, there exists

Γ0 ⊃ K ,
Γ0 connected, such that

ℓ(Γ0) .
“Total
Multiscale
Curvature”

(K) + diam(K)

∑

Q∈dyadic grid

β2

K(3Q)diam(Q)
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Corollary:

For any connected set Γ ⊂ R
D

diam(Γ) +
“Total
Multiscale
Curvature”

(Γ) ∼ ℓ(Γ)

∑

Q∈dyadic grid

β2

Γ(3Q)diam(Q)
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More generally:

For any set K ⊂ R
D

diam(K) +
“Total
Multiscale
Curvature”

(K) ∼ ℓ(ΓMST )

where ΓMST is the shortest curve containing K .

∑

Q∈dyadic grid

β2

K(3Q)diam(Q)

This solves the problem in R
D of how to parameterize

data by a curve.
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Two words about why we care

After all, one can construct Γ ⊃ K with a greedy
algorithm

This coarse version of curvature (β numbers) can be
used (was used!) to understand the behavior of various
mathematical objects.

One example of how this can be useful which is very
geometric: the “shortcuts" or “bridges" that were added
when we turned a network into an ‘efficient’ one, were
constructed based on a certain stopping rule which
summed up β numbers.
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Hilbert Space

Thm 1: ∀ connected Γ ⊂ R
d Thm 2: ∀K ⊂ R

d, ∃ connected Γ0 ⊃ K, s.t.
∑

Q

β2

Γ
(3Q)diam(Q) . ℓ(Γ) ℓ(Γ0) . diam(K) +

∑

Q

β2

K
(3Q)diam(Q)

“Theorem” :

One can reformulate theorems 1 and 2 in a way which
will give constants independent of dimension

(Actually, reformulated theorems are true for Γ or K in
Hilbert space).

Many properties of the dyadic grid are used in Jones’
and Okikiolu’s proofs, but in order to go to Hilbert space
one needs to give them up and change to a different
multiresolution.
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Definitions

let K ⊂ R
D be a subset with diam(K) = 1.

Xn ⊂ K is 2−n net for K means

x, y ∈ Xn then dist(x, y) ≥ 2−n

For any y ∈ K, exists an x ∈ Xn with dist(x, y) < 2−n

Take Xn ⊂ K a 2−n net for K, with Xn ⊃ Xn−1

Define the multiresolution

GK = {B(x,A2−n) : x ∈ Xn;n ≥ 0}

GK replaces the dyadic grid
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K
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K and X0
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K and X1
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K and X2
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K and X3
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Hilbert Space

Constants that make inequalities true are independent of
dimension D (Theorems hold in Hilbert Spaces.)

Theorem 1’:(S.) For any connected Γ ⊂ H,Γ ⊃ K
“Total
Multiscale
Curvature”

(Γ)
∑

Q∈GK

β2

Γ(Q)diam(Q) . ℓ(Γ)

Theorem 2’:(S.) For any set K ⊂ H , there exists Γ0 ⊃ K ,
Γ0 connected, such that

ℓ(Γ0) .
“Total
Multiscale
Curvature”

(K) + diam(K)

∑

Q∈GK

β2

K(Q)diam(Q)
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Hilbert Space

Corollary:

For any set K ⊂ Hilbert Space

diam(K) +
“Total
Multiscale
Curvature”

(K) ∼ ℓ(ΓMST )

where ΓMST is the shortest curve containing K.
This solves the problem in Hilbert space of how to
parameterize data by a curve.
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Non-parametric vs. parametric

Non-Parametric: you are given data, and you know (or
hope) that a curve can go through it, but you do not
know how to draw such a curve

Parametric: You are given such a curve (and your data
is then the image of the curve)

1-dim case: curves and connected sets of finite length.
Go back and forth between the param. and non-param.:

parametric → non-parametric:
f : [0, 1] → R

D is given , so consider the image,
f [0, 1].
non-parametric → parametric:
Given Γ, construct f : [0, 1] → R

D such that
Γ = f [0, 1].
You can do so with ‖f‖Lip . ℓ(Γ).
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continued

non-parametric → parametric:
Given Γ, construct f : [0, 1] → R

D such that
Γ = f [0, 1].
You can do so with ‖f‖Lip . ℓ(Γ).

As said before, you don’t need much to do this (e.g.
greedy algorithm).

Keeping track of β numbers helps you do other things
like add shortcuts in the “efficient network" result)

β numbers are an analogue to wavelet coefficients.
They allow analysis of a set.
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Some obvious questions

Can you have this discussion about sets of higher
intrinsic dimension?

You have parametrized using Lipschitz curves. Isn’t
bi-Lipschitz curves a more natural category? Can you
say something about that?

The answer to all of the above questions is yes.
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Lip vs biLip

Theorem[Jones, David, S.] Let δ > 0 and n ≥ 1 be given.
There constants M = M(δ, n), and c = c(n) such that if
M is a metric space and f : [0, 1]n → M is a 1-Lipschitz
function satisfying Hn

∞(f [0, 1]n) ≥ δ, then there is a set
E ⊂ [0, 1]n such that the following hold

Hn(E) > δ
M

for all x, y ∈ E we have

cδ|x− y| < dist(f(x), f(y)) < |x− y|

Notes

Jones, David (80’s): M = R
D.

S.: M metric space (faking wavelet coeficients!!)

Hn
∞(K) = inf{

∑
diam(Bi)

n : ∪Bi ⊃ K}
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