Smooth Interpolation

Arie Israel

Courant Institute

June 18, 2012

Contributions from

- Whitney (1930's)
- Glaeser (1950's)
- Brudnyi-Shvartsman (1980's-present)
- Bierstone-Milman-Pawlucki (2000's-present)
- Fefferman/Fefferman-Klartag (2003-present)
- Fefferman-I-Luli (2010-present)

Notation

Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be sufficiently smooth.

- For any multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$,

$$
\begin{gathered}
\partial^{\alpha} F(x):=\partial_{1}^{\alpha_{1}} \cdots \partial_{n}^{\alpha_{n}} F(x) ; \\
|\alpha|:=\alpha_{1}+\cdots+\alpha_{n} .
\end{gathered}
$$

- For $k \geq 1$,

$$
\nabla^{k} F(x):=\left(\partial^{\alpha} F(x)\right)_{|\alpha|=k}
$$

Notation

Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be sufficiently smooth.

- For $m \geq 1$,

$$
\|F\|_{C^{m}}:=\sup _{x \in \mathbb{R}^{n}}\left|\nabla^{m} F(x)\right| .
$$

The Problem

Given:

- Finite subset $E \subset \mathbb{R}^{n}$ with cardinality N;
- Function $f: E \rightarrow \mathbb{R}$.

The Problem

Given:

- Finite subset $E \subset \mathbb{R}^{n}$ with cardinality N;
- Function $f: E \rightarrow \mathbb{R}$.

Compute a C-optimal interpolant: $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with
(a) $F=f$ on E;
(b) $\|F\|_{C^{m}} \leq C \cdot\|G\|_{C^{m}}$ whenever $G=f$ on E.

The Problem

Given:

- Finite subset $E \subset \mathbb{R}^{n}$ with cardinality N;
- Function $f: E \rightarrow \mathbb{R}$.

Compute a C-optimal interpolant: $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with
(a) $F=f$ on E;
(b) $\|F\|_{C^{m}} \leq C \cdot\|G\|_{C^{m}}$ whenever $G=f$ on E.

Side Questions:

- Estimate the nearly minimal norm $\|F\|_{C^{m}}$.
- How long do these computations take?

Theorem (Fefferman-Klartag ('09))

Can construct C_{1}-optimal interpolants in time $C_{2} N \log (N)$.

A Variant Problem

For $m \geq 1$ and $p \geq 1$, let

$$
\|F\|_{L^{m, p}}:=\left(\int_{x \in \mathbb{R}^{n}}\left|\nabla^{m} F(x)\right|^{p} d x\right)^{1 / p}
$$

Compute a C-optimal Sobolev interpolant: $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with

- $F=f$ on E;
- $\|F\|_{L^{m, p}} \leq C \cdot\|G\|_{L^{m, p}}$ whenever $G=f$ on E.

Theorem (Fefferman-l-Luli ('11))

Can construct C-optimal Sobolev interpolants.

Theorem (Fefferman-l-Luli ('11))

Can construct C-optimal Sobolev interpolants.
Plausible running-time bound is $O_{m, n, p}\left(N \log (\Delta)^{r}\right)$, where

$$
\Delta:=\frac{\max \{|x-y|: x, y \in E\}}{\min \{|x-y|: x, y \in E\}}
$$

Theorem (Fefferman-l-Luli ('11))

Can construct C-optimal Sobolev interpolants.
Plausible running-time bound is $O_{m, n, p}\left(N \log (\Delta)^{r}\right)$, where

$$
\Delta:=\frac{\max \{|x-y|: x, y \in E\}}{\min \{|x-y|: x, y \in E\}}
$$

Can we prove this? Can we achieve $O(N \log (N))$?

Example I

Given:

- $t_{1}, \ldots, t_{N} \in \mathbb{R}$
- $p_{1}, \ldots, p_{N} \in \mathbb{R}$

Construct $p: \mathbb{R} \rightarrow \mathbb{R}$ with
(a) $p\left(t_{1}\right)=p_{1}, \cdots, p\left(t_{N}\right)=p_{N}$;
(b) $\sup _{t \in \mathbb{R}}\left|p^{\prime}(t)\right| \leq \sup _{t \in \mathbb{R}}\left|q^{\prime}(t)\right|$, for any other interpolant q.

Estimate:

$$
M=\sup _{t \in \mathbb{R}}\left|p^{\prime}(t)\right| .
$$

$$
\text { (1) } \sup \left|p^{\prime}(t)\right|=\left|\frac{p_{2}-p_{3}}{t_{2}-t_{3}}\right|
$$

The competitor q interpolates the data, so MVT \Longrightarrow

$$
\text { (2) } \exists t^{*} \in\left[t_{2}, t_{3}\right] \text { with } q^{\prime}\left(t^{*}\right)=\frac{p_{2}-p_{3}}{t_{2}-t_{3}} \text {. }
$$

Finally, (1) and (2) \Longrightarrow

$$
\text { (3) } \sup \left|p^{\prime}(t)\right| \leq C \sup \left|q^{\prime}(t)\right| \text {. }
$$

Example II

Given:

- $t_{1}, \ldots, t_{N} \in \mathbb{R}$
- $p_{1}, \ldots, p_{N} \in \mathbb{R}$

Construct $p: \mathbb{R} \rightarrow \mathbb{R}$ with
(a) $p\left(t_{1}\right)=p_{1}, \cdots, p\left(t_{N}\right)=p_{N}$;
(b) $\sup _{t \in \mathbb{R}}\left|p^{\prime \prime}(t)\right| \leq \sup _{t \in \mathbb{R}}\left|q^{\prime \prime}(t)\right|$, for any other interpolant q.

Estimate:

$$
M=\sup _{t \in \mathbb{R}}\left|p^{\prime \prime}(t)\right|
$$

Higher Dimensions

Given:

- Finite subset $E \subset[0,1]^{2}$;
- Function $f: E \rightarrow \mathbb{R}$

Higher Dimensions

Given:

- Finite subset $E \subset[0,1]^{2}$;
- Function $f: E \rightarrow \mathbb{R}$

There's a Competitor: $G: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with

$$
\begin{gathered}
G=f \text { on } E \\
\left|\nabla^{2} G\right| \leq 1 \text { on } \mathbb{R}^{2} .
\end{gathered}
$$

Higher Dimensions

Given:

- Finite subset $E \subset[0,1]^{2}$;
- Function $f: E \rightarrow \mathbb{R}$

There's a Competitor: $G: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with

$$
\begin{gathered}
G=f \text { on } E \\
\left|\nabla^{2} G\right| \leq 1 \text { on } \mathbb{R}^{2} .
\end{gathered}
$$

Goal: Construct $F:[0,1]^{2} \rightarrow \mathbb{R}$ with

$$
\begin{aligned}
F & =f \text { on } E ; \\
\left|\nabla^{2} F\right| & \leq C \text { on }[0,1]^{2} .
\end{aligned}
$$

Two Examples

(a) E contained in a line.
(b) E contained in a smooth curve.

Figure: Sets with 1D structure

The Straight Line

Suppose that

$$
\begin{gathered}
E=\left\{\left(0, y_{1}\right), \ldots,\left(0, y_{N}\right)\right\} \\
f: E \rightarrow \mathbb{R}
\end{gathered}
$$

The Straight Line

Suppose that

$$
\begin{gathered}
E=\left\{\left(0, y_{1}\right), \ldots,\left(0, y_{N}\right)\right\} \\
f: E \rightarrow \mathbb{R}
\end{gathered}
$$

Step 1: Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be the cubic spline with

$$
g\left(y_{k}\right)=f\left(0, y_{k}\right) \quad \text { for } \quad k=1, \ldots, N
$$

and

$$
\left|g^{\prime \prime}(y)\right| \leq C
$$

The Straight Line

Suppose that

$$
\begin{gathered}
E=\left\{\left(0, y_{1}\right), \ldots,\left(0, y_{N}\right)\right\} \\
f: E \rightarrow \mathbb{R} .
\end{gathered}
$$

Step 1: Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be the cubic spline with

$$
g\left(y_{k}\right)=f\left(0, y_{k}\right) \quad \text { for } \quad k=1, \ldots, N
$$

and

$$
\left|g^{\prime \prime}(y)\right| \leq C
$$

Step 2: Define $F(x, y):=g(y)$. Then

$$
\left|\nabla^{2} F(x, y)\right|=\left|g^{\prime \prime}(y)\right| \leq C \quad \text { for all } \quad(x, y)
$$

The Smooth Curve

Suppose that

$$
E \subset\{(\phi(y), x)\}, \quad \text { where }\left|\phi^{\prime \prime}\right| \leq 1 .
$$

Figure: Sets with 1D structure

- Consider the diffeomorphism $\Phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$:

$$
\Phi(x, y)=(x-\phi(y), y)
$$

The Smooth Curve

Suppose that

$$
\begin{array}{cc}
E \subset\{(\phi(y), x)\}, & \text { where }\left|\phi^{\prime \prime}\right| \leq 1 . \\
\vdots & \vdots \\
\vdots & \vdots \\
\text { (c) } & \text { (d) }
\end{array}
$$

Figure: Sets with 1D structure

- Consider the diffeomorphism $\Phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$:

$$
\Phi(x, y)=(x-\phi(y), y)
$$

- Note that Φ maps E onto a line segment.

The Smooth Curve

Suppose that

$$
E \subset\{(\phi(y), x)\}, \quad \text { where } \quad\left|\phi^{\prime \prime}\right| \leq 1
$$

(e)

Figure: Sets with 1D structure

- Consider the diffeomorphism $\Phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$:

$$
\Phi(x, y)=(x-\phi(y), y)
$$

- Note that Φ maps E onto a line segment.
- There is a 1-1 correspondence between interpolation problems on E and on $\Phi(E)$.

Some Notation

$$
S(x, \delta):=\text { square with center } x \text { and sidelength } \delta \text {. }
$$

$$
\delta(S):=\text { sidelength of the square } S \text {. }
$$

$A \cdot S:=A$-dilate of S about its center.

Definition (Neat Squares)

A square S is neat if $3 S \cap E$ lies on the graph of a function h with

$$
\left|h^{\prime \prime}\right| \leq \delta(S)^{-1} \text { uniformly. }
$$

Definition (Neat Squares)

A square S is neat if $3 S \cap E$ lies on the graph of a function h with

$$
\left|h^{\prime \prime}\right| \leq \delta(S)^{-1} \text { uniformly. }
$$

- Equivalently, S neat when $\delta(S)^{-1} \cdot(3 S \cap E)$ lies on the graph of a function h with

$$
\left|h^{\prime \prime}\right| \leq 1 \text { uniformly. }
$$

Definition (Neat Squares)

A square S is neat if $3 S \cap E$ lies on the graph of a function h with

$$
\left|h^{\prime \prime}\right| \leq \delta(S)^{-1} \text { uniformly. }
$$

- Equivalently, S neat when $\delta(S)^{-1} \cdot(3 S \cap E)$ lies on the graph of a function h with

$$
\left|h^{\prime \prime}\right| \leq 1 \text { uniformly. }
$$

- Small enough squares are neat.
- If S is neat and $S^{\prime} \subset S$ then S^{\prime} is neat.

Lemma

Suppose that S is neat. Then we can construct $F: 3 S \rightarrow \mathbb{R}$ with $F=f$ on $E \cap 3 S$ and $\left|\nabla^{2} F\right| \leq C$ on $3 S$.

(a) A Neat S...

(b) Rescaled

Definition (Messy Squares)

A square S is messy if S is not neat.

Figure: Some Messy Squares

The CZ Decomposition

- Keep bisecting $S \subset[0,1]^{2}$ until S is neat.
- Define CZ as the collection of nonbisected squares.

Properties of the CZ Decomposition

Note that $C Z=\left\{S_{\nu}\right\}$ partitions $[0,1]^{2}$.
(a) If $S \in C Z$, then S is neat.
(b) If $S \in C Z$, then $3 S$ is messy.
(c) Good Geometry: If $S, S^{\prime} \in C Z$ touch, then

$$
\frac{1}{2} \delta\left(S^{\prime}\right) \leq \delta(S) \leq 2 \delta\left(S^{\prime}\right)
$$

Properties of the CZ Decomposition

Note that $C Z=\left\{S_{\nu}\right\}$ partitions $[0,1]^{2}$.
(a) If $S \in C Z$, then S is neat.
(b) If $S \in C Z$, then $3 S$ is messy.
(c) Good Geometry: If $S, S^{\prime} \in C Z$ touch, then

$$
\frac{1}{2} \delta\left(S^{\prime}\right) \leq \delta(S) \leq 2 \delta\left(S^{\prime}\right)
$$

One-Line Proofs:
(a) That was our stopping rule!
(b) $3 S$ contains the dyadic parent S^{+}.
(c) If $S, S^{\prime} \in C Z$ touch and $\delta(S) \leq \delta\left(S^{\prime}\right) / 4$, then $3 S^{+} \subset 3 S^{\prime}$.

The Naive Plan: Step 1

Construct local interpolants for the CZ squares:

- Functions $F_{\nu}: 3 S_{\nu} \rightarrow \mathbb{R}$ that satisfy:

$$
\begin{aligned}
& \text { (a) } F_{\nu}=f \quad \text { on } \quad E \cap(1.1) S_{\nu} . \\
& \text { (b) }\left|\nabla^{2} F_{\nu}\right| \leq C \quad \text { on } 3 S_{\nu} .
\end{aligned}
$$

The Naive Plan: Step 2

Introduce a partition of unity adapted to the CZ squares:

- Functions $\theta_{\nu}:[0,1]^{2} \rightarrow \mathbb{R}$ that satisfy
(a) $0 \leq \theta_{\nu} \leq 1$;
(b) $\operatorname{supp}\left(\theta_{\nu}\right) \subset(1.1) S_{\nu}$;
(c) $\left|\nabla \theta_{\nu}\right| \leq C \cdot \delta\left(S_{\nu}\right)^{-1} \quad$ and $\quad\left|\nabla^{2} \theta_{\nu}\right| \leq C \cdot \delta\left(S_{\nu}\right)^{-2}$;
(d) $\sum_{\nu} \theta_{\nu}=1$ on $[0,1]^{2}$.

The Naive Plan: Step 3

Define:

$$
F=\sum_{\nu} \theta_{\nu} F_{\nu}
$$

The Naive Plan: Step 3

Define:

$$
F=\sum_{\nu} \theta_{\nu} F_{\nu}
$$

By Local Interpolation and support properties of the partition of unity,

$$
F=f \quad \text { on } \quad E .
$$

The Naive Plan: Step 3

Define:

$$
F=\sum_{\nu} \theta_{\nu} F_{\nu}
$$

By Local Interpolation and support properties of the partition of unity,

$$
F=f \quad \text { on } \quad E .
$$

Question: Is

$$
\left|\nabla^{2} F\right| \leq C \quad \text { on } \quad[0,1]^{2} ?
$$

Arranging Consistency

Lemma

Let S be any messy square. Then there exists a "non-degenerate" triplet $T \subset E \cap 9 S$.

Arranging Consistency

Lemma

Let S be any messy square. Then there exists a "non-degenerate" triplet

$T \subset E \cap 9 S$.

- Associate to each S_{ν} some "non-degenerate" triplet: $T_{\nu} \subset E \cap 9 S_{\nu}$.

Arranging Consistency

Lemma

Let S be any messy square. Then there exists a "non-degenerate" triplet

$T \subset E \cap 9 S$.

- Associate to each S_{ν} some "non-degenerate" triplet: $T_{\nu} \subset E \cap 9 S_{\nu}$.
- Let L_{ν} be affine with $L_{\nu}=f$ on T_{ν}.

Arranging Consistency

Lemma

Let S be any messy square. Then there exists a "non-degenerate" triplet

$T \subset E \cap 9 S$.

- Associate to each S_{ν} some "non-degenerate" triplet: $T_{\nu} \subset E \cap 9 S_{\nu}$.
- Let L_{ν} be affine with $L_{\nu}=f$ on T_{ν}.
- This gives our rough guess for the affine structure of our interpolant.
- Let's check consistency:

Lemma

Suppose that S_{ν} and $S_{\nu^{\prime}}$ are neighboring squares. Then

$$
\left|\nabla L_{\nu}-\nabla L_{\nu^{\prime}}\right| \leq C \delta\left(S_{\nu}\right)
$$

and

$$
\left|L_{\nu}-L_{\nu^{\prime}}\right| \leq C \delta\left(S_{\nu}\right)^{2} \quad \text { on } 100 S_{\nu}
$$

Need this version of Rolle's Theorem:

Lemma

Suppose that H vanishes on a "non-degenerate" triplet $T \subset S$ and $\|H\|_{C^{2}} \leq 1$. Then,

$$
|\nabla H| \leq C \delta(S) \quad \text { and } \quad|H| \leq C \delta(S)^{2} \quad \text { on } \quad S .
$$

Need this version of Rolle's Theorem:

Lemma

Suppose that H vanishes on a "non-degenerate" triplet $T \subset S$ and $\|H\|_{C^{2}} \leq 1$. Then,

$$
|\nabla H| \leq C \delta(S) \quad \text { and } \quad|H| \leq C \delta(S)^{2} \quad \text { on } \quad S .
$$

Recall that

- $G=f$ on E and $\|G\|_{C^{2}} \leq 1$.
- $L_{\nu}=f$ on T_{ν}.
- $L_{\nu^{\prime}}=f$ on $T_{\nu^{\prime}}$.

Need this version of Rolle's Theorem:

Lemma

Suppose that H vanishes on a "non-degenerate" triplet $T \subset S$ and $\|H\|_{C^{2}} \leq 1$. Then,

$$
|\nabla H| \leq C \delta(S) \quad \text { and } \quad|H| \leq C \delta(S)^{2} \quad \text { on } \quad S .
$$

Recall that

- $G=f$ on E and $\|G\|_{C^{2}} \leq 1$.
- $L_{\nu}=f$ on T_{ν}.
- $L_{\nu^{\prime}}=f$ on $T_{\nu^{\prime}}$.

For any $x \in 100 S_{\nu}$,

$$
\left|\nabla L_{\nu}-\nabla L_{\nu^{\prime}}\right| \leq\left|\nabla L_{\nu}-\nabla G(x)\right|+\left|\nabla L_{\nu^{\prime}}-\nabla G(x)\right| \leq C \delta(S),
$$

Lemma

Suppose that S_{ν} and $S_{\nu^{\prime}}$ are neighboring squares. Then

$$
\left|\nabla L_{\nu}-\nabla L_{\nu^{\prime}}\right| \leq C \delta\left(S_{\nu}\right)
$$

and

$$
\left|\left(L_{\nu}-L_{\nu^{\prime}}\right)(x)\right| \leq C \delta\left(S_{\nu}\right)^{2} \quad \text { on } 100 S_{\nu}
$$

Lemma

Suppose that S_{ν} and $S_{\nu^{\prime}}$ are neighboring squares. Then

$$
\left|\nabla L_{\nu}-\nabla L_{\nu^{\prime}}\right| \leq C \delta\left(S_{\nu}\right)
$$

and

$$
\left|\left(L_{\nu}-L_{\nu^{\prime}}\right)(x)\right| \leq C \delta\left(S_{\nu}\right)^{2} \quad \text { on } 100 S_{\nu}
$$

- Define $F_{\nu}:=L_{\nu}$ whenever $E \cap(1.1) S_{\nu}=\emptyset$.

Lemma

Suppose that S_{ν} and $S_{\nu^{\prime}}$ are neighboring squares. Then

$$
\left|\nabla L_{\nu}-\nabla L_{\nu^{\prime}}\right| \leq C \delta\left(S_{\nu}\right)
$$

and

$$
\left|\left(L_{\nu}-L_{\nu^{\prime}}\right)(x)\right| \leq C \delta\left(S_{\nu}\right)^{2} \quad \text { on } 100 S_{\nu}
$$

- Define $F_{\nu}:=L_{\nu}$ whenever $E \cap(1.1) S_{\nu}=\emptyset$.
- Do something similar for all other CZ squares.

Lemma

Suppose that S_{ν} and $S_{\nu^{\prime}}$ are neighboring squares. Then

$$
\left|\nabla L_{\nu}-\nabla L_{\nu^{\prime}}\right| \leq C \delta\left(S_{\nu}\right)
$$

and

$$
\left|\left(L_{\nu}-L_{\nu^{\prime}}\right)(x)\right| \leq C \delta\left(S_{\nu}\right)^{2} \quad \text { on } \quad 100 S_{\nu}
$$

- Define $F_{\nu}:=L_{\nu}$ whenever $E \cap(1.1) S_{\nu}=\emptyset$.
- Do something similar for all other CZ squares.
- Set

$$
F=\sum_{\nu} F_{\nu} \theta_{\nu}
$$

- We obtain

$$
\|F\|_{C^{2}} \leq C^{\prime}
$$

Keystone Squares

Definition

$S_{\mu} \in C Z$ is keystone if every $C Z$ square that intersects $9 S_{\mu}$ has sidelength larger than S_{μ}.

Definition

$S_{\mu} \in C Z$ is keystone if every $C Z$ square that intersects $9 S_{\mu}$ has sidelength larger than S_{μ}.

Definition

$S_{\mu} \in C Z$ is keystone if every $C Z$ square that intersects $9 S_{\mu}$ has sidelength larger than S_{μ}.

Diverging Paths

