Smooth Interpolation

Arie Israel

Courant Institute

June 18, 2012

Arie Israel (Courant Institute)

Smooth Interpolation

June 18, 2012 1 / 45

Contributions from

- Whitney (1930's)
- Glaeser (1950's)
- Brudnyi-Shvartsman (1980's-present)
- Bierstone-Milman-Pawlucki (2000's-present)
- Fefferman/Fefferman-Klartag (2003-present)
- Fefferman-I-Luli (2010-present)

Let $F : \mathbb{R}^n \to \mathbb{R}$ be sufficiently smooth.

• For any multi-index $\alpha = (\alpha_1, \dots, \alpha_n)$,

• For
$$k \ge 1$$
,
 $\nabla^k F(x) := \partial_1^{\alpha_1} \cdots \partial_n^{\alpha_n} F(x)$;
 $|\alpha| := \alpha_1 + \cdots + \alpha_n$.

Let $F : \mathbb{R}^n \to \mathbb{R}$ be sufficiently smooth.

• For $m \geq 1$, $\|F\|_{C^m} := \sup_{x \in \mathbb{R}^n} |\nabla^m F(x)|.$

• Finite subset $E \subset \mathbb{R}^n$ with cardinality N;

• Function $f: E \to \mathbb{R}$.

- Finite subset $E \subset \mathbb{R}^n$ with cardinality N;
- Function $f: E \to \mathbb{R}$.

Compute a *C*-optimal interpolant: $F : \mathbb{R}^n \to \mathbb{R}$ with

(a)
$$F = f$$
 on E ;

(b)
$$||F||_{C^m} \leq C \cdot ||G||_{C^m}$$
 whenever $G = f$ on E .

- Finite subset $E \subset \mathbb{R}^n$ with cardinality N;
- Function $f: E \to \mathbb{R}$.

Compute a *C*-optimal interpolant: $F : \mathbb{R}^n \to \mathbb{R}$ with

(a) F = f on E; (b) $||F||_{C^m} \le C \cdot ||G||_{C^m}$ whenever G = f on E. Side Questions:

- Estimate the nearly minimal norm $||F||_{C^m}$.
- How long do these computations take?

Theorem (Fefferman-Klartag ('09))

Can construct C_1 -optimal interpolants in time $C_2 N \log(N)$.

For $m \ge 1$ and $p \ge 1$, let

$$\|F\|_{L^{m,p}} := \left(\int_{x\in\mathbb{R}^n} |\nabla^m F(x)|^p dx\right)^{1/p}.$$

Compute a *C*-optimal Sobolev interpolant: $F : \mathbb{R}^n \to \mathbb{R}$ with

- F = f on E;
- $||F||_{L^{m,p}} \leq C \cdot ||G||_{L^{m,p}}$ whenever G = f on E.

Theorem (Fefferman-I-Luli ('11))

Can construct C-optimal Sobolev interpolants.

Theorem (Fefferman-I-Luli ('11))

Can construct C-optimal Sobolev interpolants.

Plausible running-time bound is $O_{m,n,p}(N \log(\Delta)^r)$, where

$$\Delta := \frac{\max\{|x-y|: x, y \in E\}}{\min\{|x-y|: x, y \in E\}}$$

Theorem (Fefferman-I-Luli ('11))

Can construct C-optimal Sobolev interpolants.

Plausible running-time bound is $O_{m,n,p}(N \log(\Delta)^r)$, where

$$\Delta := \frac{\max\{|x-y|: x, y \in E\}}{\min\{|x-y|: x, y \in E\}}$$

Can we prove this? Can we achieve $O(N \log(N))$?

• $t_1, \ldots, t_N \in \mathbb{R}$ • $p_1, \ldots, p_N \in \mathbb{R}$ <u>Construct</u> $p : \mathbb{R} \to \mathbb{R}$ with (a) $p(t_1) = p_1, \cdots, p(t_N) = p_N$; (b) $\sup_{t \in \mathbb{R}} |p'(t)| \leq \sup_{t \in \mathbb{R}} |q'(t)|$, for any other interpolant q. <u>Estimate:</u>

$$M = \sup_{t \in \mathbb{R}} |p'(t)|.$$

Arie Israel (Courant Institute)

Smooth Interpolation

June 18, 2012 10 / 45

(1)
$$\sup |p'(t)| = \Big| \frac{p_2 - p_3}{t_2 - t_3} \Big|.$$

The competitor q interpolates the data, so MVT \implies

(2)
$$\exists t^* \in [t_2, t_3]$$
 with $q'(t^*) = \frac{p_2 - p_3}{t_2 - t_3}$.
Finally, (1) and (2) \Longrightarrow

 $(3)\sup|p'(t)|\leq C\sup|q'(t)|.$

• $t_1, \ldots, t_N \in \mathbb{R}$ • $p_1, \ldots, p_N \in \mathbb{R}$ <u>Construct</u> $p : \mathbb{R} \to \mathbb{R}$ with (a) $p(t_1) = p_1, \cdots, p(t_N) = p_N$; (b) $\sup_{t \in \mathbb{R}} |p''(t)| \le \sup_{t \in \mathbb{R}} |q''(t)|$, for any other interpolant q. <u>Estimate:</u>

$$M = \sup_{t \in \mathbb{R}} |p''(t)|.$$

Arie Israel (Courant Institute)

Smooth Interpolation

June 18, 2012 14 / 45

Higher Dimensions

Given:

- Finite subset $E \subset [0, 1]^2$;
- Function $f: E \to \mathbb{R}$

3. 3

- Finite subset $E \subset [0, 1]^2$;
- Function $f: E \to \mathbb{R}$

There's a Competitor: $G : \mathbb{R}^2 \to \mathbb{R}$ with

 $G=f ext{ on } E;$ $|
abla^2 G|\leq 1 ext{ on } \mathbb{R}^2.$

- Finite subset $E \subset [0, 1]^2$;
- Function $f: E \to \mathbb{R}$

There's a Competitor: $G: \mathbb{R}^2 \to \mathbb{R}$ with

G = f on E; $|
abla^2 G| \le 1$ on \mathbb{R}^2 . <u>Goal:</u> Construct $F : [0,1]^2 o \mathbb{R}$ with F = f on E; $|
abla^2 F| \le C$ on $[0,1]^2$.

- (a) E contained in a line.
- (b) E contained in a smooth curve.

Figure: Sets with 1D structure

The Straight Line

Suppose that

$$E = \{(0, y_1), \dots, (0, y_N)\};$$

$$f: E \to \mathbb{R}.$$

Image: A mathematical states of the state

The Straight Line

Suppose that

$$E = \{(0, y_1), \dots, (0, y_N)\};$$
$$f: E \to \mathbb{R}.$$

Step 1: Let $g : \mathbb{R} \to \mathbb{R}$ be the cubic spline with

$$g(y_k) = f(0, y_k)$$
 for $k = 1, \ldots, N$,

and

$$|g''(y)| \leq C.$$

The Straight Line

Suppose that

$$E = \{(0, y_1), \dots, (0, y_N)\};$$
$$f: E \to \mathbb{R}.$$

Step 1: Let $g:\mathbb{R}\to\mathbb{R}$ be the cubic spline with

$$g(y_k) = f(0, y_k)$$
 for $k = 1, \ldots, N$,

and

$$|g''(y)| \leq C.$$

Step 2: Define F(x, y) := g(y). Then

$$|
abla^2 F(x,y)| = |g''(y)| \le C$$
 for all (x,y) .

The Smooth Curve

Suppose that

Figure: Sets with 1D structure

• Consider the diffeomorphism $\Phi:\mathbb{R}^2\to\mathbb{R}^2$:

$$\Phi(x,y) = (x - \phi(y), y).$$

The Smooth Curve

Suppose that

Figure: Sets with 1D structure

• Consider the diffeomorphism $\Phi : \mathbb{R}^2 \to \mathbb{R}^2$:

$$\Phi(x,y) = (x - \phi(y), y).$$

• Note that Φ maps *E* onto a line segment.

The Smooth Curve

Suppose that

Figure: Sets with 1D structure

• Consider the diffeomorphism $\Phi:\mathbb{R}^2\to\mathbb{R}^2$:

$$\Phi(x,y) = (x - \phi(y), y).$$

• Note that Φ maps *E* onto a line segment.

 There is a 1-1 correspondence between interpolation problems on E and on Φ(E).

Arie Israel (Courant Institute)

June 18, 2012 20 / 45

 $S(x, \delta) :=$ square with center x and sidelength δ .

 $\delta(S) :=$ sidelength of the square S.

 $A \cdot S := A$ -dilate of S about its center.

Definition (Neat Squares)

A square S is neat if $3S \cap E$ lies on the graph of a function h with

 $|h''| \leq \delta(S)^{-1}$ uniformly.

Definition (Neat Squares)

A square S is neat if $3S \cap E$ lies on the graph of a function h with

 $|h''| \leq \delta(S)^{-1}$ uniformly.

• Equivalently, S neat when $\delta(S)^{-1} \cdot (3S \cap E)$ lies on the graph of a function h with

 $|h''| \leq 1$ uniformly.

Definition (Neat Squares)

A square S is neat if $3S \cap E$ lies on the graph of a function h with

 $|h''| \leq \delta(S)^{-1}$ uniformly.

Equivalently, S neat when δ(S)⁻¹ · (3S ∩ E) lies on the graph of a function h with

 $|h''| \leq 1$ uniformly.

- Small enough squares are neat.
- If S is neat and $S' \subset S$ then S' is neat.

Suppose that S is neat. Then we can construct $F : 3S \to \mathbb{R}$ with F = f on $E \cap 3S$ and $|\nabla^2 F| \leq C$ on 3S.

Definition (Messy Squares)

A square S is messy if S is not neat.

Figure: Some Messy Squares

- Keep bisecting $S \subset [0,1]^2$ until S is neat.
- Define *CZ* as the collection of nonbisected squares.

	<i></i>	:	

Arie Israel (Courant Institute)

Smooth Interpolation

June 18, 2012 28 / 45

 	•	

Arie Israel (Courant Institute)

					-
	•••• ••	• • • •	* * *		
	I		1	L	
				n , (A)	

	-					
	·*** *•	0000	•			
				4	▫▸◂◲▸	★ Ξ > < Ξ >

								•					
											a .		 _

Note that $CZ = \{S_{\nu}\}$ partitions $[0, 1]^2$.

- (a) If $S \in CZ$, then S is neat.
- (b) If $S \in CZ$, then 3S is messy.
- (c) Good Geometry: If $S, S' \in CZ$ touch, then

$$rac{1}{2}\delta(S')\leq \delta(S)\leq 2\delta(S').$$

Note that
$$CZ = \{S_{\nu}\}$$
 partitions $[0,1]^2$.

- (a) If $S \in CZ$, then S is neat.
- (b) If $S \in CZ$, then 3S is messy.
- (c) Good Geometry: If $S, S' \in CZ$ touch, then

$$\frac{1}{2}\delta(S') \le \delta(S) \le 2\delta(S').$$

One-Line Proofs:

- (a) That was our stopping rule!
- (b) 3S contains the dyadic parent S^+ .
- (c) If $S, S' \in CZ$ touch and $\delta(S) \leq \delta(S')/4$, then $3S^+ \subset 3S'$.

Construct local interpolants for the CZ squares:

• Functions $F_{\nu}: 3S_{\nu} \to \mathbb{R}$ that satisfy:

(a)
$$F_{\nu} = f$$
 on $E \cap (1.1)S_{\nu}$.
(b) $|\nabla^2 F_{\nu}| \le C$ on $3S_{\nu}$.

Introduce a partition of unity adapted to the CZ squares:

• Functions $heta_
u: [0,1]^2 o \mathbb{R}$ that satisfy

$$\begin{array}{ll} (a) & 0 \leq \theta_{\nu} \leq 1; \\ (b) & \operatorname{supp}(\theta_{\nu}) \subset (1.1)S_{\nu}; \\ (c) & |\nabla \theta_{\nu}| \leq C \cdot \delta(S_{\nu})^{-1} \quad \text{and} \quad |\nabla^2 \theta_{\nu}| \leq C \cdot \delta(S_{\nu})^{-2}; \\ (d) & \sum_{\nu} \theta_{\nu} = 1 \quad \text{on} \quad [0,1]^2. \end{array}$$

The Naive Plan: Step 3

Define:

 $F = \sum_{\nu} \theta_{\nu} F_{\nu}.$

Image: A matrix and a matrix

Define:

$$F = \sum_{
u} heta_{
u} F_{
u}.$$

By Local Interpolation and support properties of the partition of unity,

$$F = f$$
 on E .

Define:

$$F = \sum_{
u} heta_{
u} F_{
u}.$$

By Local Interpolation and support properties of the partition of unity,

$$F = f$$
 on E .

Question: Is

$$|
abla^2 F| \leq C$$
 on $[0,1]^2$?

								••••							
											∂ ►	 ■ 	•	•	

Let S be any messy square. Then there exists a "non-degenerate" triplet

 $T \subset E \cap 9S.$

Let S be any messy square. Then there exists a "non-degenerate" triplet

 $T \subset E \cap 9S.$

• Associate to each S_{ν} some "non-degenerate" triplet: $T_{\nu} \subset E \cap 9S_{\nu}$.

Let S be any messy square. Then there exists a "non-degenerate" triplet

 $T \subset E \cap 9S.$

• Associate to each S_{ν} some "non-degenerate" triplet: $T_{\nu} \subset E \cap 9S_{\nu}$.

• Let L_{ν} be affine with $L_{\nu} = f$ on T_{ν} .

Let S be any messy square. Then there exists a "non-degenerate" triplet

 $T \subset E \cap 9S.$

• Associate to each S_{ν} some "non-degenerate" triplet: $T_{\nu} \subset E \cap 9S_{\nu}$.

- Let L_{ν} be affine with $L_{\nu} = f$ on T_{ν} .
- This gives our rough guess for the affine structure of our interpolant.

• Let's check consistency:

Lemma

Suppose that S_{ν} and $S_{\nu'}$ are neighboring squares. Then

$$|\nabla L_{\nu} - \nabla L_{\nu'}| \le C\delta(S_{\nu})$$

and

$$|L_{
u}-L_{
u'}|\leq C\delta(S_{
u})^2$$
 on $100S_{
u}.$

Need this version of Rolle's Theorem:

Lemma

Suppose that H vanishes on a "non-degenerate" triplet $T \subset S$ and $\|H\|_{C^2} \leq 1$. Then,

 $|\nabla H| \leq C\delta(S)$ and $|H| \leq C\delta(S)^2$ on S.

Need this version of Rolle's Theorem:

Lemma

Suppose that H vanishes on a "non-degenerate" triplet $T \subset S$ and $\|H\|_{C^2} \leq 1$. Then,

$$|\nabla H| \leq C\delta(S)$$
 and $|H| \leq C\delta(S)^2$ on S.

Recall that

- G = f on E and $||G||_{C^2} \leq 1$.
- $L_{\nu} = f$ on T_{ν} .
- $L_{\nu'} = f$ on $T_{\nu'}$.

Need this version of Rolle's Theorem:

Lemma

Suppose that H vanishes on a "non-degenerate" triplet $T \subset S$ and $\|H\|_{C^2} \leq 1$. Then,

$$|\nabla H| \leq C\delta(S)$$
 and $|H| \leq C\delta(S)^2$ on S.

Recall that

- G = f on E and $||G||_{C^2} \leq 1$.
- $L_{\nu} = f$ on T_{ν} .
- $L_{\nu'} = f$ on $T_{\nu'}$.

For any $x\in 100S_{
u}$,

 $|\nabla L_{\nu} - \nabla L_{\nu'}| \leq |\nabla L_{\nu} - \nabla G(x)| + |\nabla L_{\nu'} - \nabla G(x)| \leq C\delta(S),$

Suppose that S_{ν} and $S_{\nu'}$ are neighboring squares. Then

$$|\nabla L_{\nu} - \nabla L_{\nu'}| \le C\delta(S_{\nu})$$

and

$$|(L_{\nu} - L_{\nu'})(x)| \le C\delta(S_{\nu})^2$$
 on $100S_{\nu}$.

Suppose that S_{ν} and $S_{\nu'}$ are neighboring squares. Then

$$|\nabla L_{\nu} - \nabla L_{\nu'}| \le C\delta(S_{\nu})$$

and

$$|(L_{
u} - L_{
u'})(x)| \le C\delta(S_{
u})^2$$
 on $100S_{
u}$.

• Define $F_{\nu} := L_{\nu}$ whenever $E \cap (1.1)S_{\nu} = \emptyset$.

Suppose that S_{ν} and $S_{\nu'}$ are neighboring squares. Then

$$|\nabla L_{\nu} - \nabla L_{\nu'}| \le C\delta(S_{\nu})$$

and

$$|(L_{
u}-L_{
u'})(x)| \leq C\delta(S_{
u})^2$$
 on $100S_{
u}$.

- Define $F_{\nu} := L_{\nu}$ whenever $E \cap (1.1)S_{\nu} = \emptyset$.
- Do something similar for all other CZ squares.

Suppose that S_{ν} and $S_{\nu'}$ are neighboring squares. Then

$$|\nabla L_{\nu} - \nabla L_{\nu'}| \le C\delta(S_{\nu})$$

and

$$|(L_{
u}-L_{
u'})(x)| \leq C\delta(S_{
u})^2$$
 on $100S_{
u}$.

- Define $F_{\nu} := L_{\nu}$ whenever $E \cap (1.1)S_{\nu} = \emptyset$.
- Do something similar for all other CZ squares.

Set

$$F = \sum_{\nu} F_{\nu} \theta_{\nu}.$$

• We obtain

$$\|F\|_{C^2} \leq C'.$$

Keystone Squares

Definition

 $S_{\mu} \in CZ$ is keystone if every CZ square that intersects $9S_{\mu}$ has sidelength larger than S_{μ} .

Arie Israel (Courant Institute)

Smooth Interpolation

June 18, 2012 42 / 45

Definition

$S_{\mu} \in CZ$ is keystone if every CZ square that intersects $9S_{\mu}$ has sidelength larger than S_{μ} .

3

Image: A mathematical states of the state

Definition

$S_{\mu} \in CZ$ is keystone if every CZ square that intersects $9S_{\mu}$ has sidelength larger than S_{μ} .

3

Image: A mathematical states of the state

Diverging Paths

							-											
-																		
								••••		:								
					er e													
																		_
	Arie Isra	ael (Coura	e)		Smooth Interpolation								P	< □*	P 4	J		

June 18, 2012

< ∃⇒

æ

45 / 45