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Contributions from

Whitney (1930’s)

Glaeser (1950’s)

Brudnyi-Shvartsman (1980’s-present)

Bierstone-Milman-Pawlucki (2000’s-present)

Fefferman/Fefferman-Klartag (2003-present)

Fefferman-I-Luli (2010-present)
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Notation

Let F : Rn → R be sufficiently smooth.

For any multi-index α = (α1, . . . , αn),

∂αF (x) := ∂α1
1 · · · ∂

αn
n F (x);

|α| := α1 + · · ·+ αn.

For k ≥ 1,
∇kF (x) :=

(
∂αF (x)

)
|α|=k

.
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Notation

Let F : Rn → R be sufficiently smooth.

For m ≥ 1,
‖F‖Cm := sup

x∈Rn
|∇mF (x)|.
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The Problem

Given:

Finite subset E ⊂ Rn with cardinality N;

Function f : E → R.

Compute a C -optimal interpolant: F : Rn → R with

(a) F = f on E ;

(b) ‖F‖Cm ≤ C · ‖G‖Cm whenever G = f on E .

Side Questions:

Estimate the nearly minimal norm ‖F‖Cm .

How long do these computations take?
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Theorem (Fefferman-Klartag (’09))

Can construct C1-optimal interpolants in time C2N log(N).
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A Variant Problem

For m ≥ 1 and p ≥ 1, let

‖F‖Lm,p :=

(∫
x∈Rn

|∇mF (x)|pdx
)1/p

.

Compute a C -optimal Sobolev interpolant: F : Rn → R with

F = f on E ;

‖F‖Lm,p ≤ C · ‖G‖Lm,p whenever G = f on E .
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Theorem (Fefferman-I-Luli (’11))

Can construct C-optimal Sobolev interpolants.

Plausible running-time bound is Om,n,p(N log(∆)r ), where

∆ :=
max{|x − y | : x , y ∈ E}
min{|x − y | : x , y ∈ E}

Can we prove this? Can we achieve O(N log(N))?
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Example I

Given:

t1, . . . , tN ∈ R
p1, . . . , pN ∈ R

Construct p : R→ R with

(a) p(t1) = p1, · · · , p(tN) = pN ;

(b) supt∈R |p′(t)| ≤ supt∈R |q′(t)|, for any other interpolant q.

Estimate:
M = sup

t∈R
|p′(t)|.
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(1) sup |p′(t)| =
∣∣∣p2 − p3
t2 − t3

∣∣∣.
The competitor q interpolates the data, so MVT =⇒

(2) ∃t∗ ∈ [t2, t3] with q′(t∗) =
p2 − p3
t2 − t3

.

Finally, (1) and (2) =⇒

(3) sup |p′(t)| ≤ C sup |q′(t)|.
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Example II

Given:

t1, . . . , tN ∈ R
p1, . . . , pN ∈ R

Construct p : R→ R with

(a) p(t1) = p1, · · · , p(tN) = pN ;

(b) supt∈R |p′′(t)| ≤ supt∈R |q′′(t)|, for any other interpolant q.

Estimate:
M = sup

t∈R
|p′′(t)|.
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Higher Dimensions

Given:

Finite subset E ⊂ [0, 1]2;

Function f : E → R

There’s a Competitor: G : R2 → R with

G = f on E ;

|∇2G | ≤ 1 on R2.

Goal: Construct F : [0, 1]2 → R with

F = f on E ;

|∇2F | ≤ C on [0, 1]2.
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Two Examples

(a) E contained in a line.

(b) E contained in a smooth curve.

(a) (b)

Figure: Sets with 1D structure
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The Straight Line

Suppose that
E = {(0, y1), . . . , (0, yN)};

f : E → R.

Step 1: Let g : R→ R be the cubic spline with

g(yk) = f (0, yk) for k = 1, . . . ,N,

and
|g ′′(y)| ≤ C .

Step 2: Define F (x , y) := g(y). Then

|∇2F (x , y)| = |g ′′(y)| ≤ C for all (x , y).
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The Smooth Curve

Suppose that
E ⊂ {(φ(y), x)}, where |φ′′| ≤ 1.

(a) (b)

Figure: Sets with 1D structure

Consider the diffeomorphism Φ : R2 → R2:

Φ(x , y) = (x − φ(y), y).

Note that Φ maps E onto a line segment.

There is a 1− 1 correspondence between interpolation problems on E
and on Φ(E ).
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The Smooth Curve

Suppose that
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(c) (d)

Figure: Sets with 1D structure

Consider the diffeomorphism Φ : R2 → R2:

Φ(x , y) = (x − φ(y), y).

Note that Φ maps E onto a line segment.
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The Smooth Curve

Suppose that
E ⊂ {(φ(y), x)}, where |φ′′| ≤ 1.

(e) (f)

Figure: Sets with 1D structure

Consider the diffeomorphism Φ : R2 → R2:

Φ(x , y) = (x − φ(y), y).

Note that Φ maps E onto a line segment.

There is a 1− 1 correspondence between interpolation problems on E
and on Φ(E ).
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Some Notation

S(x , δ) := square with center x and sidelength δ.

δ(S) := sidelength of the square S .

A · S := A-dilate of S about its center.
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Definition (Neat Squares)

A square S is neat if 3S ∩ E lies on the graph of a function h with

|h′′| ≤ δ(S)−1 uniformly.

Equivalently, S neat when δ(S)−1 · (3S ∩ E ) lies on the graph of a
function h with

|h′′| ≤ 1 uniformly.

Small enough squares are neat.

If S is neat and S ′ ⊂ S then S ′ is neat.
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Lemma

Suppose that S is neat. Then we can construct F : 3S → R with F = f
on E ∩ 3S and |∇2F | ≤ C on 3S.

(a) A Neat S ... (b) Rescaled
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Definition (Messy Squares)

A square S is messy if S is not neat.

Figure: Some Messy Squares
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The CZ Decomposition

Keep bisecting S ⊂ [0, 1]2 until S is neat.

Define CZ as the collection of nonbisected squares.
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Properties of the CZ Decomposition

Note that CZ = {Sν} partitions [0, 1]2.

(a) If S ∈ CZ , then S is neat.

(b) If S ∈ CZ , then 3S is messy.

(c) Good Geometry: If S , S ′ ∈ CZ touch, then

1

2
δ(S ′) ≤ δ(S) ≤ 2δ(S ′).

One-Line Proofs:

(a) That was our stopping rule!

(b) 3S contains the dyadic parent S+.

(c) If S ,S ′ ∈ CZ touch and δ(S) ≤ δ(S ′)/4, then 3S+ ⊂ 3S ′.
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The Naive Plan: Step 1

Construct local interpolants for the CZ squares:

Functions Fν : 3Sν → R that satisfy:

(a) Fν = f on E ∩ (1.1)Sν .

(b) |∇2Fν | ≤ C on 3Sν .

Arie Israel (Courant Institute) Smooth Interpolation June 18, 2012 34 / 45



The Naive Plan: Step 2

Introduce a partition of unity adapted to the CZ squares:

Functions θν : [0, 1]2 → R that satisfy

(a) 0 ≤ θν ≤ 1;

(b) supp(θν) ⊂ (1.1)Sν ;

(c) |∇θν | ≤ C · δ(Sν)−1 and |∇2θν | ≤ C · δ(Sν)−2;

(d)
∑
ν

θν = 1 on [0, 1]2.
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The Naive Plan: Step 3

Define:

F =
∑
ν

θνFν .

By Local Interpolation and support properties of the partition of unity,

F = f on E .

Question: Is
|∇2F | ≤ C on [0, 1]2?
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Arranging Consistency

Lemma

Let S be any messy square. Then there exists a “non-degenerate” triplet

T ⊂ E ∩ 9S .

Associate to each Sν some “non-degenerate” triplet: Tν ⊂ E ∩ 9Sν .

Let Lν be affine with Lν = f on Tν .

This gives our rough guess for the affine structure of our interpolant.
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Let’s check consistency:

Lemma

Suppose that Sν and Sν′ are neighboring squares. Then

|∇Lν −∇Lν′ | ≤ Cδ(Sν)

and
|Lν − Lν′ | ≤ Cδ(Sν)2 on 100Sν .
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Need this version of Rolle’s Theorem:

Lemma

Suppose that H vanishes on a “non-degenerate” triplet T ⊂ S and
‖H‖C2 ≤ 1. Then,

|∇H| ≤ Cδ(S) and |H| ≤ Cδ(S)2 on S .

Recall that

G = f on E and ‖G‖C2 ≤ 1.

Lν = f on Tν .

Lν′ = f on Tν′ .

For any x ∈ 100Sν ,

|∇Lν −∇Lν′ | ≤ |∇Lν −∇G (x)|+ |∇Lν′ −∇G (x)| ≤ Cδ(S),
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Lemma

Suppose that Sν and Sν′ are neighboring squares. Then

|∇Lν −∇Lν′ | ≤ Cδ(Sν)

and
|(Lν − Lν′)(x)| ≤ Cδ(Sν)2 on 100Sν .

Define Fν := Lν whenever E ∩ (1.1)Sν = ∅.
Do something similar for all other CZ squares.

Set
F =

∑
ν

Fνθν .

We obtain
‖F‖C2 ≤ C ′.
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Keystone Squares

Definition

Sµ ∈ CZ is keystone if every CZ square that intersects 9Sµ has sidelength
larger than Sµ.
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Diverging Paths
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