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DIMENSION OF ESCAPING GEODESICS

ZSUZSANNA GÖNYE

Abstract. Suppose M = B/G is a hyperbolic manifold. Consider the set of
escaping geodesic rays γ(t) originating at a fixed point p of the manifold M ,

i.e. dist(γ(t), p) → ∞. We investigate those escaping geodesics which escape at
the fastest possible rate, and find the Hausdorff dimension of the corresponding
terminal points on the boundary of B.

In dimension 2, for a geometrically infinite Fuchsian group, if the injectivity
radius of M = B/G is bounded above and away from zero, then these points
have full dimension. In dimension 3, when G is a geometrically infinite and
topologically tame Kleinian group, if the injectivity radius of M = B/G is
bounded away from zero, the dimension of these points is 2, which is again
maximal.

1. Introduction

Consider G, a discrete, torsion free group of isometries of the hyperbolic metric
on the hyperbolic three ball B; i.e. a Kleinian group. Passing to the quotient B/G
by identification of the G-equivalent points we obtain the quotient space M , which
is a manifold. Suppose this group G is non-elementary, and denote its limit set by
Λ.

A point x on the boundary of the ball is a non-conical point if there is a geodesic
ray ending at x so that the projection of this geodesic will eventually leave any
compact set and tend to the ideal boundary. Among these points there is a subset
that escapes to the ideal boundary at the fastest possible rate; these are called
deep points. The original definition of deep points is due to McMullen ([14]). A
point is a deep point if there is a geodesic ray γ : [0,∞) → C(Λ) in the convex hull
parameterized by arclength and terminating at x, so that for some δ > 0

dist
(
γ(t), ∂C(Λ)

)
t

≥ δ

for all t, i.e. the depth of γ inside the convex hull of the limit set Λ increases linearly
with the hyperbolic length. (All the necessary definitions will be given later in the
text.)

We can generalize this notation by taking any Lipschitz function φ(t) : [1,∞) →
[1,∞) with the property of limt→∞ φ(t) = ∞. We fix a point z0 ∈ M = B/G, and
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consider the set of geodesic rays starting at z0 parameterized by the hyperbolic
arclength. Define the set of geodesics in the convex core which escape at a rate φ
as

ΓC
φ =

{
γ :

1
C

≤
dist

(
γ(t), z0

)
φ(t)

≤ C
}

.

Let ΛC
φ denote the terminating points of the geodesics in ΓC

φ , and let Λφ =
⋃

C ΛC
φ .

The main theorem of this paper is the following:

Theorem 1.1. Suppose G is a geometrically infinite, topologically tame Kleinian
group, M = B/G has injectivity radius bounded away from zero and there is a
Green’s function on M . Let φ(t) : [1,∞) → [1,∞) be a Lipschitz function satisfying
limt→∞ φ(t) = ∞; then the Hausdorff dimension of Λφ is 2.

The relevant definitions will be given later in Sections 2, 3 and 4. The idea of
the proof is as follows: we can find a positive harmonic function u on the manifold
M which tends to 0 in the geometrically finite ends of M (Lemma 4.1). Lifting u
up to the covering space B, we get a hyperbolic harmonic function U on the ball B.
This hyperbolic harmonic function is a Poisson integral of some positive measure
µ, which is supported on the limit set. Using this measure µ, we construct a Bloch
martingale {fn} on the dyadic squares Q of length 2−n by defining fn as

fn(x) =
µ
(
Q(x)

)
m

(
Q(x)

) .

With the help of a technical lemma (Lemma 5.2) we can find a Cantor set, which
has Hausdorff dimension two (Lemma 3.3), on which the martingale grows approx-
imately at the same rate as the given Lipschitz function φ, i.e.

1
C

≤
∣∣∣∣fn(Q)

φ(n)

∣∣∣∣ ≤ C.

The martingale fn(x) for x ∈ Q has bounded distance from the harmonic function
U on the top of the Carleson square drawn over Q (Lemma 4.2); therefore

1
C

≤
∣∣∣∣U(zQ)

φ(n)

∣∣∣∣ ≤ C.

Finally, U(z) gives the distance approximately from γ(t) to the base point, which
gives an estimate for dist(γ(t), ∂C(Λ)) on manifolds specified in the main theorem.

An analogous theorem can also be given for Fuchsian groups:

Theorem 1.2. Suppose G is a geometrically infinite Fuchsian group, M = B/G
has injectivity radius bounded and bounded away from zero, and there is a Green’s
function on M . Let φ(t) : [1,∞) → [1,∞) be a Lipschitz function satisfying
limt→∞ φ(t) = ∞; then the Hausdorff dimension of Λφ is 1.

Fernández and Melián in [9] extensively studied the size of the set of escaping
geodesics starting at a point of the hyperbolic surface. A geodesic ray γ(t) origi-
nating at p is called escaping if limt→∞ dist

(
γ(t), p

)
= +∞. These rays may leave

the convex core. It is known that if there is a Green’s function on the surface, then
the set of escaping geodesics has full measure. If there is no Green’s function, then
the Hausdorff dimension of the terminal points is still 1.
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Taking φ(t) = t in Theorems 1.1 and 1.2 we get the dimension of deep points in
sets described in the theorem above.

Corollary 1.3. If G is a geometrically infinite, topologically tame Kleinian group
and M = B/G has injectivity radius bounded away from zero and has a Green’s
function, then the deep points have dimension 2.

2. Definitions and notation

Let M(R̄d) denote the orientation preserving Möbius transformations in the
d-dimensional extended space R̄

d = R
d ∪ {∞}. The subgroup of M(R̄d) which

preserves the upper half-plane H = {x ∈ R̄
d : xd > 0} or the unit ball B =

{x ∈ R̄
d : |x| < 1} will be denoted by M(H) and M(B), respectively. A discrete

group G of M(B) in dimension 3 is called a Kleinian group. A Fuchsian group is
a Kleinian group that stabilizes a round disc on ∂B, the sphere at infinity. In this
paper we consider only non-elementary groups, that is, G has no finite orbit in
H

3 = {x ∈ R̄
3 : x3 > 0}.

If G is a discrete subgroup of M(B), the orbit G(a) of any point a ∈ B can
accumulate only on the boundary of B. So we call a point x ∈ S = ∂B a limit point,
if there is an orbit G(a) accumulating at x. The limit set is the set of limit points
and is denoted by Λ(G) or simply by Λ. The complementary set S\Λ of Λ is called
the ordinary set, and is denoted by Ω ([3]).

Let G be a Kleinian group. Then the quotient space Ω/G, which is obtained from
the ordinary set of G by identifying equivalent points under the mappings of G, is
a marked (possibly disconnected) Riemann surface ([13]). If Ω/G is a finite marked
Riemann surface (i.e. a finite union of compact surfaces, each with at most a finite
number of punctures), then G is called analytically finite. The Ahlfors finiteness
theorem shows that G is analytically finite if it is finitely generated.

A Möbius group G is called geometrically finite if some convex fundamental
polyhedron has finitely many faces. In dimensions 2 and 3 the standard definition
of geometric finiteness is that the Dirichlet region must have finitely many faces.
It is known that this criterion implies that every Dirichlet region and every convex
fundamental polyhedron has finitely many faces ([3], [15]). Moreover, geometric
finiteness implies that the group is finitely generated, and therefore analytically
finite.

The convex hull of Λ ⊂ S = ∂B, denoted by C(Λ), is the smallest convex subset
of B containing all geodesics with both endpoints in Λ. The convex core of a
hyperbolic manifold M = B/G is given by the quotient C(Λ)/G and denoted by
C(M). For x ∈ M the injectivity radius, inj(x), is half the distance between the
two closest distinct lifts of x to B. In the theorem we assume that the injectivity
radius is bounded away from zero uniformly on M , which in dimensions 2 and 3
implies that G has no parabolic elements.

A Kleinian group is called topologically tame, if the corresponding quotient man-
ifold M = B/G is homeomorphic to the interior of a compact 3-manifold with
boundary. This implies that the convex core C(M) consists of a compact piece and
a finite number of ends Ej , which are topologically equivalent to S × R+ for some
compact surface S. D. Calegari and D. Gabai in [6] and I. Agol in [1] proved the
Marden conjecture, where all complete hyperbolic 3-manifolds with finitely gener-
ated fundamental group are topologically tame. We note here that in [7] Canary
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showed that topological tameness is equivalent to analytical tameness in dimen-
sion 3. Moreover, if G is topologically tame, then there is an upper bound for the
injectivity radius inside the convex core.

In the Introduction we gave the definition of a deep point defined by a geodesic
ray in the convex hull of Λ. An equivalent definition can also be given on the
quotient manifold, as in [4]. A point x ∈ Λ is deep if the geodesic ray γ ending at
x satisfies

dist
(
γ̃(t), M\C(M)

)
t

≥ δ > 0

for all t ≥ t0, where γ̃ denotes the curve on the quotient space which corresponds
to γ.

3. Dyadic martingale and Hausdorff dimension

An nth generation dyadic cube in R
d is

Qn =
{
x = (x1, x2, . . . , xd) : ai ≤ xi < ai + 2−n, 1 ≤ i ≤ d

}
where a = (a1, a2, . . . , ad), the corner of the cube, has coordinates in the form
ai = mi

2n with an integer mi. The collection of these dyadic cubes is denoted by Dn.
For any given point x ∈ R

d let Qn(x) denote that unique nth generation dyadic
cube from Dn which contains the point x, and let |Qn| denote the side-length of
Qn. The mth generation descendants of Qn are the dyadic sub-cubes of Qn with
side-length of 2−m|Qn|. There are 2md of them.

Suppose Q0 is a unit cube in R
d. Then a sequence of functions {fn}∞n=0 is said

to be a dyadic martingale on Q0 if

(1) fn is measurable on each Qn ∈ D,
(2) 1

|Qn|
∫

Qn
fn < ∞,

(3) 1
|Qm|

∫
Qm

fn = fm for all m < n.

In addition to this usual definition, we also require that fn must be constant on the
nth generation dyadic cubes. Since in this paper we use only dyadic martingales,
so we often omit the “dyadic” attribute.

There is a standard way to construct a martingale from a finite measure. If a
finite measure µ is given on Q0, then the functions

(3.1) fn(x) =
µ
(
Qn(x)

)
|Qn(x)|d

define a dyadic martingale, where |Qn(x)|d (or just |Qn(x)| if the notation is clear
from the text) denotes the d-dimensional Lebesgue measure of Qn(x). We define
the martingale differences as ∆fn(x) = fn+1(x)− fn(x) and the martingale square
function as

Sf (x) =
( ∞∑

n=1

‖χQn(x)∆fn‖2
∞

)1/2

.

A martingale is called Bloch if supn‖∆fn‖∞ < ∞. If {fn} is an L1-bounded
martingale, then fn converges a.e. to a function f with ‖f‖1 < ∞. For more results
on the convergence of martingales, you may see [11]. We will need the following
two estimates for dyadic martingales.
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Lemma 3.1. Let fn be a dyadic martingale on Q0 ⊂ R
d with limit function f .

Suppose ‖Sf‖∞ < ∞. Then for λ ≥ 0,

|x ∈ Q0 : f(x) − f0(x) ≥ λ| ≤ exp
(
− λ2

2‖Sf‖2
∞

)
.

The proof of this lemma is due to Herman Rubin and can be found in the paper
of Chang-Wilson-Wolff [8, Theorem 3.1].

Lemma 3.2. Suppose µ is a probability measure on X. Suppose F is a measurable,
real valued function on X so that

∫
X

Fdµ = 0 and ‖F‖4 ≤ B‖F‖2. Then

µ

({
x : F (x) ≤ − 1√

8B2
‖F‖2

})
≥ 1

64B12
.

The proof is given in [4].
Suppose φ is an increasing, continuous function from [0,∞) to itself such that

φ(0) = 0. For a given set E we define the Hausdorff content as

Hφ
∞(E) = inf

{∑
φ(rj) : E ⊂ ∪jD(xj , rj)

}
,

where D(xj , rj) denotes a ball of radius rj centered at xj . Especially, if φ(t) = tα

we denote Hφ
∞ by Hα

∞. The Hausdorff dimension of a set E is

dimH(E) = inf
{
α : Hα

∞(E) = 0
}
.

For more details and examples on Hausdorff dimension you may see [5].
In the proof of our theorem we will also need the following lemma.

Lemma 3.3. Suppose En is a union of closed dyadic cubes of generation kn so
that E0 ⊃ E1 ⊃ E2 ⊃ ... and there are constants N and ε with

(1) |kn − kn+1| = N for all n.
(2) If Q ∈ En is generation kn, then |En+1 ∩ Q|d ≥ ε|Q|d.

If E =
⋂

n En, then dimH(E) ≥ d − C(N, ε), where C(N, ε) → 0 whenever ε > 0 is
fixed and N → ∞.

The proof of this lemma can be found in [10], [12] and [16].

4. The hyperbolic space and harmonic functions

The unit ball B in R
n is the disc model for the n-dimensional hyperbolic space

equipped with the hyperbolic metric

(4.1) dρ =
2|dx|

1 − |x|2 .

An alternative model of the hyperbolic n-space is the upper half-plane H =
{
x =

(x1, x2, . . . , xn) : xn > 0
}
⊂ R

n equipped with the metric

(4.2) dρ =
|dx|
xn

.

Using the hyperbolic metric defined in B =
{
x ∈ R

n : |x| < 1
}

by (4.1) we
may construct the hyperbolic volume and area element, the normal derivative and

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



5594 ZSUZSANNA GÖNYE

gradient in the hyperbolic ball as

dVH =
2ndx1dx2 · · · dxn

(1 − |x|2)n
,

dσH =
2n−1dσ

(1 − |x|2)n−1
,

∂v

∂nH
=

1 − |x|2
2

∂v

∂n
,

∇Hu =
1 − |x|2

2
∇u.

On the upper half-plane H =
{
x = (x1, . . . , xn) ∈ R

n, xn > 0
}

these are

dVH =
dx1 · · · dxn

xn
n

,

dσH =
dσ

xn−1
n

,

∂v

∂nH
= xn

∂v

∂n
,

∇Hu = xn∇u,

respectively. A more detailed description can be found in [2] and [15].
The hyperbolic Laplace-Beltrami operator for the unit ball B ⊂ R

n is given by

∆H =
(1 − r2)2

4

[
∆ +

2(n − 2)r
1 − r2

∂

∂r

]
,

where r = |x|. On the upper half-plane this is

∆H = x2
n

[
∆ − n − 2

xn

∂

∂xn

]
.

A function f is called hyperbolically harmonic if it satisfies the hyperbolic Laplace
equation, ∆Hf = 0.

We define the Green’s function on a quotient manifold M as follows. F is a
Green’s function on M with a pole at the projection of a point a, if there exists a
function f : B\{G(a)} → R such that the projection of f is F and the following are
true for f :

• f is a hyperbolic harmonic function on B\{G(a)},
• f ◦ g = f for all g ∈ G,
• limz→a

(
f(z) − 1

z−a

)
exists, i.e. f has singularity 1

z−a at the point a,
• f is the smallest positive function with these properties.

The hyperbolic version of Green’s formula is∫
D

(u∆Hv − v∆Hu)dVH =
∫

∂D

(
u

∂v

∂nH
− v

∂u

∂nH

)
dσH .

We will need the following existence theorem, which was proven in [4].

Lemma 4.1. Suppose G is topologically tame, geometrically infinite, M = B/G has
an injectivity radius bounded below by ε > 0 and Green’s function G(w, z) exists on
M . Then there exists a positive harmonic function U on M such that

supz∈M |∇U(z)| ≤ 1
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and U tends to zero in the geometrically finite ends of M . If, in addition, G is
topologically tame, then for any a0 > 0 there are constants a1 and a2 so that∫

B(z,a1)

|∇U |2dV ≥ a2,

for every z such that dist
(
z, C(M)

)
≤ a0. Moreover, U(z) tends to +∞ in the

geometrically infinite ends as dist
(
z, ∂C(M)

)
→ ∞.

If Q is a cube in R
n, then Q̂ = Q×

[
0, �(Q)

]
is called the Carleson cube in R

n+1
+

with base Q, and let zQ denote the center of Q̂.

Lemma 4.2. Suppose U on R
n+1
+ is the hyperbolic Poisson integral of the positive

measure µ and satisfies |∇HU(z)| ≤ 1. For a square Q ∈ R
n, let Qt =

{
(x, t) :

x ∈ Q
}
. Then there is an A < ∞ so that∣∣∣∣U(zQ) − 1

|Q|

∫
Q

U(x, t)dx

∣∣∣∣ ≤ A,

for any 0 < t ≤ �(Q), where �(Q) denotes the side-length of Q, and∣∣∣∣U(zQ) − 1
|Q|

∫
Q

dµ

∣∣∣∣ ≤ A.

The proof of this lemma in dimension n = 2 was given in [4], and it can be
proven in higher dimension on a similar way as in [10].

5. Two lemmas on martingales

Define a martingale on the dyadic cubes using the positive measure µ described
in Lemma 4.1 defined by equation (3.1). According to Lemma 4.2, there exists a
constant A so that |U(zQn(x)) − fn(x)| ≤ A. To prove our main theorem we will
need the following two lemmas for dyadic martingales.

Lemma 5.1. Suppose µ is a positive measure on the cube [0, 1]d, d ≥ 1, so that
the corresponding dyadic martingale defined by fn(x) = µ(Qn(x))

|Qn(x)| is Bloch and
1

|Qn|‖∆fn‖2
2 ≥ δ > 0 whenever fn(x) ≥ 1 on Qn(x). We claim that there is an

ε > 0 and M < ∞ so that for any sufficiently large n, there is a constant C for
which the following holds. Let Q be any dyadic cube, and let fQ denote the function
in the martingale defined by Q, i.e. fQ = µ(Q)

|Q| on Q. Suppose fQ ≥ C. Then among
the 2dn nth generation descendants of Q, at least ε2dn satisfy Mn ≥ fQ′ − fQ ≥ 1,
and at least ε2dn satisfy −Mn ≤ fQ′ − fQ ≤ −1.

Proof. Suppose supn‖∆fn‖∞ = L < ∞ and 1
|Qn|‖∆fn‖2

2 ≥ δ > 0 whenever

fn(x) ≥ 1, and fix an ε with 0 < ε ≤ min
{

δ6

216L12 , 1
}
. By an appropriate scal-

ing we may assume that |Q| = 1. Then the martingale square function for the
sequence {f0, f1, ..., fn} is

(5.1) Sf (x) =
(n−1∑

j=0

‖χQj(x)∆fj‖2
∞

)1/2

≤
√

nL.
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Let F = ∆f0+...+∆fn−1, and suppose that n > 64L4

δ3 and that fQ ≥ 1+nL = C.
Then fj ≥ 1 for all 0 ≤ j ≤ n− 1, so ‖∆fj‖2

2 ≥ δ for all 0 ≤ j ≤ n− 1. The system{
∆fj

}n−1

j=0
is orthogonal, therefore

(5.2) nL2 ≥ ‖F‖2
2 =

n−1∑
j=0

‖∆fj‖2
2 ≥ nδ.

Let λ(t) = |{x : |F (x)| > t}| define the distribution function of |F |. Then

(5.3)
∫

|F |p = p

∫ ∞

0

tp−1λ(t)dt,

and by Lemma 3.1, λ(t) ≤ e
− t2

2‖SF ‖2∞ ≤ e−
t2

2L2n . Therefore

‖F‖4
4 =

∫
|F |4 = 4

∫ ∞

0

t3λ(t)dt

≤ 4
∫ ∞

0

t3e−
t2

2L2n dt

= 8L4n2

∫ ∞

0

ye−ydy

= 8L4n2.

(5.4)

Hence ‖F‖4 ≤ 4
√

8L
√

n = Bδ
√

n ≤ B‖F‖2 with the constant B =
4√8L√

δ
. Now we

can apply Lemma 3.2 so

(5.5) µ

({
x ∈ Q : F (x) ≤ − 1√

8B2
‖F‖2

})
≥ 1

64B12
.

Using the fact that ‖F‖2 ≥
√

nδ and the assumptions that
√

n > 8L2
√

δ
3 =

√
8√
δ
B2 we

get that

µ
(
{x ∈ Q : F (x) ≤ −1}

)
≥ µ

({
x ∈ Q : F (x) ≤ − 1√

8B2

√
nδ

})

≥ µ

({
x ∈ Q : F (x) ≤ − 1√

8B2
‖F‖2

})

≥ 1
64B12

=
δ6

215L12

≥ 2ε.

(5.6)

Switching F with −F , with the same assumptions, we get

(5.7) µ
(
{x ∈ Q : F (x) ≥ 1}

)
≥ 2ε.
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Next, consider the following subsequence {f0, ..., fn}. By Lemma 3.1, for a pos-
itive constant M ≥ L

√
−2 ln ε,

∣∣{x ∈ Q : fn(x) − f0(x) ≥ nM
}∣∣ ≤ exp

(−n2M2

2‖Sf‖2
∞

)

≤ exp
(−nM2

2L2

)

≤
(

exp
(
−M2

2L2

))n

≤ ε

(5.8)

for every n ≥ 1 and ε < 1. Repeating this argument for {−f0, ...,−fn} we get that

(5.9)
∣∣{x ∈ Q : fn(x) − f0(x) ≤ −nM

}∣∣ ≤ ε.

Therefore, for every sufficiently large n there is a constant C = 1 + nL so that
if fQ ≥ C, then

µ
(
{x ∈ Q : 1 ≤ F (x) = fn(x) − f0(x) ≤ nM}

)
≥ ε

and
µ
(
{x ∈ Q : −1 ≥ F (x) = fn(x) − f0(x) ≥ −nM}

)
≥ ε.

In other words, among all of the 2dn nth generation descendants of Q, at least
ε2dn satisfy the inequality Mn ≥ fQ′ − fQ ≥ 1, and at least ε2dn of them satisfy
−Mn ≤ fQ′ − fQ ≤ −1. �

Lemma 5.2. Suppose G is a topologically tame and geometrically infinite Kleinian
group, so that M = B/G has injectivity radius bounded below by some positive
epsilon and there exists a Green’s function on M. Let U be a positive harmonic
function on M for which supz∈M |∇HU(z)| ≤ 1, and let {fm} denote the corre-
sponding martingale as defined by (3.1). Then this martingale {fm} has bounded
differences away from zero in the L2 norm, whenever its value is larger than some
fixed constant C.

Proof. Suppose fm > C on the dyadic cube Qm. From Lemma 4.2 we know that
|U(zQ) − fm| ≤ A, where zQ denotes the center of the Carleson square in R

n+1
+

with base Qm. Since G is topologically tame and inj(z) ≥ ε > 0, the convex core
C(M) can be written as a compact part and a finite number of ends Ej , each of
which is topologically equivalent to S × R

+ for some compact surface S ([7]). We
may suppose that we are already in such an end.

First, we will show that for the given constant A, there exists a constant L, so
that for all v ∈ C(M) with U(v) ≥ C we can find another point w with ρ(v, w) ≤ L
and |U(v) − U(w)| ≥ 6A. Lemma 4.1 says that there exist r and a so that

(5.10)
∫

B(z,r)

|∇U |2dV ≥ a

for every z ∈ C(M). Consider a geodesic ray on M originating at the point v and
going to infinity in the convex core. We may put disjoint balls of radius r along
this geodesic, say N balls, and denote w the endpoint, so ρ(v, w) = 2rN . Cut Ej

at v and at w, and call these surfaces Σ1 and Σ2, respectively, and let T denote
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the part of Ej between these cuts. We may also assume that U(v) = 0. Green’s
Theorem says that

(5.11)
∫

T

f∆g − g∆fdVH =
∫

Σ1∪Σ2

f
∂g

∂n
− g

∂f

∂n
dσ.

Let f = 1 and g = U2; then

(5.12)
∫

T

∆(U2)dV =
∫

Σ1∪Σ2

∂(U2)
∂n

dσ.

By elementary calculations we get that

(5.13)
∫

T

|∇U |2dV =
∫

Σ1∪Σ2

U
∂U

∂n
dσ.

Using Lemma 4.1, we can estimate the left-hand side of (5.13) by

(5.14)
∫

T

|∇U |2 ≥ Na.

For the estimation of the right-hand side of (5.13) we can use that |∇U | ≤ 1, so∫
Σ1

U
∂U

∂n
dσ ≤ diam(Σ1)area(Σ1),(5.15a)

∫
Σ2

U
∂U

∂n
dσ ≤

(
U(w) + diam(Σ2)

)
area(Σ2).(5.15b)

Since E = S×R
+, diam(Σi) ≤ D and area(Σi) ≤ S along the entire end Ej . Using

the estimations (5.14) and (5.15) in (5.13), we get that

(5.16) Na ≤ DS +
(
U(w) + D

)
S,

and so

(5.17)
Na

S
− 2D ≤ U(w).

Therefore, we can choose a uniform N large enough so that |U(v) − U(w)| ≥ 6A
and let L = 2rN .

Next, we show that there is a point w such that |U(zQ) − U(w)| ≥ 3A while
ρ(zQ, w) ≤ 3L. We start at the point zQ on the Carleson square and go straight
down toward the boundary by hyperbolic distance 2L; we call this point v. As we
have just shown above, there exists a w such that ρ(v, w) ≤ L while |U(v)−U(w)| ≥
6A, which means that either |U(zQ)−U(v)| ≥ 3A or |U(zQ)−U(w)| ≥ 3A. Assume
the latter is true.

Finally, we show that there is a subfamily {fmi
} in the original martingale se-

quence with bounded differences away from zero in L2-norm while mi+1−mi ≤ 3L
for all i. From Lemma 4.2, |U(zQ) − fm| ≤ A and we can find a w such that
|U(zQ) − U(w)| ≥ 3A, but ρ(zQ, w) ≤ 3L. We may also assume that w is in the
middle of a Carleson square, since |∇U | ≤ 1. This Carleson square is different from
the original Qm, call it Qm′ , and let fm′ be the martingale function determined by
the size of this square. Then from Lemma 4.2 we have that |U(w) − fm′ | ≤ A and
|U(zQ) − fm| ≤ A, while |U(zQ) − U(w)| ≥ 3A. So |fm − fm′ | ≥ A on Qm′ , while
|m − m′| ≤ 3L. Therefore

�(5.18)
1

|Qm|

∫
Qm

|fm − fm′ |2dx ≥ 1
|Qm|A

2 |Qm|
23L

= δ > 0.
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6. The proof of the theorem

Suppose G is a topologically tame, geometrically infinite Kleinian group and the
quotient manifold M = B/G has injectivity radius bounded away from zero. This
implies that G has no parabolic elements. Suppose φ(t) : [1,∞) → [1,∞) is a
Lipschitz function, i.e.

|φ(s) − φ(t)| ≤ B|s − t|

for some B < ∞, and satisfies limt→∞ φ(t) = ∞. Fix a point z0 ∈ M and consider
the set of geodesic rays starting at z0 parameterized by hyperbolic arclength. Define
the set of geodesics in the convex core which escape at rate φ as

ΓC
φ =

{
γ : C−1 ≤

dist
(
γ(t), z0

)
φ(t)

≤ C
}
.

Let ΛC
φ denote the terminal points of these geodesics, and let Λφ =

⋃
C ΛC

φ .

Theorem 6.1. Suppose G is a geometrically infinite, topologically tame Kleinian
group and M = B/G has injectivity radius bounded away from zero and there is a
Green’s function on M . Let φ(t) : [1,∞) → [1,∞) be a Lipschitz function satisfying
limt→∞ φ(t) = ∞; then dimH(Λφ) = 2.

The analogous theorem for Fuchsian groups:

Theorem 6.2. Suppose G is a geometrically infinite Fuchsian group, M = B/G
has bounded injectivity radius which is also bounded away from zero and there is a
Green’s function on M . Let φ(t) : [1,∞) → [1,∞) be a Lipschitz function satisfying
limt→∞ φ(t) = ∞; then dimH(Λφ) = 1.

Proof of Theorem 6.1. By Lemma 4.1 there exists a positive harmonic function U
on M with supz∈M |∇U(z)| ≤ 1 and U tends to zero in the geometrically finite
ends of M . This U lifts to a hyperbolic harmonic function (which we will also
call U) on B, and this function is a Poisson integral of some positive measure µ
supported on the limit set. Consider the corresponding dyadic Bloch martingale{

fQ(x) = µ(Q(x))
|Q(x)|

}
Q∈D

.

Using Lemma 5.2 we may pass to a subsequence of {fQ} for which the martingale
differences are bounded away from zero whenever the value of the martingale is not
less than a constant C. Notice that even if we work with this subsequence we can
still use Lemma 5.1 because there are upper and lower bounds for the number of
generations we skip. To simplify our indexes we will suppose that {fQ} itself is a
Bloch martingale with differences bounded away from zero whenever the value is
not less than C.

Using Lemma 5.1 we can create a Cantor set {El} of nested dyadic cubes, where
the dyadic martingale is comparable to the function φ. As in Lemma 5.1 find
appropriate ε > 0, M < ∞, and fix a sufficiently large N and the corresponding
constant C. Since U tends to infinity on the geometrically infinite ends we may
suppose that fQ ≥ C, except maybe for finitely many generations of cubes.

First, notice that we may suppose that the function φ is Lipschitz with a Lipschitz
constant 1

N , i.e. |φ(x) − φ(y)| ≤ 1
N |x − y|. In case |φ(x) − φ(y)| ≤ B|x − y| with a

larger constant B than 1
N , we can rescale our function by choosing Φ(x) = 1

BN φ(x).
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Define E0 as the collection of those largest cubes Q where fQ ≥ C and let k0 be
the number which denotes the generation of these cubes. Then there is a positive
constant D so that |fk0(Q) − φ(k0)| ≤ D on all Q ∈ E0. We may also assume that
D ≥ MN . We define the sets {En} inductively as follows. Suppose we already have
the set En defined, and the quotient (or the difference) of fkl

and φ(kl) is bounded
on all the previous sets, say 1

D ≤ |fkl
−φ(kl)| ≤ D for all l ≤ n. Let kn+1 = kn +N .

Since φ is a Lipschitz function with constant 1
N , so φ(kn)−1 ≤ φ(kn+1) ≤ φ(kn)+1.

To choose the next generation of cubes, for each Q ∈ En we compare fkn
(Q) to

φ(kn+1):
If fkn

(Q) < φ(kn+1), then choose those Nth generation descendants Q′ of Q
for which MN ≥ fkn+1 − fkn

≥ 1. According to Lemma 5.1 there are at least
ε2dN of them, and then fkn+1(Q

′) = fkn
+ a, where a ∈ [1, MN ]. Therefore,

|fkn+1(Q
′) − φ(kn+1)| ≤ D because

(6.1) fkn+1 − φ(kn+1) = fkn
+ a − φ(kn+1) < a ≤ MN ≤ D

and
φ(kn+1) − fkn+1 = φ(kn+1) − fkn

− a

≤ φ(kn) − fkn
+ 1 − a

≤ D + 1 − a

≤ D.

(6.2)

If fkn
(Q) ≥ φ(kn+1), then choose those Nth generation descendants Q′ of Q for

which −MN ≤ fkn+1 − fkn
≤ −1. From Lemma 5.1 we know that there are at

least ε2dN of them, and then fkn
(Q′) = fkn

− a, where a ∈ [1, MN ]. Therefore
|fkn+1(Q

′) − φ(kn+1)| ≤ D, because

(6.3) fkn+1 − φ(kn+1) = fkn
− a − φ(kn+1) > −a ≥ −MN ≥ −D

and
φ(kn+1) − fkn+1 = φ(kn+1) − fkn

+ a

≥ φ(kn) − fkn
− 1 + a

≥ −D + a − 1
≥ −D.

(6.4)

So we define the next imbedded set En+1 by

(6.5) En+1 =
⋃

Q∈En

{all the chosen descendants of Q}.

Then En+1 ⊂ En, and for all Q′ ∈ En+1 we have |fkn+1(Q
′) − φ(kn+1)| ≤ D;

moreover,

(6.6) |En+1 ∩ Q|d ≥ ε2dN |Q|d
2dN

= ε|Q|d

for all Q ∈ En. Since limt→∞ φ(t) = ∞, the inequality |fn(Q) − φ(n)| ≤ D implies
that the quotient

∣∣∣ fn(Q)
φ(n)

∣∣∣ is also bounded above. Moreover, it is also bounded away
from zero for sufficiently large values of n. Therefore, for all Q ⊂ En,

(6.7)
1
D

≤
∣∣∣∣fkn

(Q)
φ(kn)

∣∣∣∣ ≤ D.
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The nested sets {En} defined this way satisfy the requirements of Lemma 3.3,
so the Hausdorff dimension of the set E =

⋂
n En is

(6.8) dimH(E) ≥ d − C(N, ε)

with limN→∞ C(N, ε) = 0.
According to Theorem 3 in Sullivan’s paper [17]

(6.9)
1
C

≤
∣∣∣∣ U(z)
dist(z, z0)

∣∣∣∣ ≤ C,

and Lemma 4.2 states that |U(z) − fQz
| ≤ A, which we can combine with the

inequality (6.7), 1
D ≤

∣∣∣ fn(Q)
φ(n)

∣∣∣ ≤ D, to get

(6.10)
1
C ′ ≤

∣∣∣∣∣
dist

(
γ(n), z0

)
φ(n)

∣∣∣∣∣ ≤ C ′.

This shows that dimH(Λφ) = d. �

Choosing φ(t) = t the set Λφ determines the deep points, and using Theorem 6.1
we get the following corollary:

Corollary 6.3. If G is a non-compact, geometrically infinite and topologically tame
Kleinian group, M = B/G has injectivity radius bounded away from zero, and there
exists a Green’s function on M , then the deep points have dimension 2.

Similarly in the Fuchsian case:

Corollary 6.4. If G is a geometrically infinite Fuchsian group so that there exists
a Green’s function on M = B/G and the injectivity radius is bounded away from
zero as well as bounded from above, then the deep points have dimension 1.

The dimension of escaping points has been studied, and recently J. L. Fernández
and M. V. Melián (in [9]) showed that the escaping geodesics on a finitely generated
divergence type Riemann surface have dimension 1. Deep points form a smaller set,
but perhaps one could derive a similar theorem for an intermediate set, for Λφ as
defined in Section 1 with some function φ.
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[7] R. D. Canary, Ends of hyperbolic 3-manifolds, J. Amer. Math. Soc. 6 (1993), 1–35.
MR1166330 (93e:57019)

[8] S.-Y. A. Chang, J. M. Wilson, and T. Wolff, Some weighted norm inequalities concerning the
Schrödinger operators, Comment. Math. Helv. 60 (1985), 217–246. MR800004 (87d:42027)

[9] J. L. Fernández and M. V. Melián, Escaping geodesics of Riemann surfaces, Acta Math. 187
(2001), 213–236. MR1879849 (2003d:30043)
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