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Chapter 1

Introduction

1.1 Statement of Results

Let f : C→ C be a transcendental (non-polynomial) entire function. We denote the nth

iterate of f by fn. We define the Fatou set, F(f), to be the set of all points so that {fn}∞n=1

locally forms a normal family. Thus the Fatou set is the “stable” set for the dynamics of f .

We define the Julia set, J (f), to be the complement of the Fatou set. This is the set where

the dynamics of f are chaotic. We refer the reader to [CG93] and [Sch10] for an introduction

to complex dynamics in the rational and transcendental setting, respectively.

One of the goals of complex dynamics is to understand the geometric and topological

properties of the Julia set. In this thesis we prove the following theorem.

Theorem 1.1.1. There exists a transcendental entire function f : C → C such that the

packing dimension of J (f) belongs to (1, 2).

Stallard asked in [Sta08] if there exists a transcendental meromorphic (we consider entire

functions as a special case of meromorphic functions) function for which the packing and

Hausdorff dimensions of the Julia set are not integers and equal. Our techniques generate a

family of entire functions, and we will actually prove the following stronger result which offers

positive progress towards the construction of such a function. We denote the Hausdorff and

packing dimensions (defined in Section 4) of a set K by dimH(K) and dimP (K), respectively.
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Theorem 1.1.2. Given s ∈ (1, 2) and ε0 > 0, there exists a transcendental entire f so that

s− ε0 ≤ dimH(J (f)) ≤ dimP(J (f)) ≤ s+ ε0.

In particular, the set of packing dimensions attained by Julia sets of transcendental entire

functions is dense in (1, 2).

In [Bak75], Baker proved that the Julia set of a transcendental entire function must

always contain a non-trivial, compact, connected set, and it follows immediately that the

Hausdorff dimension of the Julia set must always be greater than or equal to 1. In [Mis81],

Misiurewicz showed that the Julia set of exp(z) was the entire complex plane, and in [McM87]

McMullen showed that the Julia sets of the exponential and sine families of entire functions

always have Hausdorff dimension 2, but need not be all of C. These examples can also

have positive or zero area measure. Reducing the dimension of the Julia set is therefore the

difficult task in the transcendental setting, and in [Sta91], Stallard constructed examples

in the Eremenko-Lyubich class that had Hausdorff dimension arbitrarily close to 1, and

refined this result further in [Sta97] and [Sta00] to include all values in (1, 2). Moreover, in

[Sta96], Stallard showed that in the Eremenko-Lyubich class the Hausdorff dimension must

be strictly greater than 1. Recently, in [Bis18], Bishop constructed a transcendental entire

function with Julia set having Hausdorff dimension 1. This example demonstrates that all

values of Hausdorff dimension in [1, 2] can be achieved.

Less is known about the packing dimension in the transcendental setting. In [RS05],

Rippon and Stallard show that if f belongs to the Eremenko-Lyubich class, then the packing

dimension of the Julia set of f is 2. Bishop computed the packing dimension of the Julia

set of his example above to be 1. Our examples are the first of their kind where the com-

puted packing dimension is strictly between 1 and 2. Packing dimension and other various

dimensions relevant to the paper are defined in Section 4. Figure 1 below summarizes what

has been proven about the possible Hausdorff and packing dimension pairs attained by Julia
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sets of transcendental entire functions.

Figure 1.1: A graphic showing the possible and attained Hausdorff and packing dimension
pairs for transcendental entire functions. All possible pairs are shaded in light gray, and all
attained values are colored black. The point (2, 2) is attained by families of the exponential
and sine functions. The upper segment is due to the work of Stallard, and the point (1, 1) is
due to Bishop. Our contribution uses enlarged, dashed lines, to emphasize that a dense set
of dimensions is attained very close but perhaps not on the diagonal.

We would like to point out how our construction differs from the constructions cited

above. Since Stallard’s examples belong to the Eremenko-Lyubich class, the packing di-

mension of those Julia sets must be 2, even though the Hausdorff dimension can attain any

value in (1, 2). In our examples, the packing and Hausdorff dimensions may be arranged

to be arbitrarily close. The dynamical behavior of our examples is also much different; the

functions we construct have multiply connected Fatou components which do not occur in the

Eremenko-Lyubich class. Stallard uses a family of functions defined via a Cauchy integral,

whereas we use an infinite product construction similar to Bishop. Our examples look very

similar to Bishop’s at first glance but there are many major differences. The most obvious

difference is the dynamical behavior near the origin; our examples have an attracting basin

with quasicircle boundary near the origin, whereas Bishop’s contains a Cantor repeller. This

difference introduces what we call ‘wiggly’ Fatou components, which we describe in Section

1.2. Another difference is that the Hausdorff and packing dimensions in Bishop’s example are
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supported on the boundaries of Fatou components which escape quickly, and the dynamics

are simple on these boundaries. In our examples, we will see that the dimension of the Julia

set is supported on buried points that are not on the boundary of any Fatou component.

In Bishop’s example, the buried points have dimension close to zero. The dynamics on the

buried points are more intricate; the buried points contain bounded orbit points, escaping

points, and so-called bungee orbits, see Section 4.2.

1.2 Outline of the Dissertation

We will construct a function f : C → C depending on parameters N ∈ N, R ∈ R, and

c in the main cardioid of the Mandelbrot set. Define g(z) = z2 + c. The function f will be g

iterated N times multiplied by an infinite product. As a formula,

f(z) = gN(z) ·
∞∏
k=1

(
1− 1

2

(
z

Rk

)nk)
= gN(z)(1 + ε(z)). (1.2.1)

Here, nk = 2N+k−1, and the sequence {Rk}∞k=1 grows super-exponentially and is defined

inductively starting from a large initial parameter R. The choices are made so that near

the origin, the infinite product can be made uniformly close to the constant function 1. We

will sometimes write the infinite product as (1 + ε(z)) to emphasize this fact, where ε(z) is

a holomorphic function uniformly close to 0 on a large neighborhood of the origin.

In Section 3 we discuss the facts we will need about conformal, quasiconformal, and

polynomial-like mappings. In Section 4, we define and discuss what we call Whitney-type

decompositions, a natural generalization of Whitney decompositions composed of dyadic

squares and our main tool for calculating the packing dimension. In Section 5, we will

carefully define f and show it defines an entire function. In Section 6 we decompose a region

of the plane far from the origin into alternating annuli Ak and Bk, where the modulus of

Ak is fixed and the modulus of Bk increases as k → ∞. We will show that f(Bk) ⊂ Bk+1,

and that if a point ever lands iterates into Bk, it diverges locally uniformly to ∞ under
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f . The existence of these “absorbing” annuli Bk of increasing modulus is always true for

functions with multiply connected wandering domains; see p.25 in [Zhe06] and also [BRS13]

for this and related results. In our example, we will additionally show that on Bk, f is a

small perturbation of a constant multiple of the monomial z2nk . Therefore, all the interesting

dynamical behavior happens in the annuli Ak. We will show that Ak ⊂ f(Ak−1), and that

far from the origin, all the zeros of f , critical points of f , and the Julia set of f are inside the

Ak’s. To accomplish this, we will show (in a quantitative way) that f is a small perturbation

of the kth term of the infinite product (1.2.1) on Ak.

Given any s ∈ (1, 2), we will choose c so that dimH(J (gN)) = s. In Section 7, we will

show that in a neighborhood of the origin, f is a polynomial-like mapping which is a small

perturbation of gN . By some standard arguments using holomorphic motions, it will follow

that the Julia set of the entire function f will have Hausdorff dimension bounded below by

a value arbitrarily close to s. From here, we will be able to prove that we can sort the Fatou

components into two categories depending on if the component remains bounded or if the

component escapes to infinity. The first type of Fatou component comes from the connected

component containing the critical point 0 of f(z). This component is an attracting basin

which we denote by Bf . All connected components of the inverse images of Bf are eventually

mapped conformally with small distortion onto Bf by some iterate of f .

In Sections 8 and 9 we discuss the second type of Fatou component. These are subsets

of the escaping set I(f), where

I(f) := {z : fn(z)→∞} .

These components will be infinitely connected wandering domains, and their boundary com-

ponents will be bounded by C1 Jordan curves. These boundary curves will accumulate on

the outermost boundary of each component. There is a distinguished central series {Ωk}k∈Z

of these Fatou components which surround the origin. We will split these components into
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Figure 1.2: A round Fatou component. Such components are infinitely connected, and all the
boundary components are C1 and approximately circles. The circular boundary components
accumulate onto the outermost boundary component and are arranged in layers that can
be connected by approximately circular Jordan curves. This picture is not to scale; the
diameters of the holes are actually much smaller than the diameter of the component.

two sub-categories. If k ≥ 1, we will call Ωk round since the inner and outer boundary of Ωk

will be C1 Jordan curves which are approximately circles. See Figure 2. We will call Ωk for

k ≤ 0 wiggly. The inner and outer boundary of wiggly components will be C1 Jordan curves

that approximate the fractal boundary of Bf as k → −∞. If Ωk is wiggly, then fk+1 will

map Ωk to the round component Ω1 as a covering map. The action of fk+1 on Ωk can be

thought of as first mapping Ωk to a very thin annulus conformally, then to a thick annulus

by a power mapping zn1(k+1). This is similar to the dynamics on the basin of attraction

containing infinity for a quadratic polynomial with connected Julia set. See Figure 3. We

will see that the central series of Fatou components is the main building block for the Fatou

and Julia set of f . Indeed, we will show all Fatou components of f map conformally onto

an element of the central series with small distortion.

The Julia set of f will contain the boundaries of each of these two types of components.

This is not the entire Julia set. Since f has a multiply connected Fatou component, the work

of Dominguez, [Dom97], implies that the Julia set will also contain points that do not lie on

the boundary of any of the Fatou components of f we described above. We call these points

in the Julia set buried points, and the orbits of buried points either remain bounded, belong
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Figure 1.3: A schematic for a sequence of wiggly Fatou components, alternating between
gray and white. The holes have been omitted to emphasize the wiggly shape of the inner
and outer boundaries. These boundary components approximate level lines for the Green’s
function of the complement of the closure of the basin of attraction, and they surround and
accumulate on the basin’s fractal boundary.

to the bungee set, or escape slowly. In Sections 10 through 13, we will perform a detailed

analysis of the Hausdorff dimension of the set of buried points. We will show that, for any

small value ε0, we may define f so that the Hausdorff dimension of the buried points of f

is at most ε0 larger than the Hausdorff dimension of the boundary of the fractal basin of

attraction. So while the Hausdorff dimension of the buried points could possibly be strictly

larger than the Hausdorff dimension of the boundary of the basin of attraction, we show

that we can make this difference ε0 arbitrarily small.

To obtain an upper bound for the packing dimension, we will follow the strategy in

[Bis18] and study the critical exponent of a Whitney-type decomposition of the complement

of the Julia set of f in a bounded region. Since the Julia set of f will have zero area, it turns
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out that this critical exponent coincides with the packing dimension, and we will show that

this exponent is at most the Hausdorff dimension of the buried points. The key idea in this

part of the proof is to iterate Fatou components, or pieces of Fatou components, conformally

onto Fatou components where we can estimate the critical exponent directly. The trade-off

is that this conformal rescaling procedure results in various corrective factors that we need

to control. We do this with a combination of all the technical work done earlier in the paper.

1.3 Notation

We conclude with some notation we will use throughout the paper. We denote the

complex plane by C, we let B(z, r) denote the open ball in C with center z and radius r,

and we set D = B(0, 1). Likewise C(z, r) will denote the circle of radius r centered at z.

We denote the closure of a set A by A. If Ω is a multiply connected domain in the plane,

we will denote Ω̂ as the union of Ω with all its bounded complementary components. In the

literature, Ω̂ is sometimes referred to as the polynomial hull of Ω. We will say that a Jordan

curve γ ⊂ C surrounds the origin if its bounded complementary component contains the

origin. We will similarly say that a domain Ω with Jordan boundary components surrounds

the origin if at least one of its boundary components surrounds the origin.

We will frequently use big-oh notation. If {xn} and {yn} are sequences in C, then

xn = O(yn) means that there exists a constant C so that |xn| ≤ C|yn| for all sufficiently

large n. Similarly if f(z) and g(z) are functions, we say f(z) = O(g(z)) as z → a if there

exists C and a ball B(a, r) so that |f(z)| ≤ C|g(z)| on B(a, r). We will say that two quantities

A and B are comparable if there exists a constant C so that C−1A ≤ B ≤ CA. In certain

proofs, a constant C may evolve throughout the proof.
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Chapter 2

Background

2.1 Conformal, Quasiconformal, and Polynomial-Like

Mappings

In this section, let Ω and Ω′ be planar domains. In this paper, we will call a mapping

f : Ω → C conformal if and only if f is both holomorphic and injective. If f : Ω → Ω′ is

conformal, and K is relatively compact in Ω, the distortion of f on K is

D|K := sup
z,w∈K

|f ′(z)|
|f ′(w)|

.

We will often make use of the Koebe growth and distortion theorems for conformal mappings

(see [GM05] Theorem 4.5 p. 22) in the following form.

Lemma 2.1.1. Fix r < 1, let B = B(0, r) ⊂ D be an open ball, and let K ⊂ B be a compact

set. Suppose that f : D → C is conformal. Then there exists a constant C depending only

on r and not otherwise on f such that

C−1 diam(K)

diam(B)
≤ diam(f(K))

diam(f(B))
≤ C

diam(K)

diam(B)
.

9



There exists a constant C ′ depending only on r and not otherwise on f such that

D|K ≤ C ′. (2.1.1)

As r → 0, the constants C and C ′ tend to 1.

In light of (2.1.1), when the hypotheses of Lemma 2.1.1 are met we will sometimes say that

f has bounded conformal distortion on K. When r is close to 0, we will sometimes say f has

small conformal distortion.

We call an orientation preserving homeomorphism ϕ : Ω → Ω′ K-quasiconformal if ϕ

has locally square integrable distributional derivatives which satisfy

|ϕz̄(z)| ≤ k|ϕz(z)|

for almost every z ∈ Ω, where k = (K − 1)/(K + 1) < 1. We call the value K > 1 the

dilatation of ϕ, and when the specific value of K is unimportant, we will refer to f simply

as quasiconformal.

We say a domain Ω is a multiply connected Jordan domain if Ω is not simply connected

and all of its boundary components are Jordan curves. A domain A ⊂ C is a topological

annulus if it has two complementary components, and A is a Jordan annulus if its bound-

ary components are Jordan curves. In particular, a Jordan annulus has one bounded and

one unbounded complementary component. The boundary of the bounded complementary

component is called the inner boundary of A, and the boundary of the unbounded comple-

mentary component is called the outer boundary of A. A round annulus is a Jordan annulus

of the form A = A(r1, r2) = {z : r1 ≤ |z| ≤ r2} where r1 < r2. Given a Jordan annulus A,

there exists a unique r ∈ (1,∞) and a conformal mapping

ϕ : A→ A(1, r).

10



We define the modulus of A to be mod(A) = 1
2π

log(r). The modulus of an annulus is a

quasi-invariant: if ϕ : A → A′ is a quasiconformal homeomorphism between two Jordan

annuli, then

1

K
mod(A) ≤ mod(A′) ≤ K mod(A).

Finally, we remark that using our definition of conformality, f is conformal if and only if f

is 1-quasiconformal. In particular the modulus of an annulus is invariant under conformal

mappings. This allows for the following invariant formulation of Lemma 2.1.1.

Lemma 2.1.2. Let Ω be simply connected, let U be open and compactly contained in Ω, and

let K be a compact subset of U . Suppose f : Ω→ Ω′ is conformal. Then there is a constant

C which depends only on mod(Ω \ U) so that

C−1 diam(K)

diam(U)
≤ diam(f(K))

diam(f(U))
≤ C

diam(K)

diam(U)
.

There exists a constant C ′ which depends only on mod(Ω \ U) so that

D|Ū ≤ C ′. (2.1.2)

As mod(Ω \ U)→ 0, the constants C and C ′ tend to 1.

A Jordan curve Γ ⊂ C is called a κ-quasicircle if κ > 1, and for all points z, w ∈ Γ, if γ

denotes the subarc of Γ of smallest diameter with endpoints z and w, we have

diam(γ) ≤ κ|z − w|.

Γ is a quasicircle if and only if there exists a quasiconformal mapping ϕ : C→ C that maps

the unit circle onto Γ.

Douady and Hubbard introduced polynomial-like mappings in [DH85]. Recall that a

continuous mapping f : Ω → Ω′ is called proper if the inverse image of every compact

11



set K ⊂ Ω′ is compact in Ω. A degree d polynomial-like map is a triple (f,Ω,Ω′), where

f : Ω→ Ω′ is a proper holomorphic mapping of degree d, and Ω and Ω′ are bounded Jordan

domains with Ω relatively compact in Ω′. We define the filled Julia set of f by

Kf :=
⋂
n≥0

f−n(Ω).

The filled Julia set is precisely the set of points that remain in Ω for all iterates of f . The

Julia set of f is defined to be the boundary ∂Kf , and we denote it by Jf . The straightening

lemma of Douady and Hubbard is of great importance, and we will need the following simple

formulation.

Theorem 2.1.3 (The Straightening Lemma). Let (f,Ω,Ω′) be a degree d polynomial-like

mapping. Then there exists a quasiconformal mapping ϕ : C → C and a polynomial p of

degree d so that for all z ∈ Ω we have

f(z) = ϕ ◦ p ◦ ϕ−1(z).

A polynomial-like mapping (f,Ω,Ω′) is called hyperbolic if every critical point of f

contained in Kf is attracted to an attracting cycle. Equivalently, (f,Ω,Ω′) is hyperbolic if

there exists m ∈ N so that |(fm)′| > 1 on Jf . In this paper, the polynomial-like mappings

will arise as the restriction of entire functions, and it will be important that we distinguish

between hyperbolicity of polynomial-like mappings, versus hyperbolicity as a transcendental

entire function (which our example cannot be, since we will see that it has an unbounded

set of critical values. See [RGS17].)
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2.2 Dimension and Whitney-type Decompositions

Given a set A ⊂ C, we define its α-Hausdorff measure to be the quantity

Hα(A) := lim
δ→0

Hα
δ (A) := lim

δ→0

(
inf

{
∞∑
i=1

diam(Ui)
α : A ⊂

∞⋃
i=1

Ui, diam(Ui) < δ

})
.

The infimum is taken over all countable covers of A by sets {Ui}∞i=1. One can check that if

H t(A) <∞, then Hs(A) = 0 for all s > t, and similarly, if H t(A) > 0, then Hs(A) =∞ for

all s < t. It follows that the Hausdorff dimension

dimH(A) := sup{t : H t(A) =∞} = inf{t : H t(A) = 0}, (2.2.1)

is uniquely defined.

Given a compact set K ⊂ C, define N(K, ε) to be the minimal number of open balls of

radius ε needed to cover K. Since K is compact, this number exists and is finite. We define

the upper Minkowski dimension of K to be

dimM(K) = lim sup
ε→0

log(N(K, ε))

log(1/ε)
= sup

{
s ≥ 0 : lim sup

ε→0
N(K, ε)εs = 0

}
. (2.2.2)

One obtains an equivalent definition using squares of side length ε to define N(K, ε). For

this reason, upper Minkowski dimension is often referred to as upper box counting dimension

in the literature.

We define the packing dimension of K to be

dimP(K) = inf

{
sup
i∈N

{
dimM Ki : K =

∞⋃
i=1

Ki

}}
. (2.2.3)

Here, the infimum is taken over all coverings of K by countably many compact subsets Ki.

Note that we do not require K itself to be compact.
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In this paper, we will investigate the upper Minkowski and packing dimension of un-

bounded Julia sets, so strictly speaking, the definition (2.2.2) above does not make sense.

We can instead consider the local upper Minkowski dimension of the Julia set, which is the

upper Minkowski dimension of the Julia set intersected with an open neighborhood of finite

diameter. In [RS05], Rippon and Stallard show that the local upper Minkowski dimension

of the Julia set of an entire function is constant and coincides with its packing dimension,

except perhaps in a neighborhood of 1 point (a point with finite backward orbit; there is

at most 1 by the Picard theorem). Our example will not have an exceptional value of this

kind, so their result further implies that the packing dimension and local upper Minkowski

dimension are the same, no matter where we compute the local upper Minkowski dimension.

In light of this, we will abuse notation and refer to the local upper Minkowski dimension of

J (f) by dimM(J (f)); the neighborhood we are using will always be made clear.

A detailed discussion of these dimensions can be found in [Bis18]. The survey [Sta08]

also contains a detailed discussion of the above definitions, along with an overview of many

results about the dimension of Julia sets of transcendental entire functions. We focus instead

on a detailed discussion of Whitney-type decompositions, which will be our primary tool in

estimating the packing dimension.

An interval I ⊂ R is called dyadic if I = [j/2n, (j + 1)/2n] for integers j and n. We

denote the set of all dyadic intervals by ∆, and all the dyadic intervals of side length 2−n by

∆n. A dyadic square Q in the plane is the product of two dyadic intervals in ∆n.

Definition 2.2.1. Let F ⊂ C be a nonempty closed set, and let Ω = C \ F . A Whitney

decomposition of Ω is a countable collection of dyadic squares {Qj}∞j=1 satisfying the following

three properties:

1. Ω =
⋃∞
j=1 Qj.

2. For all j 6= k, Qj and Qk have disjoint interior.
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3. There exists a constant C > 1 so that for all j ≥ 1,

1

C
dist(Qj, ∂Ω) ≤ diam(Qj) ≤ C dist(Qj, ∂Ω).

Whitney decompositions always exist when F is nonempty, (see [Ste70], p. 167). We

may always choose the constant C = 4. For our purposes, the key feature of Whitney

decompositions will be that the dyadic squares are approximately squares with unit area with

respect to the hyperbolic metric on the connected components of Ω. It is often advantageous

to consider more abstract decompositions with similar properties where the elements will

not necessarily be dyadic squares.

Definition 2.2.2. Let F ⊂ C be a nonempty closed set, Ω = C \ F , and let C > 1 and

λ ≥ 1. A (C, λ)-Whitney-type decomposition of Ω = C \ F is a countable collection of open

sets {Sj}∞j=1 whose boundaries are quasicircles that satisfy the following four properties:

1. Ω =
⋃∞
j=1 Sj

2. For all j 6= k, Sj and Sk have disjoint interior.

3. There exists a constant C > 1 so that for all j ≥ 1,

1

C
dist(Sj, ∂Ω) ≤ diam(Sj) ≤ C dist(Sj, ∂Ω).

4. There exists a constant λ so that for all j ≥ 1 we have

diam(Sj)
2

Area(Sj)
≤ λ.

For convenience we will often omit the constants and refer to such collections as Whitney-

type decompositions, and we will still refer to the elements of a Whitney-type decomposition

as squares. Note that the Whitney decomposition of dyadic squares described above is a
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(4, 2)-Whitney-type decomposition. Whenever we summon a Whitney-type decomposition

in a proof, unless stated otherwise, we will assume it is the (4, 2)-Whitney-type decomposi-

tion of dyadic squares. A Whitney-type decomposition of a given open set Ω is defined by

taking F = C \ Ω.

Definition 2.2.3. Let F ⊂ C be a nonempty compact set and Ω = C \ F . A Whitney-type

decomposition of a neighborhood of F is a countable collection of open sets {Sj}∞j=1 whose

boundaries are quasicircles that satisfy the following four properties:

1. The sets {Sj}∞j=1 cover a neighborhood of F ; there exists d > 0 so that

{z : dist(z, F ) < d} ⊂
∞⋃
j=1

Sj.

2. For all j 6= k, Sj and Sk have disjoint interior.

3. There exists a constant C > 1 so that for all j ≥ 1,

1

C
dist(Sj, ∂Ω) ≤ diam(Sj) ≤ C dist(Sj, ∂Ω).

4. There exists a constant λ so that for all j ≥ 1 we have

diam(Sj)
2

Area(Sj)
≤ λ.

Example 2.2.4. It is often useful to create Whitney-type decompositions well-adapted to

the dynamics of polynomial maps. Let f(z) = zN , where N ∈ N and N ≥ 2. We will create

a Whitney-type decomposition of a neighborhood of B(0, 1) using the dynamics of f .

Let n ≥ 0 and R > 1, and let Cn denote the circle C(0, R1/2Nn). Then f(Cn) = Cn−1

and fn(Cn) = C0 for all n ≥ 1. For n ≥ 1, let An denote the open round annulus with

inner boundary Cn and outer boundary Cn−1. Then An decomposes into 2nN many sets Sn,j,
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where

fn : Sn,j → A(RN , R) \ R≥0

is conformal. See Figure 4.

There exists constants C and λ that depend only on N and R such that the collection

{Sj,n} is a (C, λ)-Whitney decomposition. The Whitney-type decomposition is dynamical in

the sense that if Sj,n ⊂ An is a component above, f(Sj,n) = Sj′,n−1 ⊂ An−1 for some j′.

Figure 2.1: The Whitney-type decomposition in Example 2.2.4. In this picture the “squares”
form a Whitney-type decomposition for a neighborhood of B(0, 1). Each square in the picture
has the property z2 maps a square in one ring of squares to one in the next ring, normalized
so that one of the squares in each ring has a radial segment on the real axis.

The following is a simple but very useful geometric lemma.

Lemma 2.2.5. Let W1(Ω) and W2(Ω) be (Cj, λj)-Whitney-type decompositions of Ω for

j = 1, 2. Then there exists a constant L = L(C1, C2, λ1, λ2) such that if Q ∈ W1(Ω), then Q

is covered by at most L elements S ∈ W2(Ω), and vice versa.

The key to the proof of Lemma 2.2.5 is comparing the area of a square Q in one collection

with the area of all the squares in the other collection that intersect Q. We omit the details.
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Let K ⊂ C be compact, and let Ω = C\K. Let W (Ω) be a Whitney-type decomposition

of Ω. We define the critical exponent of K to be

α(K) = inf

α ≥ 0 :
∑

Q∈W (Ω)

diam(Q)α <∞ , diam(Q) < 1

 .

The critical exponent does not depend on the Whitney-type decomposition.

Lemma 2.2.6. Suppose that W (Ω) and W ′(Ω) are Whitney-type decompositions of a domain

Ω. Then ∑
Q∈W (Ω)

diam(Q)α <∞ if and only if
∑

Q∈W ′(Ω)

diam(Q)α <∞.

Proof. This follows immediately from Lemma 2.2.5.

Given a Whitney-type decomposition, we will sometimes call the sum of diameters of the

squares as in Lemma 2.2.6 an α-Whitney sum. Thus α(K) ≤ α if and only if the t-Whitney

sums for some Whitney-type decomposition of the complement of K converge for all t > α.

The critical exponent will is the main tool we will use to estimate the packing dimension.

The following is Lemma 2.6.1 in [BP17].

Lemma 2.2.7. Let K ⊂ C be compact. Then α(K) ≤ dimM(K), and if K has zero area,

then α(K) = dimM(K).

In this paper, the fundamental Whitney-type decompositions we consider are decomposi-

tions with dyadic squares, and the decomposition in Example 2.2.4. It will also be important

that these Whitney-type decompositions behave well under conformal and quasiconformal

mappings.

Lemma 2.2.8. Let f : Ω → Ω′ be a K-quasiconformal homeomorphism of two domains Ω

and Ω′. Let W (Ω) be a (C, λ)-Whitney-type decomposition for Ω. Define

f(W (Ω)) := {f(Qj) : Qj ∈ W (Ω)}.
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Then f(W (Ω)) is a (C ′, λ′)-Whitney-type decomposition of Ω′, and the constants C and λ

only depend on the constant K and on the constants C and λ.

It follows that conformal and quasiconformal mappings take Whitney-type decomposi-

tions to new Whitney-type decompositions. When f is conformal, then Lemma 2.2.8 above

follows from the Lemma 2.1.2. When f is K-quasiconformal, Lemma 2.2.8 follows from

Theorem 11.14 in [Hei01]. One can also argue directly by applying standard modulus of

path family arguments to the topological annuli Ω \Qj for each square Qj ∈ W (Ω).

Theorem 2.2.9. Let f : Ω → Ω′ be a K-quasiconformal homeomorphism. Let W (Ω) and

W (Ω′) be Whitney-type decompositions of Ω and Ω′, respectively. Then there exists a constant

L that depends only on K and the constants defining the Whitney-type decompositions so that

each S ∈ f(W (Ω)) is covered by at most L elements Q ∈ W (Ω′).

Proof. This follows immediately by combining Lemma 2.2.5 and Lemma 2.2.8.

We will use the following corollary often.

Corollary 2.2.10. Let f : Ω → Ω′ be K-quasiconformal. Then the α-Whitney sums of

W (Ω′) and f(W (Ω)) are comparable with constant depending only on K and on the constants

defining the Whitney-type decompositions.
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Chapter 3

Construction and Basic Properties of the function

f

3.1 Defining f

In this section, we specify the parameters defining f and show that it is an entire

function. Recall that the main cardioid of the Mandelbrot set is the region consisting of all

parameters c = µ
2
(1 − µ

2
), where µ ∈ D. If c is a parameter in the main cardioid, the Julia

set of z2 + c is a quasicircle with an attracting fixed point in its interior. For each s ∈ (1, 2),

we may choose c in the main cardioid so that dimH(J (z2 + c)) = dimP(J (z2 + c)) =

dimM(J (z2 + c)) = s (see [Shi98] p.232 and [Sul83] p.742, along with Theorem 7.6.7 in

[PU10]).

Having chosen such a c, recall that we defined g(z) = z2 + c, and gN(z) denotes the Nth

iterate of g. Since gN is a degree 2N monic polynomial there exists some R > 0 so that if

|z| ≥ R we have

1

2
≤
∣∣∣∣gN(z)

z2N

∣∣∣∣ ≤ 2. (3.1.1)

We will always assume R is big enough so that (3.1.1) holds.
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Next, given some integer N > 0, define a sequence of integers for k = 0, 1, 2 . . . by

nk := 2N+k−1.

Note that when k 6= 0 we have nk ≥ 2N , we have n1 = 2N , and for all k we have 2nk = nk+1.

Given the value R above, define

R1 = 2R.

We will construct our infinite product as a sequence of partial products inductively as follows.

Given R as above we can define

F1(z) :=

(
1− 1

2

(
z

R1

)n1
)
,

f1(z) := gN(z) · F1(z),

R2 := M(f1, 2R1) := max{|f1(z)| : |z| = 2R1}.

Next, assume that fk−1, Fk−1 and Rk have all been defined for some k ≥ 2. From there, we

may define

Fk(z) :=

(
1− 1

2

(
z

Rk

)nk)
,

fk(z) := gN(z)
k∏
j=1

Fj(z) = fk−1(z) · Fk(z),

Rk+1 := M(fk, 2Rk) = max{|fk(z)| : |z| = 2Rk}.

To prove that f defines an entire function, we first must record some basic facts about

the growth rate of {Rk}∞k=1 and {nk}∞k=1. The following Lemma is completely elementary

but used often. We only remark that (3) below is just a restatement of (2).

Lemma 3.1.1 (The Growth Rate of nk). For all k = 1, 2, . . . , we have

1. nk = 2nk−1, and nk ≥ 2N .
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2. 2N +
∑k

j=1 nj = nk+1.

3. deg(fk) = 2 deg(Fk)

Lemma 3.1.2 (The Growth Rate of Rk). Suppose that R is so large that (3.1.1) holds. Then

if N ≥ 10, for all k ≥ 1 we have

Rk+1 ≥ 2nkR
2N−1+nk−1

k ≥ 2NR2N

k . (3.1.2)

Proof. By (3.1.1), when N ≥ 10 we have,

R2 = max
|z|=2R1

|f1(z)| = max
|z|=2R1

|gN(z)| ·
∣∣∣∣(1− 1

2

zn1

Rn1
1

)∣∣∣∣
≥ 1

2
· (2R1)2N · max

|z|=2R1

∣∣∣∣(1− 1

2

zn1

Rn1
1

)∣∣∣∣
≥ 1

2
· 2n1 ·Rn1

1 · (2n1−1 − 1)

≥ 22n1−3R2N

1 ≥ 2n1R2N−1+n0
1 .

This is the base case for an induction. Suppose that for some k ≥ 3, and for all 2 ≤ j ≤ k,

we have

Rj ≥ 2nj−1R
2N−1+nj−2

j−1 ≥ 2NR2N

j−1 ≥ 4R2
j−1
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This induction hypothesis implies that R
1/2
k ≥ Rj for all j ≤ k − 1. Therefore,

Rk+1 ≥ max
|z|=2Rk

|fk(z)| = max
|z|=2Rk

|gN(z)| ·
k∏
j=1

∣∣∣∣∣
(

1− 1

2

znj

R
nj
j

)∣∣∣∣∣
≥ 1

2
· 22N ·R2N

k ·
k∏
j=1

(
2nj−1R

nj
k

R
nj
j

− 1

)

≥ ·22N−1 ·R2N

k ·
k∏
j=1

(
2nj−2R

nj
k

R
nj
j

)

≥ ·22N−1 ·R2N

k · 2nk−2

k−1∏
j=1

(
2nj−2R

nj−1

k

)
≥ 22N−2k−1+

∑k
j=1 nj ·R2N+

∑k−1
j=1 nj−1

k .

To conclude, we use Lemma 3.1.1 and the assumption that N ≥ 10 to see that

Rk+1 ≥ 22N−2k+nk+1 ·R2N−1+nk−1

k

≥ 22N+nk ·R2N−1+nk−1

k .

This completes the proof.

For the rest of the paper, we will always assume that N ≥ 10, so that the conclusion

of Lemma 3.1.2 is always valid. Lemma 3.1.2 also implies the following simpler inequalities

that will often be sufficient for our purposes.

Corollary 3.1.3 (Other Useful Inequalities). For k ≥ 1 we have

1. Rk+1 ≥ 4R2
k.

2. Rk+1 ≥ (2R)2kN .

The proof of (1) above is obvious, and the proof of (2) is a simple induction, see Corollary

8.3 of [Bis18]. Corollary 3.1.3 allows us to apply the same argument as Lemma 5.2 in [Bis18]

and conclude that f(z) is a transcendental entire function.
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Corollary 3.1.4. The function

f(z) = gN(z) ·
∞∏
k=1

Fk(z)

converges uniformly on compact subsets of C. In particular, f(z) is a transcendental entire

function.

We conclude this section by recording some useful estimates regarding the relative

growth rates of {Rk}∞k=1. The proof follows from Lemma 3.1.2 and a use of Taylor series

approximations, and we refer the reader to Sections 6 and 8 of [Bis18] for the details.

Lemma 3.1.5. Suppose that {Rk}∞k=1 has been defined as in this section, and m ≥ 1. Then

k−1∏
j=1

(
1 +

(
Rj

Rk

)m)
= 1 +O

(
R
−m/2
k

)
, (3.1.3)

∞∏
j=k+1

(
1 +

Rk

Rj

)
= 1 +O

(
R−1
k

)
. (3.1.4)

Finally, if |z| ≤ 4Rk, we have

∞∏
j=k+1

Fj(z) = 1 +O
(
R−1
k

)
. (3.1.5)

3.2 Mapping Properties of f Far from the Origin

We now move on to analyzing the function f far away from the origin. The purpose of

this section is to show that f behaves like simpler functions on suitably defined regions of

C. To be more specific, recall that

f(z) := gN(z) ·
∞∏
j=1

Fj(z).
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We will show that we can decompose C\B(0, R1/4) into regions where f looks approximately

like the jth term of the infinite product multiplied by a monomial. The observations and

estimates here are vital for understanding to precise dynamical behavior of f .

We define

Hm(z) = zm(2− zm).

A detailed description of the conformal mapping behavior of Hm can be found in Section

9 of [Bis18]. For our purposes, we will need to consider the connected components of C \

{|Hm(z)| = 1}. This set has m + 2 connected components, one unbounded, one containing

the origin, and m simply connected regions which we call petals. We denote a single petal

by Ωp
m. Then Hm : Ωp

m → D is a conformal mapping, and diam(Ωp
m) = O(1/m). See Figure

5.

Figure 3.1: An illustration of the level sets of {|Hm(z)| = 1} for m = 5, 10 and 20. There
are m petals where Hm is a conformal mapping to the disk, and as m grows, the diameter
of the petals shrinks. All the points on {|Hm(z)| = 1} are distance O(1/m) from the unit
circle |z| = 1.

Next, we decompose C \B(0, R1/4) into annuli as follows. For k ≥ 1, define

Ak :=

{
z :

1

4
Rk ≤ |z| ≤ 4Rk

}
, Bk :=

{
z : 4Rk ≤ |z| ≤

1

4
Rk+1

}
,

Vk :=

{
z :

3

2
Rk ≤ |z| ≤

5

2
Rk

}
, Uk :=

{
z :

5

4
Rk ≤ |z| ≤ 3Rk

}
.

Note that Vk is compactly contained inside of Uk. See Figure 6.
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Figure 3.2: A schematic for Ak, k ≥ 1. The innermost circle and outermost circle form the
boundary of Ak. The dashed line is the circle |z| = Rk. The lightly shaded region is Uk, and
the darker region is Vk, which is compactly contained in Uk. In the upcoming sections, we
will see that the Julia set of f is contained near the circle |z| = Rk and in Vk.

The following is Lemma 10.1 in [Bis18]. We include its simple proof.

Lemma 3.2.1. With Hm defined above, for all integers k ≥ 1 we have

Fk(z) =
1

2

(
Rk

z

)nk
Hnk

(
z

Rk

)
.

Proof. We compute this directly by factoring as follows,

1

2

(
Rk

z

)nk
Hnk

(
z

Rk

)
=

1

2

(
Rk

z

)nk ( z

Rk

)nk (
2−

(
z

Rk

)nk)
=

(
Rk

z

)nk ( z

Rk

)nk (
1− 1

2

(
z

Rk

)nk)
= Fk(z).

This is exactly what we wanted.

The next lemma says that f looks like a slightly perturbed multiple of Hnk on the annuli

Ak.

26



Lemma 3.2.2. Let k ≥ 1. If z ∈ Ak, there is a constant Ck so that

f(z) = CkHnk

(
z

Rk

)
(1 +O(R−1

k )).

For k ≥ 2, the constant Ck is given by the formula

Ck = (−1)k−12−kRnk
k

k−1∏
j=1

R
−nj
j .

For k = 1 the constant is given by

C1 =
1

2
Rn1

1 .

The proof is almost exactly the same as Lemma 10.2 in [Bis18]. The idea is very simple.

We break f into the product of three pieces:

f(z) =

(
gN(z) ·

k−1∏
j=1

Fj(z)

)
· Fk(z) ·

(
∞∏

j=k+1

Fj(z)

)
. (3.2.1)

The first term of (3.2.1) is gN followed by the the first k − 1 terms of the infinite product.

That is estimated by some factoring and applying (3.1.3) from Lemma 3.1.5. The second

piece of (3.2.1) is just Fk, which we rewrite using Lemma 3.2.1. The third piece of (3.2.1) is

the tail of the infinite product, which we estimate using (3.1.5) from Lemma 3.1.5.

The next lemma says that f looks like a power function on Bk. This fact is used but

not proved directly in [Bis18], so we include it for completeness.

Lemma 3.2.3. Let k ≥ 1. Then for all z ∈ Bk, we have

f(z) = −Ck
(
z

Rk

)2nk

(1 +O(R−1
k+1)) · (1 +O(4−nk+1)) · (1 +O(4−nk)).

Proof. The reasoning above and a similar decomposition to (3.2.1) allows us to conclude
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that for all z ∈ Bk,

f(z) = CkHnk

(
z

Rk

)
Fk+1(z)(1 +O(R−1

k+1)).

The only change is that we keep the Fk+1(z) term. However, when z ∈ Bk, we have 4Rk ≤

|z| ≤ Rk+1/4, so that,

Hnk

(
z

Rk

)
=

(
z

Rk

)nk (
2−

(
z

Rk

)nk)
=

(
z

Rk

)2nk
(

2

(
Rk

z

)nk
− 1

)
= −

(
z

Rk

)2nk (
1 +O(4−nk)

)
.

A similar computation yields

Fk+1(z) =

(
1− 1

2

(
z

Rk+1

)nk+1
)

= (1 +O(4−nk+1)),

as desired.

Corollary 3.2.4. For all k ≥ 1, f has no zeros contained in Bk.

Next, we have the following estimates on the size of the coefficients Ck.

Lemma 3.2.5. Let R > 8, N > 3.

1. When k ≥ 2, we have |Ck| ≥ R
nk−1

k /2k ≥ 8Rk.

2. When k = 1, we have |C1| = Rn1
1 /2 ≥ 8R1.

3. For all k ≥ 1, we have |Ck+1| ≥ |Ck| > 1.

Proof. The k = 1 case is verified directly using Lemma 3.1.2 and the value of C1 given in

Lemma 3.2.1. For k ≥ 2, we can compute, using the fact that Rj ≤ R
1/2
k whenever j ≤ k−1,
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that

|Ck| =
1

2k
Rnk
k

k−1∏
j=1

R
−nj
j ≥ 1

2k
Rnk
k

k−1∏
j=1

R
−nj/2
k

=
1

2k
R
nk−nk−1

k =
1

2k
R
nk−1

k .

So in this case we see that it easily follows from Lemma 3.1.2 that

|Ck| ≥
1

2k
R
nk−1

k > 8Rk.

Part (3) is easily checked by computing and estimating |Ck+1|/|Ck|, see Lemma 10.4 in

[Bis18].

The next two proofs are Lemmas 10.5 and 10.6 of [Bis18]. They are proved using Lemma

3.2.2 and factoring techniques similar to the proof of Lemma 3.2.3. They are quantitative

statements that say that far enough away from the set of points where |Hm(z)| = 1, Hm

looks like z2m and near the origin, Hm looks like zm. Lemma 10.5 in [Bis18] actually has an

misprint in the statement with a missing factor of R−nkk , although the proof is correct. The

correct statements are below.

Lemma 3.2.6. For all k ≥ 1, and for z satisfying 5Rk/4 ≤ |z| ≤ 4Rk, we have

f(z) = Ck

(
z

Rk

)2nk
(

1 +O

((
4

5

)nk))
(1 +O(R−1

k )).

Lemma 3.2.7. For k ≥ 1, and Rk/4 ≤ |z| ≤ 4Rk/5, we have

f(z) = 2Ck

(
z

Rk

)nk
·
(

1 +O

((
4

5

)nk))
(1 +O(R−1

k )).

We will see that most of the interesting mapping behavior for f happens near |z| = Rk,
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where f “interpolates” from being a perturbed degree nk power mapping to a perturbed

degree nk+1 power mapping.

The conformal mapping behavior of f and its iterates will be very important later on,

so we will need to control of the critical values and critical points of f . The statement below

is Corollary 10.7 of [Bis18].

Theorem 3.2.8. For all k ≥ 1, f ′(z) is non-zero on Vk.

The proof of Theorem 3.2.8 requires the following lemma.

Lemma 3.2.9. Let k ≥ 1. Then for all z ∈ Uk, there exists a holomorphic function hk(z)

defined on Uk such that

f(z) = Ck

(
z

Rk

)2nk

(1 + hk(z)).

The function hk(z) satisfies

|hk(z)| = O

((
4

5

)nk
+R−1

k

)
. (3.2.2)

Lemma 3.2.9 follows immediately from Lemma 3.2.6. For integers k ≥ 1, define

εk = C

((
4

5

)nk
+R−1

k

)
. (3.2.3)

The constant C > 0 is chosen so that |hk(z)| ≤ εk on the annuli Uk. It follows that
∑∞

k=1 εk

can be made arbitrarily small, for N and R are sufficiently large. We state this carefully

below.

Lemma 3.2.10. Let C, hk(z), and εk be defined as above. Let δ > 0 be given. Then for all

N and R sufficiently large, we have
∞∑
k=1

εk < δ. (3.2.4)

Theorem 3.2.8 now follows from the Cauchy estimates applied to h′k(z) and a direct

estimate of f ′(z) on Uk using Lemma 3.2.9.
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The following lemma is equation (10.5) on p. 435 of [Bis18], which contains a misprint

due to the corresponding misprint of Lemma 10.5, and the proof is omitted. We include a

corrected version along with a proof.

Lemma 3.2.11. For all k ≥ 1 we have

1

4
≤ Rk+1

|Ck| · 2nk+1
≤ 4.

Proof. By (3.1.5), if z ∈ Ak we have

f(z) = fk(z)(1 +O(R−1
k )).

Recall that fk was the kth partial product of the infinite product defining f . By (3.1.1) it

follows that if R is sufficiently large, then

1

2
≤ M(f, 2Rk)

Rk+1

≤ 2.

Next note that Lemma 3.2.6 applies to f on |z| = 2Rk as well, and we also have

1

2
≤ M(f, 2Rk)

|Ck| · 2nk+1
≤ 2.

The conclusion follows immediately.

We can now prove the following theorem.

Theorem 3.2.12. For all N > 10 and for all sufficiently large R, we have that Ak+1 ⊂

f(Vk) ⊂ f(Ak) and f(Bk) ⊂ Bk+1. Moreover, f maps the outer boundary component of Vk

into Bk+1 and the inner boundary component of Vk into Bk.
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For example, by Lemma 3.2.3 and Lemma 3.2.11, if |z| = 4Rk, we have

|f(z)| ≥ 1

4
|Ck|4nk+1 ≥ 1

16
2nk+1Rk+1. (3.2.5)

In a similar way, we can use Lemma 3.1.2 to see that if |z| = 4Rk

|f(z)| ≤ 4|Ck|4nk+1 ≤ 16 · 2nk+1Rk+1 ≤
16

R2N−1
k+1

Rk+2. (3.2.6)

We can conclude that the outermost boundary component of Bk is mapped well inside Bk+1

by f . Observations like this allow us to deduce Theorem 3.2.12, whose straightforward but

somewhat tedious proof can be found in Sections 11 and 12 of [Bis18].

As a result we can obtain our first dynamical corollaries.

Corollary 3.2.13. For every k ≥ 1, Bk is in the Fatou set of f .

Proof. Since f(Bk) ⊂ Bk+1, we know that if z ∈ Bk, then the iterates fn(z) tend to infinity

locally uniformly.

Recall that an asymptotic value of an entire function g is a point w ∈ C such that there

exists a curve γ : [0,∞)→ C such that γ(t)→∞ and g(γ(t))→ w as t→∞.

Corollary 3.2.14. f has no finite asymptotic values.

Proof. If γ : [0,∞)→ C satisfies γ(t)→∞ as t→∞, then there exists a sequence {tk}∞k=1

with tk < tk+1, tk → ∞ and γ(tk) ∈ Bk. Therefore by Theorem 3.2.12 f(γ(tk)) ∈ Bk+1, so

that f(γ(tk))→∞. Therefore f has no finite asymptotic values.

3.3 Mapping Properties of f near the Origin

Having analyzed the behavior of f away from the origin, we now analyze f near the

origin. The primary goal of this section is to show that the Fatou set of f contains an at-

tracting basin containing the origin, and that the boundary of this fractal basin of attraction
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moves holomorphically with respect to some suitable one-parameter family of polynomial-

like mappings. This will allow us to control the Hausdorff dimension of the boundary of the

basin of attraction.

We begin with a general discussion about holomorphic perturbations of the polynomial

gN(z) = (z2 + c)◦N . In this section, we will assume that R > 100, define r = 100 and define

B = B(0, r). With this notation, (gN , (gN)−1(B), B) is a degree 2N polynomial-like mapping.

The Julia set and filled Julia set of the polynomial-like mapping (gN , (gN)−1(B), B) are the

same as the Julia set and filled Julia set of the polynomial gN(z), respectively. gN is also

hyperbolic on its quasicircle Julia set. If we fix a value µ ∈ (1, 2) and choose some value of

N sufficiently large, this implies that there exists a Jordan annulus A containing J (gN) so

that

|(gN)′(z)| ≥ µ > 1, (3.3.1)

for all z ∈ A. The value of N depends only on µ and the value c defining gN(z).

Lemma 3.3.1. Let µ be as defined in (3.3.1) and let ε(z) : B(0, 2r)→ C be a holomorphic

function. Then for every η < µ−1
2

, there exists a constant δ > 0 so that if |ε(z)| ≤ δ for all

z ∈ B(0, 2r), then the function h(z) = gN(z)(1 + ε(z)) satisfies

sup
z∈B(0,r)

|h′(z)− (gN)′(z)| < η, (3.3.2)

and,

|h′(z)| ≥ µ0 =

(
1 + µ

2

)
> 1, (3.3.3)

for all z ∈ A.

Proof. LetK = supz∈B(0,2r) |gN(z)| andK ′ = supz∈B(0,r) |(gN)′(z)|. By the Cauchy estimates,

max
z∈B(0,r)

|ε′(z)| ≤ δ

r
.
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Therefore,

sup
z∈B(0,r)

|h′(z)− (gN)′(z)| = sup
z∈B(0,r)

|(gN)′(z)ε(z) + gN(z)ε′(z)|

≤ K ′ · δ +K · δ
r

= O(δ)

Therefore, for sufficiently small δ, (3.3.2) holds, and (3.3.3) follows immediately.

Remark 3.3.2. An analysis of the proof of Lemma 3.3.1 shows that δ depends on the fixed

value c, the fixed value r, the value η in (3.3.2) and the positive integer N .

Lemma 3.3.3. Fix a positive integer N , let µ be defined as in (3.3.1), and let η < (µ−1)/2

be given. Choose δ > 0 so that Lemma 3.3.1 holds for h(z) = gN(z)(1 + ε(z)) for the given

values η and N . Define U = h−1(B). Then (h, U,B) is degree 2N polynomial-like mapping.

Proof. By perhaps choosing δ smaller, we conclude that h−1(A) and (gN)−1(A) are Jordan

annuli compactly contained in A. By (3.3.3), h has no critical points in h−1(A), and by

(3.3.2), h has no critical points in the unbounded complementary component of h−1(A).

Therefore, all critical points of h are contained in the bounded complementary component of

h−1(A). Let D denote the bounded complementary component of h−1(A). Then by (3.3.3)

we know h expands h−1(A) onto A and we have (h(D)) ⊂ D, so the critical values of h are

also contained in D. It follows that (h, U,B) is a degree 2N polynomial-like mapping.

For the rest of the section, we will assume that δ is small enough so that conclusions

Lemma 3.3.1 and Lemma 3.3.3 hold.

Lemma 3.3.4. For all z ∈ B(0, 1
4
R1), we have

f(z) = gN(z)(1 +O(4−n1))(1 +O(R−1
2 )). (3.3.4)

34



Assume that R is large enough so that R
1/2
1 < 1

4
R1. Then by perhaps choosing R larger, for

all z ∈ B(0, R
1/n2

1 ) we also have

f(z) = gN(z) · (1 +O(R
1
2
−n1

1 )). (3.3.5)

Proof. The techniques are similar to the previous section. Indeed, when |z| ≤ R1/4 we have

by (3.1.5) that

f(z) = gN(z)

(
1− 1

2

(
z

R1

)n1
) ∞∏
k=2

Fk(z) = gN(z)(1 +O(4−n1))(1 +O(R−1
2 )).

The proof of (3.3.5) is similar.

When z ∈ B(0, R
1/n2

1 ) we will write f(z) = gN(z) · (1 + ε(z)), where |ε(z)| = O(R
1
2
−n1

1 )

as R → ∞ by (3.3.5). It follows that may choose R sufficiently large so that |ε(z)| < δ for

all z ∈ B(0, r). We define

t := sup
z∈B(0,r)

|ε(z)|. (3.3.6)

We remark that t→ 0 as R→∞.

For the rest of this section, we will study the following one parameter family of functions.

Fix R so that (3.3.6) holds for t < δ. Let λ ∈ D and define

Fλ(z) := gN(z)

(
1 + λ · ε(z)

t

)
. (3.3.7)

Note that F0(z) = gN(z). We also remark that when |λ| = 1, we have |t−1ε(z)| ≤ δ for all

z ∈ B(0, r). When λ = t, we have Ft(z) = f(z).

Definition 3.3.5. A holomorphic motion of a set E ⊂ C is a family of injective maps

ϕλ : E → C,
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where λ ∈ D, such that ϕλ(·) is holomorphic for fixed z ∈ E, and ϕ0 is the identity.

For the rest of the section, we will define F−1
λ (B) = Uλ. Our goal is to show that the

Julia sets JFλ of the polynomial-like mappings (Fλ, Uλ, B) move holomorphically. That is,

we want a holomorphic motion that satisfies

ϕλ : JF0 → JFλ ,

and satisfies the equivariance condition

Fλ ◦ ϕλ(z) = ϕλ ◦ F0(z). (3.3.8)

We need the following two fundamental facts about holomorphic motions. First, we

have the λ-lemma (Theorem 4.1 of [McM94]).

Theorem 3.3.6 (The λ-lemma). A holomorphic motion of a set E has a unique extension

to a holomorphic motion of E. The extended motion is continuous mapping ϕλ : D×E → C.

For each λ ∈ D, ϕλ extends to a quasiconformal map of C to C.

The λ-lemma implies that to show the Julia sets of the polynomial-like mappings

(Fλ, Uλ, B) move holomorphically, it suffices to construct the holomorphic motion of the

repelling periodic points, since these points are dense in the Julia set. Next, the following

result of Bers and Royden, [BR86], shows that the dilatation of holomorphic motions can be

controlled in the following precise way:

Theorem 3.3.7. If ϕλ : D×E → C is a holomorphic motion, then for all λ ∈ D, ϕλ is the

restriction to E of a K-quasiconformal map Hλ : C→ C, where

K ≤ 1 + |λ|
1− |λ|

.
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Finally, we will use the following version of the holomorphic implicit function theorem

(see, for example, [Var11], Theorem 2.3.10).

Theorem 3.3.8. Let U ⊂ C × C be open with (z0, w0) ∈ U . Let F : U → C be continuous

and holomorphic in each variable separately. Suppose that F (z0, w0) = 0 and Fz(z0, w0) 6= 0.

Let Π2 : C×C→ C denote projection onto the second coordinate. Then there exists an open

set V containing (z0, w0) so that for all w ∈ Π2(V ), the equation F (z, w) = 0 has a unique

solution z = ϕ(w) so that (ϕ(w), w) ∈ V . Moreover, the function w 7→ ϕ(w) is holomorphic.

Now we move onto the family of functions Fλ.

Lemma 3.3.9. For each λ ∈ D, the Julia set of (Fλ, Uλ, B) is the closure of exactly one

basin of attraction.

Proof. By Lemma 3.3.1, we have |F ′λ| > µ0 > 1 on the Jordan annulus A (defined via (3.3.1))

for all λ ∈ D. Let Dλ be the bounded complementary component of the Jordan annulus

F−1
λ (A). Then Fλ(Dλ) ⊂ Dλ, and there exists a unique attracting fixed point cλ ∈ Dλ for

Fλ. This fixed point is the only possible fixed point or periodic cycle contained in Dλ.

Any other periodic cycles for (Fλ, Uλ, B) must be contained in A. Since |F ′λ| > µ0 > 1 on

A, such a cycle must be repelling. Therefore, Fλ has exactly one attracting fixed point, and

all other periodic cycles are repelling. It follows that KFλ , the filled Julia set of (Fλ, Uλ, B),

is the closure of exactly one basin of attraction.

We will denote the basin of attraction of (Fλ, Uλ, B) by BFλ . Note that ∂BFλ = JFλ ⊂ A.

Lemma 3.3.10. The repelling periodic cycles of (Fλ, Uλ, B) depend holomorphically on λ ∈

D.

Proof. For integers m ≥ 1, we study the equation

Q(z, λ) = Fm
λ (z)− z = 0.
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The solutions to this equation are exactly the periodic points of Fλ of period dividing m.

Let z0 be a repelling periodic point of period m for F0, and note that z0 must remain in A

for all iterates. Let ν be the multiplier of F0 at z0. Then z0 ∈ JF0 , ν ≥ µ0 > 1, and

|Qz(z0, 0)| = |ν − 1| > 0.

By the holomorphic implicit function theorem, the periodic point z0 moves holomorphically.

Since the filled Julia set of (Fλ, Uλ, B) is the closure of exactly one basin of attraction, the

point remains repelling as we vary λ.

For a repelling periodic point z we define hλ(z) to be the corresponding holomorphic

motion of that point. If E is the set of all repelling periodic cycles, this defines a mapping

hλ : E × D→ Eλ,

where Eλ is the set of repelling periodic cycles for (Fλ, Uλ, B).

Lemma 3.3.11. hλ : E × D→ Eλ is a holomorphic motion.

Proof. It only remains to check injectivity. Again, for some given λ, a periodic point zλ of

period diving m is a solution of

Q(z, λ) = Fm
λ (z)− z = 0.

By the implicit function theorem, there exists a neighborhood of (zλ, λ) such that for all

choices of λ′ in this neighborhood there is a unique zλ′ so that Q(zλ′ , λ
′) = 0. So by the

uniqueness statement of the implicit function theorem, we must have injectivity.

Corollary 3.3.12. The Julia sets of (Fλ, Uλ, B) move holomorphically.

Proof. By the λ-lemma, the holomorphic motion hλ extends to the closures of the repelling

periodic points. We just need to check that (3.3.8) holds for all z ∈ JF0 . Since hλ maps

38



periodic points of period m onto distinct periodic points of period m, if z is periodic with

period m, we have

hλ(F
m
0 (z)) = hλ(z) = Fm

λ (hλ(z)).

It follows that Fλ((hλ)(z)) and hλ(F0(z)) must belong to the same periodic cycle and that

they must be equal. Therefore, (3.3.8) holds on the repelling periodic points of JF0 , and by

density of the repelling periodic points, (3.3.8) extends to hold on the associated Julia sets

of the polynomial-like mappings.

Corollary 3.3.13. For each λ ∈ D, the Julia set of (Fλ, Uλ, B) is a quasicircle which

coincides with ∂BFλ.

Proof. The Julia set of (F0, U0, B) coincides with J (gN), which is a quasicircle. The result

now follows from Corollary 3.3.12 and the λ-Lemma, since quasiconformal mappings map

quasicircles to quasicircles.

Corollary 3.3.14. We have

lim
|λ|→0

dimH(JFλ) = dimH(JF0). (3.3.9)

Proof. Theorem 3.3.7 shows that the hλ extends to a K-quasiconformal self map of C, where

K ≤ 1+|λ|
1−|λ| . Since K-quasiconformal mappings are locally 1/K-Holder continuous, for λ ∈ D

we have

1− |λ|
1 + |λ|

dimH(JF0) ≤ dimH(JFλ) ≤ 1 + |λ|
1− |λ|

dimH(JF0). (3.3.10)

Equation (3.3.9) follows immediately.

Lemma 3.3.15. Let t be defined as in (3.3.6). Then we have the inclusion JFt ⊂ J (f). In

other words, the Julia set of the polynomial-like mapping (Ft, Uλ, B) is a subset of the Julia

set of the entire function f .

Proof. The repelling periodic cycles for (Ft, Ut, B) are by definition also repelling periodic

cycles for the entire function f(z). The inclusion JFt ⊂ J (f) follows immediately.
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Suppose that s = dimH(J (gN)) and ε0 > 0 is given. It follows from Corollary 3.3.14

and Lemma 3.3.15 that for all sufficiently large values of R, we have

s− ε0 ≤ dimH(J (f)) ≤ s+ ε0. (3.3.11)

3.4 Branched Covering Map Properties of f

Let k ≥ 0. Define,

A0 :=

{
|z| ≤ R1

4
: f(z) ∈ A1

}
,

A−k :=

{
|z| ≤ R1

4
: |f j(z)| ≤ R1

4
, j = 1, 2, . . . , k, and fk+1(z) ∈ A1

}
.

After k + 1 iterates, f maps A−k into A1. We make similar definitions for Vk, Uk, and Bk,

k ≤ 0. While these definitions are the same as in [Bis18], it is important to note a key

difference for the functions we consider is that for each k ≤ 0, Ak, Vk, Uk, and Bk consist of

exactly one connected component. This is because the functions considered in [Bis18] have

critical points near the origin which escape under iteration; the functions we consider have

critical points near the origin that remain in a basin of attraction. See Lemma 3.4.1 and

Lemma 3.4.4 below.

Let C denote the set of all points which eventually get mapped into the filled Julia set

Kf of f viewed as a polynomial-like mapping. Then

C =
∞⋃
k=1

f−k(Kf ). (3.4.1)

Now define

A :=
⋃
k∈Z

Ak.

It follows from Theorem 3.2.12 that f−1(A) ⊂ A.

The first lemma of this section characterizes the dynamics of the critical points of f

40



contained in Ak for k ≥ 1. We denote Bf as the basin of attraction for f when viewed

as a polynomial-like mapping. Since f has no asymptotic values, it’s postcritical set is

P (f) = {fn(z) : n ≥ 1, z a critical point}.

Lemma 3.4.1. For sufficiently large R, the critical points of f are either contained in Bf

or Ak for some k ≥ 1. If z is a critical point contained in Ak, then f(z) ∈ Bk. In both cases,

z is in the Fatou set.

This lemma is proved by studying the size of |Hnk | at a critical point of f . Since f is

close to a multiple of Hnk on Ak, the critical points of f contained in Ak are very close to the

critical points of Hnk . However, |Hnk | = 1 at any of its critical points, so we expect that Hnk

should have modulus close to 1 at a critical point for f . This calculation is done explicitly

in Lemma 14.2 in [Bis18], where at a critical point it is shown that

|1−Hnk(z)| ≤ n−2
k . (3.4.2)

It follows from Lemma 3.2.2 and Lemma 3.2.5 that the distance between a critical value and

the circle C(0, 4Rk) is approximately

|Ck| − 4Rk ≥ R
nk−1

k /2k − 4Rk, (3.4.3)

when k ≥ 2 and approximately

Rn1
1 /2− 4R1, (3.4.4)

when k = 1. It follows that the distance between P (f) and J (f) is strictly larger than 0.

The next lemma of this section tells us where the Julia set is located in each Ak, k ≥ 1.

Recall that Ωp
nk

is a “petal” region where Hnk(z) = znk(2 − znk) restricts to a conformal

mapping onto the disk. Let Pnk denote the union of all the petals of Hnk . Then Rk · Ωp
nk

is

a petal of Hnk(z/Rk), so we will let Rk · Pnk denote the set of all nk petals of Hnk(z/Rk).
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Lemma 3.4.2. Let k ≥ 1. Then (J (f) ∩ Ak) ⊂ Vk ∪ (Rk · Pnk). Let Rk · Ωp
nk

be a petal.

Then

diam(J (f) ∩Rk · Ωp
nk

) = O(R−2
k ). (3.4.5)

To prove this lemma, one uses Lemma 3.2.6 to conclude that for all k ≥ 1, the closed

annulus {z : 5Rk/2 ≤ |z| ≤ 4Rk} gets mapped by f into Bk+1, and then similarly uses

Lemma 3.2.7 to show that for all k ≥ 1, {z : Rk/4 ≤ |z| ≤ 4Rk/5} gets mapped by f into

Bk. It follows from Corollary 3.2.13 that these closed annuli belong in the Fatou set of f .

To deal with the points in {z : 4Rk/5 ≤ |z| ≤ 3Rk/2}, we first observe that the zeros of f in

Ak belong to this sub-annulus, and for any η ∈ (0, 1/2) we define

T ηk = {z : 4Rk/5 ≤ |z| ≤ 3Rk/2 and |Hnk(z/Rk)| > η}. (3.4.6)

The points where 4Rk/5 ≤ |z| ≤ 3Rk/2 and |Hnk(z/Rk)| ≤ η are contained in Rnk ·Pnk .

One can show that for all k ≥ 1, if η = R−3
k , then we must have f(T ηk ) ⊂ Bk, so that T ηk is

in the Fatou set. The conclusion of Lemma 3.4.2 now follows, and equation (3.4.5) follows

from Lemma 2.1.2 and (3.4.2). The details for all of these arguments follow similarly as in

Sections 11-13 of [Bis18].

Recall that for a set A, Â denotes the union of A and all its bounded complementary

components. Lemma 3.4.1 implies the following.

Lemma 3.4.3. For an integer k, let Dk−1 denote the connected component of f−1(Âk)

containing the origin. Then when k ≥ 1,

f : Dk−1 → Âk

is a degree nk branched covering map. When k ≤ 0, then

f : Dk−1 → Âk

42



is a degree 2N branched covering map.

The basic covering map lemma above can be refined as follows:

Lemma 3.4.4. Let W be a connected component of f−1(Ak) for k ∈ Z. Then we have the

following possibilities.

1. For k ≥ 1, we have W ⊂ Vk−1, and f : W → Ak is a degree nk covering map. For

k ≤ 0, we have W = Ak−1 and f : W → Ak is a degree 2N covering map.

2. There exists some j ≥ max{1, k} so that W ⊂ Aj, and W is contained in some petal

in Rj ·Pnj . Conversely, for all such j and every petal Rnj ·Ωnj ∈ Rnj ·Pnj , there exists

exactly one component W = f−1(Ak) ⊂ Rnj · Ωnj . In both cases, f : W → Ak is a

conformal mapping.

Moreover, these are the only possibilities.

Proof. (1) : By Theorem 3.2.12, a component W certainly exists. When k ≥ 1, by Lemma

3.2.9 and Lemma 3.4.1, each point z ∈ Ak is evenly covered ; there is a ball B(z, r) so that

f−1(B(z, r)) ∩W is the disjoint union of nk simply connected topological disks in W , and

f is conformal on each of these disks. When k ≤ 0, we argue in a similar way using Lemma

3.3.4 and Lemma 3.4.1.

(2) : The fact that all possible j ≥ k occurs follows from the fact that all the zeros of f

are in the annuli Aj for j ≥ 1, and the fact that f is continuous. W must also lie completely

in some petal region. Indeed, by Lemma 3.4.2, W must contain elements of the Julia set,

but if W ⊂ Vj, then f(W ) could not be a subset of Ak by Lemma 3.2.12. So W must be

strict subset of a petal and cannot intersect the boundary of a petal, or else the proof of

Lemma 3.4.2 would show that there are points in W that map to Bk. The fact that there is

at least one component per petal again follows from the continuity of f .

It remains to show the desired conformal mapping behavior occurs. Let z ∈ Ak, and

view f as a mapping f : W → Ak. Again Lemma 3.4.1 shows that each z in Ak is evenly
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covered. We want to further show that f is actually one-to-one on W . To do this, notice

that when we view f : C→ C, z has nk many preimages in Vk−1, and z has at least nl many

preimages in each Al (one for each petal), for l = k, k + 1, . . . , j. This gives

nk + (nk + · · ·+ nj) = nj+1

total preimages in Âj. But f : Dj → Âj+1 is a degree nj+1 branched covering map, so

f : W → Ak must be one-to-one.

We would like to remark on the following important consequence. If W ⊂ Aj is a

component of f−1(Ak) for j ≥ k, then f : Ŵ → Âk is conformal. Since f is injective on the

Jordan annulus W , it follows from the argument principle that it is injective on Ŵ .

Let W ⊂ Aj be a component of f−1(Ak) for j ≥ k. f : W → Ak is conformal, and the

distortion of this conformal mapping can be controlled to be as small as we would like. If

B = B(z, r) is a ball of radius r, we denote λB = B(z, λr).

Lemma 3.4.5. Let λ > 2 be given and let W be as above. Then for all sufficiently large

choices of R, there exists a ball B = B(z, r) containing W so that f restricted to λB is

conformal.

Proof. Let {z1, . . . , znk} denote the critical points of f contained inAk and let {f(z1), . . . , f(znk)}

denote the corresponding critical values. Let

ρk = min{|f(z1)|, . . . , |f(znk)|}.

By (3.4.3) and (3.4.4), for R sufficiently large, we can make the ratio ρk/Rk as large as we

would like, independent of k. Let A∗k denote the annulus {z : 1
4
Rk ≤ |z| ≤ 1

2
ρk}.

Let W ∗ be the connected component of f−1(A∗k) containing W . Then as we argued

above, f : W ∗ → A∗k is a conformal mapping. By Lemma 3.4.2, there exists a ball B(z, r)

containing W with diam(B(z, r)) = O(R−2
k ). The modulus of W ∗ \ B(z, r) can be made as
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large as we would like, independent of k, so for sufficiently large R it follows that λB(z, r) ⊂

W ∗ as well.
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Chapter 4

Structure of the Fatou and Julia set of f .

4.1 Fatou Components with C1 Boundary

The purpose of this section is to show that the boundaries of Fatou components of f

are C1, and in many cases these boundary components are close to being circles.

Let ε > 0. We will say a set C is an ε-approximate circle if, for some translation C ′

of C, there exists a circle C(0, r) and a mapping h : C(0, r) → C ′ which has the form

h(reiθ) = (r(θ), θ) in polar coordinates where r : [0, 2π] → R is ε-Lipschitz. We record the

following geometric lemma for future reference, which follows from the definition above and

(2.1.2) of Lemma 2.1.2.

Lemma 4.1.1. Let 0 < r′ < r be given. Let Ω be a Jordan domain and suppose that

f : B(0, r) → Ω is conformal. Suppose that C ⊂ B(0, r′) is an η-approximate circle. Then

there exists a constant µ > 0 such that if r/r′ > µ, then f(C) is an ε-approximate circle,

where |ε− η| depends only on µ. Moreover, as r/r′ →∞, |ε− η| → 0.

Let Γ be a Jordan curve in the plane, with γ : [0, 1] → Γ as its parameterization. We

say that Γ has a tangent at z0 = γ(t0) if

lim
t→t+0

γ(t)− γ(t0)

|γ(t)− γ(t0)|
= eiτ
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and

lim
t→t−0

γ(t)− γ(t0)

|γ(t)− γ(t0)|
= −eiτ .

We say Γ has a unit tangent vector eiτ at z0. We say that Γ is a C1-smooth curve if it has

a tangent at each point z ∈ Γ if if the unit tangent vector changes continuously with z ∈ Γ.

We will need the following Lemma, which is Lemma 18.1 in [Bis18].

Lemma 4.1.2. Suppose h is a holomorphic function on A = {z : 1 < |z| < 4} and suppose

that |h| is bounded by ε on A. Let H(z) = zm(1 + h(z)). For any fixed θ the radial segment

S(θ) = {reiθ : 3/2 ≤ r ≤ 5/2} is mapped by H to a curve that makes angle at most O(ε/m)

with any radial ray it meets.

The lemma is proved by applying the Cauchy estimate to zH
′(z)

H(z)
; the argument of this

expression measures the angle. Lemma 4.1.2 also implies the following stronger result. If Γ

is an analytic Jordan arc in A, and τz is the unit tangent vector to Γ at z, then the difference

between the angle between τz and S(θ) and the angle between τf(z) and any ray it meets is

O(ε/m). This follows immediately from the angle preserving property of holomorphic maps

with nonzero derivative combined with Lemma 4.1.2.

Recall that by Theorem 3.2.12 for all k ≥ 1 we have Ak+1 ⊂ f(Vk). It follows from

Lemma 4.1.2 and Lemma 3.4.1 that W = f−1(Vk+1) ⊂ Vk is a topological annulus, and the

boundary components of W are O(εk)-approximate circles, where εk for k ≥ 1 was defined

in (3.2.3). From here, with the additional help of Lemma 3.2.6, we can also deduce that

the width of W is approximately Rk/2nk. It turns out that this contracting, small angle

distorting behavior is precisely what we need to prove the following theorem. See also Section

18 of [Bis18].

Theorem 4.1.3. Let ε > 0 be given. Then there exists R sufficiently large so that for

all k ≥ 1, there exists a C1-smooth, ε-approximate circle Γk ⊂ Vk contained in J (f) that

surrounds the origin.
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Proof. Fix some k ≥ 1 and define

Γk,n =
{
z ∈ Vk : f j(z) ∈ Ak+j , j = 1, . . . , n

}
. (4.1.1)

Since Ak+n is a round annulus, it has a natural foliation Uk+n of closed circles centered at

the origin. Γk,n has an induced foliation U ′k+n of closed analytic Jordan curves obtained by

pulling back each element of Uk+n by fn. The fact that these curves are indeed Jordan curves

follows from Lemma 3.4.1 and the covering map properties of fn : Γk,n → Ak+n.

Define Γk =
⋂∞
n=1 Γk,n. We claim that the compact connected set Γk satisfies the

conditions of the theorem. We first produce candidate tangents for each z ∈ Γk. For each

z ∈ Γk, let γk,n(z) be the element of U ′k+n that contains z. Let τn(z) denote the positively

oriented unit tangent vector at z to γk,n(z). Then by Lemma 4.1.2 and (3.2.3), for m ≥ n,

|τn(z)− τm(z)| = O

(
m∑
l=n

εl

)
. (4.1.2)

It follows from Lemma 3.2.4 that {τn(z)}∞n=1 is a Cauchy sequence, and τn(z) converges to

some unit vector which we denote by τ(z). Then τ(z) is a unit tangent vector based at z to

Γk. This follows from the fact that curves γn,k are analytic, and therefore C1, and the fact

that τ(z) is defined to be the limit of the tangent vectors τn(z). By (4.1.2), the functions τn

converge uniformly to τ , so we just need to verify that each function τn is continuous to see

that τ is continuous.

Choose z, w ∈ Γk, and let γn,k(z) and γn,k(w) denote the elements of U ′n+k that intersect

z and w, respectively. Let L denote the ray based at the origin that passes through z.

Then L passes through γk,n(w) at exactly one point, which we denote by z′. We call the

corresponding unit tangent vector τn(z′). Therefore

|τn(z)− τn(w)| ≤ |τn(z)− τn(z′)|+ |τn(z′)− τn(w)|.
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The distance between z and z′ tends to 0 as |z − w| tends to 0. So the fact that γk,n(w) is

analytic shows that |τn(z′) − τn(w)| can be made arbitrarily small if |z − w| is sufficiently

small. For the other term, the line L passes through each element of U ′n+k once, and the

corresponding unit tangent vectors vary continuously along L, which shows that |τn(z′) −

τn(z)| tends to 0 as |z −w| tends to 0 as well. Putting this all together, we see that τn(z) is

continuous.

Finally we show that Γk ⊂ J (f). For each n, fn : Γk,n → Ak+n. Γk,n decomposes

into connected components of (fn)−1(Ak+n \ R+). We denote these components by Sn,k. If

z ∈ Γk, then z is contained in some set Sn,k, and fn is one-to-one on the interior of Sn,k and

fn : Sn,k → Ak+n is onto. Note that diam(Sn,k)→ 0 as n→∞. By definition of Γk, we have

fn(z)→∞ as n→∞. Let w ∈ Ak+n \R≥0 be a zero of f . Then there exists an element of

f−n(w) contained in Sn,k, and fn+1(w) ∈ Bf , the basin of attraction containing the origin.

It follows that in any neighborhood of z, {fn} cannot be an equicontinuous family.

Now we turn to a systematic labeling of the Fatou components of f . For k ≥ 1, define

Ωk to be the Fatou component containing Bk−1. Let D be the bounded complementary

component of the Jordan annulus B0. For k ≤ 0, we may define Ωk by taking appropriate

preimages, namely,

Ωk = {z ∈ D : f j(z) ∈ D , j = 1, . . . , k , fk+1(z) ∈ Ω1}.

Note that Ωk consists of exactly one connected component, since Bk is exactly one connected

component for all k ≤ 0. By Theorem 4.1.3 each Ωk is a distinct Fatou component for all

integers k.

Lemma 4.1.4. For all k, f(Ωk) = Ωk+1. Each Ωk is a multiply connected wandering domain.

Proof. If k ≤ 0, f(Ωk) = Ωk+1 is true by definition. For k ≥ 1, we know that f(Bk−1) ⊂ Bk ⊂

Ωk+1 by Theorem 3.2.12. Since Ωk+1 is a connected component of the Fatou set it follows
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that f(Ωk) ⊂ Ωk+1. Since f has no asymptotic values and Ωk is also a connected component

of the Fatou set, we get f(Ωk) = Ωk+1. Each component is multiply connected since for all

integers k, Bk ⊂ Ωk surrounds the basin of attraction Bf containing the origin.

Lemma 4.1.5. Each Γk is a connected component of J (f). In fact, Γk is simultaneously

the boundary component of Ωk+1 which separates Ωk+1 from the origin and the outermost

boundary component of Ωk.

Proof. Let Sn,k be the sets from the proof of Theorem 4.1.3. For sufficiently large n, since Γk

is C1 and an approximate circle, Γ splits Sn,k into exactly two connected components. Given

an Sn,k let So denote the component that is a subset of the unbounded complementary

component of Γk, and we let Si denote the component that is a subset of the bounded

complementary component Γk.

Since fn(Sn,k) = An+k, there exists a point z ∈ So so that |fn(z)| = 5
2
Rk+n. Then

fn+1(z) ∈ Bk+n+1 by Theorem 3.2.12. It follows that fn+1(z) ∈ Ωk+n+2, and therefore

z ∈ Ωk+1 by Lemma 4.1.4. So Γk is a subset of the boundary of Ωk+1.

There also exists a point z ∈ Si so that |fn(z)| = 3
2
Rk+n. Then fn+1(z) ∈ Bk+n, so that

fn+1 ∈ Ωk+n+1 and z ∈ Ωk. So Γk is a subset of the boundary of Ωk.

Let Γ be the connected component of the Julia set containing Γk, and suppose that

Γ \ Γk was non-empty and contained some connected component K. Then since K is not

contained in Γk, then there exists a smallest positive integer n such that K is not a subset

of Γk,n. Choose a point z ∈ K, z /∈ Γk,n, so that fn(z) /∈ Ak+n. Then by Lemma 3.2.12,

we must have z ∈ Bk+n or z ∈ Bk+n+1. This cannot happen, since Γ is assumed to be a

connected component of the Julia set.

By Lemma 3.4.2 and Lemma 4.1.4, we know that each Ωk is multiply connected. The

proof of Theorem 4.1.3 actually shows that each Ωk is infinitely connected, since the sets

Γn,k contain preimages of petals (defined in Section 6) contained in An+k, and these petals

contain preimages of the basin of attraction containing the origin. We can decompose the
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complement of Ωk into three types of closed regions Ωa
k, Ω0

k, and Ω∞k . Ω0
k is the complemen-

tary component containing the origin and Ω∞k is the unbounded complementary component.

The remaining complementary components Ωa
k lie between the innermost and outermost

boundary components of Ωk. We define ΩA
k to be the union of Ωk and all the closed regions

Ωa
k, so that ΩA

k is a Jordan annulus. With this notation, Ω̂k is the union of Ω0
k and ΩA

k .

Next, for k ≥ 1, consider a closed region Ωa
k such that Ωa

k ⊂ Rk · Ωp
nk

, for some petal

Rk ·Ωp
nk

. The boundary of Ωa
k is in the Julia set, and Ωa

k contains a zero of f . We claim that

the boundary of Ωa
k is conformally mapped by f onto the outermost boundary of Ωk.

Indeed, first we recall that for η = R−3
k , the set T ηk , defined in (3.4.6), gets mapped by

f into Bk. Therefore, we have

Ωa
k ⊂ {z : 4Rk/5 ≤ |z| ≤ 3Rk/2, |Hnk(z/Rk)| ≤ R−3

k } ∩Rk · Ωp
nk
.

By Lemma 3.4.5, some ball containing Ωa
k gets mapped conformally onto a Jordan domain

that contains Ω̂k. It follows that f maps Ωa
k conformally onto Ω̂k, so that the boundary of

Ωa
k is mapped onto the outermost boundary of Ωk. It further follows that inside of Ωa

k, there

are conformal copies of Ωj for j ≤ k, and one conformal copy of Bf . This motivates the

following definition.

Definition 4.1.6. Let k be an integer. We say Fatou component ω is of k-type if there exists

an integer m ≥ 0 so that fm : ω → Ωk is a conformal mapping.

Such a value for k is unique, since conformal mappings as we defined them are injective.

Since the orbits of all points in Ωk tend to ∞ for all k, the same is true for the orbits of

all points in a component of k-type. Later, we will prove that every Fatou component that

escapes is of k-type for some k. Given this universality of Ωk in the Fatou set of f , we

create the following definition. Recall that Bf is the basin of attraction for f viewed as a

polynomial-like mapping.
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Definition 4.1.7. The central series of Fatou components is the union of Bf and all compo-

nents Ωk, where k ∈ Z. The central series of Fatou components truncated at m is the union

of Bf and all components Ωk with k ∈ Z satisfying k ≤ m.

As we will start to see in Section 10, the central series of Fatou components truncated

at some m is the primary building block for the global Fatou set of f . That said, there are

points in the Julia set that are not in the boundary of any Fatou component. Such points

are called buried points. Recall that we defined A :=
⋃
k∈ZAk. Define

X = {z ∈ A : fn(z) ∈ A for all n ≥ 0}. (4.1.3)

Suppose that z ∈ X. Then there exists integers kn so that fn(z) ∈ Akn for all n ≥ 0 (we

interpret f 0(z) = z). Then we may define the orbit sequence of z to be α(z) = (k0, k1, k2, . . . ).

Notice that by Lemma 3.4.4, orbit sequences always satisfy the inequality kj+1 ≤ kj + 1 for

all j ≥ 0.

We will say that a point z ∈ X moves backwards if there exists j ≥ 0 so that α(z)

satisfies kj+1 ≤ kj. A point z ∈ X moves backwards finitely or infinitely often if there exists

finite or infinitely many values j so that α(z) satisfies kj+1 ≤ kj. We will say a set W ⊂ X

moves backwards finitely often if the following two conditions hold:

1. All z ∈ W move backwards m times for some m ≥ 1.

2. Let z ∈ W and let kj be the mth entry of α(z) so that kj+1 ≤ kj. Then if w ∈ W ,

then α(z) and α(w) are equal up to the j + 1-st index.

Informally, a set moves backwards finitely often if and only if all its elements move backwards

finitely often at the exact same iterates.

If z ∈ A \ X, then there exists a smallest integer n so that fn(z) /∈ A. We may still

write a finite orbit sequence for z, α(z) = (k0, k1, . . . , kn−1). Since we only require an orbit

sequence to define points and sets moving backwards, we will sometimes still speak of points
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and sets not contained in X moving backwards when the associated finite orbit sequences

are defined and allow us to do so.

Lemma 4.1.8. Let z ∈ X be given. If z is buried then it moves backwards infinitely often.

Proof. We prove the contrapositive. Suppose that z ∈ X moves backwards finitely often.

This is true if and only if there exists integer l ≥ 0 such that f l(z) ∈ X never moves

backwards. By perhaps choosing l larger, we may assume that f l(z) ∈ Ak for some k ≥ 1.

By Lemma 3.4.2, we must have f l(z) ∈ Vk or f l(z) ∈ Rk · Pk. If f l(z) ∈ Rk · Pk, then from

the discussion following Lemma 3.4.2 we must have

f l(z) ∈ {z : 4Rk/5 ≤ |z| ≤ 3Rk/2, |Hnk(z/Rk)| ≤ R−3
k } ⊂ {z : |z| ≤ 3Rk/2}.

By Lemma 3.2.12, the inner boundary component of Vk, C(0, 3Rk/2), gets mapped inside of

Bk. Therefore, by the maximum principle for holomorphic functions, f l+1(z) ∈ {z : |z| <

Rk+1/4}. Therefore, if we let α(f l(z)) denote the orbit sequence of f l(z), we must have

k1 ≤ k0. But this contradicts the fact that we assumed that f l(z) never moves backwards.

Therefore, we must have f l(z) ∈ Vk. By similar reasoning, we conclude that for all j ≥ 1,

f l+j(z) ∈ Vk+j, and it follows that f l(z) ∈ Γk, the outermost boundary of Ωk. It follows that

z is on the boundary of some Fatou component for f .

We will see later that z is buried if and only if z moves backwards infinitely often. For

the rest of the paper, we will refer to the points that move backwards infinitely often as Y .

4.2 A Detailed Description of the Dynamics of f

We can now offer a complete description of the Fatou and Julia set, along with several

other dynamical consequences. These will follow from the theorem below, which we will

prove in Chapter 5. For convenience, we will often refer to a sum of diameters of the form
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below as an (s + ε0)-sum. In this section and future sections, we will let s = dimH(∂Bf ),

where Bf is the basin of attraction of f containing the origin.

Theorem 4.2.1. Let ε0 > 0 be such that s + ε0 < 2, and k ∈ Z be given. Then R may be

chosen large enough so that ∑
ω⊂ΩAk

diam(ω)s+ε0 <∞, (4.2.1)

where the sum is taken over every Fatou component ω ⊂ ΩA
k which is of j-type for some

j ≥ 1.

We would like to emphasize that we are summing over all Fatou components contained

inside of ΩA
k of j-type for any j ≥ 1, not just one fixed j. This theorem cannot be significantly

strengthened to include all Fatou components of j-type for j ∈ Z. Indeed, we will see that

if B′f is a connected component of (fm)−1(Bf ) for some m ≥ 1 contained inside of ΩA
k ,

there exists infinitely many Fatou components surrounding B′f with diameter larger than

the diameter of B′f . Compare to (20.1) in [Bis18], p. 455.

Let’s first geometrically interpret what this sum means. Figure 7 shows a schematic

diagram for the Fatou component Ωk, k ≥ 1. As discussed in Section 9, Ωk is infinitely

connected. The ‘holes’ in Figure 7 correspond to the components Ωa
k. The innermost ring of

holes is contained inside of the collection of petals Rk · Pnk , defined in Section 8. There is

exactly one hole for each individual petal Rk · Ωp
nk

, and f maps the outermost boundary of

each of these holes conformally onto the outermost boundary component of Ωk with small

distortion by Lemma 3.4.5. Therefore, each hole contained in a petal contains a preimage or

copy of the central series of Fatou components truncated at k, and Lemma 3.4.5 says that

this preimage is almost an affine rescaling of the central series truncated at k.

When k ≥ 1, the other rings of holes of Ωk are mapped to rings of holes in Ωk+1. The

second ring of holes maps into Rk+1 ·Pnk+1
, and in general, each ring of holes moves one ring

inward under iteration by f . Therefore, each element of the other rings of holes in Figure

7 are eventually mapped conformally into Rj · Pnj for some j > k, and therefore the same
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Figure 4.1: A schematic for a Fatou component Ωk, k ≥ 1. Every hole in ΩA
k is bounded by

the outermost boundary of a Fatou component of j-type, j ≥ k. This forms the first layer of
holes, which we see pictured above. Every hole contains a copy of the central series of Fatou
components truncated at some j ≥ k; the holes in all of these copies induce the second layer
of holes in ΩA

k . This introduces a third layer of holes, and the process continues inductively.
The set Y of points that move backwards infinitely often coincides with the set of all points
that are contained inside of a hole in every layer.

reasoning shows that those holes contain a preimage or copy of the central series of Fatou

components truncated at j.

The discussion above also applies to Ωk for k ≤ 0, with some minor adjustments. In this

case, recall that Ωk is defined to be the connected component of (f 1−k)−1(Ω1) that surrounds

the origin. Each complementary component Ωa
k gets mapped conformally by f 1−k onto some

component Ωa
1, so it also contains a preimage of the central series of Fatou components

truncated at some j ≥ 1. From this we deduce that the boundary of every complementary

component of Ωk contained in ΩA
k is the outermost boundary of some Fatou component of

j-type, where j ≥ 1.

To summarize the above discussion using the informal language of holes, we have re-

placed all of the holes in Ωk by appropriate truncated copies of the central series of Fatou

components. These truncated copies introduce a new second layer of holes contained in Ωk,
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introduced by the corresponding copies of the truncated central series of Fatou components.

The reasoning above shows that every hole in this second layer contains a truncated copy of

the central series of Fatou components, which introduces a third layer of holes in Ωk, and so

on.

From this discussion we see that the truncated copies of the central series of Fatou

components serve as the main building block for the Fatou and Julia set of f . We fill all

the holes in the central series by the appropriate truncated copies of the central series, and

repeat this procedure for all the new, smaller holes that appear. Theorem 4.2.1 can now be

interpreted as saying that the (s+ ε0)-sum of diameters of every hole in every layer of holes

contained in ΩA
k is finite (in fact, it is slightly stronger, since many Fatou components may

be contained inside of the same hole).

We can also see from this discussion that every hole in the mth layer described above

moves backwards m many times. Therefore, we see that the set Y of points that move

backwards infinitely often coincides with the set of points that are contained inside a hole

for every layer of holes in ΩA
k . For each m, the mth layer of holes is a covering of Y ∩ΩA

k , so

since the sum in Theorem 4.2.1 converges we will be able to deduce the following consequence.

Corollary 4.2.2. Let ε0 > 0 be given, and suppose that R is chosen so that (4.2.1) converges.

Then for all k, dimH(Y ∩ ΩA
k ) ≤ s+ ε0, so that dimH(Y ) ≤ s+ ε0 < 2.

For the remainder of this section we will describe the dynamical consequences of Theo-

rem 10.1 and Corollary 10.2.

Theorem 4.2.3. Let C be defined as in (3.4.1). Suppose that ω is a Fatou component of f

and ω is not a connected component of C. Then there exists a unique integer k ∈ Z such

that ω is of k-type.

Proof. Let ω be a Fatou component of f which is not a subset of C. First, observe that

for any integer k, we must have Bk ∩ ω = ∅ or Bk ∩ ω = Ωk since Bk is a subset of
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the Fatou component Ωk. In the latter case, the ω = Ωk, which is of k-type. Therefore,

ω ⊂ A :=
⋃
k∈ZAk.

Choose j so that ω ⊂ Aj. If j ≤ 0, then f 1−j(ω) ⊂ A1, so we may assume without

loss of generality that j ≥ 1. Since ∂ω ⊂ J (f), then by Theorem 3.4.2, we either have

ω ⊂ Rj · Ωp
nj

or we have ω ⊂ Vj. If ω ⊂ Rj · Ωp
nj

, then ω moves backwards once. If ω ⊂ Vj,

then there is an integer l ≥ 1 so that f l(ω) ⊂ Rj+l · Ωp
nj+l

. Otherwise, by (4.1.1), ω ⊂ Γj,l

for all l ≥ 1, which would imply that ω is a subset of the outermost boundary of Ωj, which

is impossible since ω is open.

Therefore, there exists l ≥ 0 so that f l(ω) ⊂ Rj+l ·Ωp
nj+l

. Then for any k ∈ Z, we either

have f l+1(ω)∩Bk = Ωk or f l+1(ω)∩Bk = ∅. If there exists a k such that f l+1(ω)∩Bk = Ωk,

then ω is of k-type by Lemma 3.4.5. Otherwise, f l+1(ω) ⊂ A.

It follows from the reasoning above that if ω is not of k-type for some integer k, then

ω ⊂ X, where X is the set of points defined in (4.1.3) that remain in A under all iterates of

f . In fact, the reasoning above shows that ω would have to move backwards infinitely often,

which would imply that ω ⊂ Y , which is impossible by Corollary 4.2.2.

Corollary 4.2.4. A point z moves backwards infinitely often if and only if it is buried.

Proof. We have shown that if z is buried then it moves backwards infinitely often. If z is

not buried, then by definition it is the boundary of some Fatou component ω. If ω ⊂ C,

then z /∈ X and therefore cannot move backwards infinitely often. If ω is not a connected

component of C, then by Theorem 4.2.3, there exists m ≥ 0 and k ∈ Z so that fm is conformal

on ω and fm(ω) = Ωk. Since f(Ωk) = Ωk+1, z moves backwards only finitely often.

We have shown that if a Fatou component is not a subset of C, then that component

belongs to the escaping set of f . Recall that for an entire function f , we define the escaping

set as

I(f) = {z : |fn(z)| → ∞}.
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Choose some number S0 so that there exists z with |z| = S0 so that z ∈ I(f) (for example,

choose S0 so that |z| = S0 ⊂ B1). Then define inductively

Sn+1 = max
|z|=Sn

|f(z)|.

We define the fast escaping set as

A(f) = {z : there exists k ≥ 0 so that |fn+k(z)| ≥ Sn for all n ≥ 0}.

The fast escaping set does not depend on the initial choice of S0, as long as |z| = S0 contains

a point z ∈ I(f). For more on the fast escaping set, we refer the reader to [RS12].

Lemma 4.2.5. Let C be defined as in (3.4.1). Suppose that ω is a Fatou component of f

and ω is not a connected component of C. Then ω ⊂ A(f).

Proof. We begin by defining {Sn}∞n=0. Let S0 = 1
4
R2. Such a choice of S0 is valid by Theorem

3.2.12, for if |z| = S0, then z is on the outer boundary of B1 and therefore in the escaping

set. It also follows from Theorem 3.2.12 that for all n ≥ 0 we have the inequality

Sn ≤
1

4
Rn+2.

For any integer k ≥ 3, we first claim that the Fatou component Ωk ⊂ A(f). For such

k, observe that if z ∈ Ωk, then |z| ≥ Rk−1/4. Indeed, the Fatou component Ωk−1 contains

the annulus Bk−2, and |z| = Rk−1/4 is the outer boundary of Bk−2. Therefore, if z ∈ Ωk

for k ≥ 3, then |z| = |f 0(z)| ≥ S0. Since fn(z) ∈ Ωk+n for n ≥ 1 and k ≥ 3, we have

|fn(z)| ≥ Rk+n−1/4 ≥ Rn+2/4 ≥ Sn. Therefore, Ωk ⊂ A(f).

By Theorem 2.2 of [RS12], A(f) is completely invariant under f . Therefore, if k ≤ 2,

we have Ωk ⊂ A(f) as well. Similarly, if ω is a Fatou component which is not a connceted

component of C, ω is of k-type for some integer k, and belongs to A(f) as well.
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We will sometimes call Fatou components in A(f) escaping Fatou components. Next,

we define the bungee set as

BU(f) = {z : there exists nk and nj so that |fnk(z)| → ∞ and fnj(z) is bounded}.

We define the bounded orbit set as

BO(f) = {z : fn(z) is bounded}.

Every point z ∈ C is contained in exactly one of I(f), BU(f), or BO(f). All of the elements

of BU(f) belong to Y , and every point in BO(f) that does not eventually map into Kf , the

filled Julia set of the polynomial-like mapping f , also belongs to Y . Y also contains points

in I(f). However, since these points move backwards infinitely often, they cannot belong to

A(f) for our function f .

Corollary 4.2.6. The sets I(f)\A(f), BU(f), and BO(f)\C all have Hausdorff dimension

≤ s+ ε0 < 2.

Proof. BU(f) ⊂ Y and BO(f)\C ⊂ Y , and Y has Hausdorff dimension ≤ s+ε0 by Corollary

4.2.2. If z ∈ I(f) \A(f), then z /∈ C, nor can we have z inside an escaping Fatou component

or the boundary of a Fatou component of k-type for any integer k, since these sets belong

to A(f). Therefore z must be in Y , and I(f) \ A(f) ⊂ Y , and the result follows.

We now know that Fatou components are either inverse images of the basin of attraction

Bf of f viewed as a polynomial-like mapping, or are of k-type for some integer k.

Definition 4.2.7. Let ω be a Fatou component of f .

1. If ω ⊂ C is a Fatou component, then there is an integer m ≥ 1 such that fm(ω) = Bf .

In this case, we call ω a basin or basin component.

2. If ω is k-type for k ≥ 1, we call ω round.
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3. If ω is k-type for k ≤ 0 we call ω wiggly.

The reason for the naming convention above is as follows. As k → −∞, the inner-

most and outermost boundaries of components {Ωk}k≤0 ‘wiggle’ and approximate the fractal

boundary of the basin of attraction Bf . Round components are far enough away from the

fractal boundary to still have approximately circular innermost and outermost boundaries.

Recall the sequence {εk}∞k=1 defined in (3.2.3). In Section 9 we showed that the εk’s

determined the deviation from round circles of the innermost and outermost boundary com-

ponents of Ωk, k ≥ 1. For any δ > 0, we could define f so that
∑∞

k=1 εk < δ.

Corollary 4.2.8. Let {εk}∞k=1 be defined as in (3.2.3), and suppose
∑∞

k=1 εk = δ for some

δ > 0. The boundary of any escaping Fatou component is the union of C1 curves. If the

Fatou component is round, the all of the boundary components are O(δ)-approximate circles.

Proof. All escaping components are of k-type for some k, so it suffices to show this for Ωk

by Lemma 3.4.5 and Lemma 4.1.1. Since all the boundary components of Ωk are escaping

by Corollary 4.2.4, they are the boundaries of Fatou components of j-type for j ≥ 1. By

Lemma 3.4.5, Fatou components of j-type map conformally onto Ωj and their boundaries

are also C1. By Lemma 4.1.1, they are O(δ)-approximate circles when k ≥ 1.

We can now offer a full description of the Julia set.

Theorem 4.2.9. The Julia set can be decomposed into three sets:

1. The buried points of f . Equivalently, the set Y of points which move backwards in-

finitely often.

2. The C1 components that escape to ∞. These components are always the outermost

boundary component of some Fatou component of k-type.

3. Inverse images of Jf , the Julia set of the polynomial-like map f .

Corollary 4.2.10. J(f) has zero Lebesgue measure.
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Proof. The Julia set is the disjoint union of the the set of points that move backwards

infinitely often which has Hausdorff dimension less than 2 by Corollary 4.2.2, countably

many C1 curves, and countably many quasicircles with Hausdorff dimension strictly less

than 2.

We conclude the section by recording a lemma describing the nice geometry of the round

Fatou components Ωk, k ≥ 1; we refer the reader again to Figure 7. The proof follows from

some basic calculations using the fact that f looks like a power mapping on some portions

of Ωk, along with using Lemma 3.4.5. A similar discussion is found in Section 19 of [Bis18],

and we omit the details.

Lemma 4.2.11 (The Shape of Round Fatou components). Choose some Fatou component

Ωk for some fixed k ≥ 1. Define dj = 2(nk+ · · ·+nj−1) for j > k. Then Ωk has the following

geometric properties

1. For all j ≥ k, there are nj · 2dj many boundary components of Ωk which lie distance

approximately Rk · 2−dj from the outermost boundary component of Ωk. We call these

components the jth ring of Ωk.

2. The boundary components in the jth ring of Ωk are approximately distance Rkn
−1
j 2−dj

apart from each other and lie on a O(δ)-approximately round circle.

3. All boundary components of Ωk arise in this manner for some j ≥ k.
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Chapter 5

The Proof of Theorem 4.2.1.

5.1 A Labeling System for Complementary Compo-

nents

In this section, we formally construct a sequence of coverings Cm of Y ∩ A1 which

correspond to the mth layer of holes in ΩA
k described in the previous section. We will focus

on the case in Theorem 4.2.1 with k = 1. It is straightforward to modify our techniques to

other integers k.

Our initial covering C0 will have exactly one element, A1, the annulus defined in Section

6. Notice that by the proof of Theorem 4.1.3, A1 contains the outermost boundary component

of Ω1, so that Â1 contains Ω̂1. A1 and Ω1 both have diameter comparable to R1. We first

describe how to construct C1 from C0. For each z ∈ A1 ∩ Y , by definition, there is a smallest

positive integer n so that fn(z) ∈ Ak for k ≤ n. It is possible that k ≤ n is a negative integer.

Therefore z belongs to one connected component of f−n(Ak), a Jordan annulus which is a

proper subset of A1. We denote such a component by W n
k . The collection of all distinct

components obtained by doing this procedure for all z ∈ Y is denoted by C1.

Before proceeding further, we would like to remark on some potentially confusing no-

tation. The convention of referring to elements in C1 as W n
k is ambiguous. Indeed, there

are 2N many elements of C1 that could be called W 1
1 , one for each petal R1 · Ωp

n1
. With this
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ambiguity in mind, we will adopt the convention that the notation W n
k ∈ C1 always refers

to a single element. We will say that an element X ∈ C1 is of the form W n
k if it could be

denoted by W n
k using the procedure above for some z ∈ X. Therefore every element of C1

is of the form W n
k for some positive integer n and some integer k ≤ n. This slight abuse

of notation will not be an issue in what follows; we will exclusively refer to either single

elements W n
k or the collection of all elements of the form W n

k . We will make it clear in each

context if we are referring to a single element versus a collection of elements.

With this in mind we now describe how to obtain C2 from C1. Let W n
k ∈ C1 be given,

and choose z ∈ Y ∩ W n
k . Then fn(z) ∈ Ak for k ≤ n. But since z ∈ Y , there exists

a smallest q so that fn+q(z) ∈ Aj for j ≤ k + q − 1. z is contained in a component of

(fn+q)−1(Aj) ⊂ A1, which we denote by W n+q
j . Therefore, for all z ∈ Y ∩W n

k there is a

Jordan annulus W n+q
j ⊂ W n

k containing z which moves backwards twice. We define C2 to

be the collection of all distinct Jordan annuli obtained by applying this procedure to each

element of C1.

We proceed inductively to construct Cm+1 from Cm. Let z ∈ W nm
km
∩ Y for some element

W nm
km
∈ Cm. Then since z ∈ Y , there exists a smallest q so that fnm+q(z) ∈ Aj for j ≤

km + q − 1. Therefore z is an element of some connected component of (fnm+q)−1(Aj), and

we denote this component by W nm+q
j . Therefore, for all z ∈ Y ∩W nm

km
, there is a Jordan

annulus W nm+q
j ⊂ W nm

km
which moves backwards m + 1 many times. The collection Cm+1 is

the collection of all distinct components obtained by applying this procedure to each element

of Cm.

We summarize several properties of the coverings Cm in the Lemma below.

Lemma 5.1.1. Let m ≥ 0. The collection of sets Cm, has the following properties.

1. Cm is a countable union of Jordan annuli which cover Y ∩ ΩA
1 .

2. Cm+1 is a refinement of Cm, i.e, every element in Cm+1 is a subset of an element in Cm.

3. Let W n
k ∈ Cm. Then W n

k moves backwards m times.
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4. If W n
k ∈ Cm, then W n

k contains the outermost boundary component of exactly one Fatou

component of k-type that moves backwards m times, but not m+ 1 times.

5. Suppose ω is a Fatou component of k-type contained in ΩA
1 . Then there is a positive

integer m so that ω moves backwards m times, but ω does not move backwards m + 1

times. Moreover, there exists a unique element W n
k ∈ Cm so that W n

k contains the

outermost boundary of ω.

Proof. We only need to discuss (4) and (5). For (4), if W n
k ∈ Cm, then by definition fn(W n

k ) =

Ak and W n
k moves backwards m many times. Ak contains the outermost boundary of Ωk,

so W n
k must contain a Fatou component of k-type that moves backwards m times. Since

f(Ωk) = Ωk+1, this component does not move backwards again, which gives uniqueness,

since all other Fatou components whose outermost boundary is contained in W n
k will move

backwards more than m many times.

For (5), the existence of such an m is guaranteed by the definition of k-type and the fact

that f(Ωk) = Ωk+1. Therefore, the outermost boundary component of ω moves backwards

m times. Suppose l ≥ 0 is such that f l(ω) = Ωk and f l is conformal on ω. The existence

of W n
k follows from the fact that outermost boundary of f l(ω) is contained in Ak, so the

outermost boundary of ω will be contained in some element W n
k in Cm.

We move on to describing how to change the covering Cm by topological annuli into a

simpler covering Ĉm by topological balls. The elements of Ĉm are going to be topological

disks that cover the holes described in Sections 9 and 10. Let W n
k ∈ C1 be given. Then Ŵ n

k

is a topological disk with the same diameter as W n
k . Ŵ n

k is contained inside of exactly one

element Ŵ n
n , with W n

n ∈ C1. Indeed, suppose W n
k ∈ C1. Then fn−1(W n

k ) is a subset of some

petal contained in Pn. From the discussion of the proof of Lemma 3.4.2, we know that

fn−1(W n
k ) ⊂ {z : 4Rn/5 ≤ |z| ≤ 3Rn/2, Hnn(z/Rn) ≤ R−3

k } = S.

We also know that f conformally maps S onto some topological disk whose boundary is
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contained in Bn, so that S contains a connected component of f−1(An). It follows that Ŵ n
k

is contained inside of exactly one element Ŵ n
n , with W n

n ∈ C1.

We define Ĉ1 to be the collection of all topological disks of the form Ŵ n
n , n ≥ 1. Observe

that Theorem 3.2.12 and Lemma 3.4.2 implies that Ĉ1 has the following maximality property:

If Ŵ n
n ∈ Ĉ1, there is no W n

k ∈ C1 so that Ŵ n
n is a proper subset of Ŵ n

k . This implies that Ĉ1

covers all the points that C1 does. We will continue to use the convention that Ŵ n
k refers to

a single element, and refer to the collection of all elements that could be labeled the same

way as the elements of the form Ŵ n
k .

To inductively obtain Ĉm+1, assume that Ĉm has been constructed and satisfies the

maximality property that no element Ŵ n
k ∈ Ĉm is a proper subset of Ŵ n

j where W n
j ∈ Cm.

Start with take Ŵ n
k ∈ Ĉm. Then k ≥ 1; otherwise Ŵ n

k is a proper subset of Ŵ n
k+1 for some

W n
k+1 ∈ Cm. Observe that Ŵ n

k contains a sequence of components W n
j ∈ Cm for j ≤ k. Fix

W n
j , and consider the elements of Cm+1 contained inside of W n

j of the form W n+q
j+q−1. If j ≥ 1,

then all q ≥ 1 occur. If j ≤ 0, then q must satisfy q ≥ 2−j. Either way, for each valid choice

of q, the polynomial hulls of the components of the form W n+q
k+q−1 determine the elements of

Ĉm+1 inside of W n
j . Doing this for all j ≤ k, we obtain all of the elements of Ĉm+1 contained

in Ŵ n
k . Ĉm+1 is the collection of all elements obtained in this way for each Ŵ n

k ∈ Cm.

We summarize the properties of the coverings Ĉm below.

Lemma 5.1.2. The collection of sets Ĉm, m ≥ 0, has the following properties.

1. Ĉm is a countable collection of topological disks which cover Y ∩ ΩA
1 .

2. Ĉm+1 is a refinement of Ĉm.

3. Let Ŵ n
k ∈ Ĉm. Then Ŵ n

k moves backwards m many times.

4. If Ŵ n
k ∈ Ĉm. Then k ≥ 1, and Ŵ n

k contains the outermost boundary of exactly one

Fatou component of k-type that moves backwards m many times, but not m+ 1 many

times.
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5. Maximality: if Ŵ n
k ∈ Ĉm, then there does not exist a different element W n

j ∈ Cm so

that Ŵ n
k is a proper subset of Ŵ n

j .

Proof. The reasoning for (4) follows similarly as it does in Lemma 5.1.1. The only thing left

to be checked is maximality. But this follows from the fact that inside of each W n
j ⊂ Ŵ n

k in

the construction above, we refined by using components of the form W n+q
j+q−1.

Example 5.1.3. We would like to illustrate what happens when we refine Ŵ n
n ∈ Ĉ1 into

components that belong to Ĉ2. This example is actually quite universal and will motivate

the technical lemmas in the next two sections. The idea behind this construction, pulling

back a construction on the central series of Fatou components to all other Fatou components

of k-type, will be a important theme in the following sections.

When k ≥ 1, we may refine Ak ∩ Y similarly to how we constructed C1 and Ĉ1. We

call this new collection of topological disks Vk, and we denote individual elements of Vk by

V n
k , where n is the largest integer so that V n

k contains a copy of the central series of Fatou

components truncated at n which moves backwards exactly once. Similar to our conventions

above, we denote a single element of Vk as V n
k despite the ambiguity of the notation, and

refer to a collection of elements of Vk as being of the form V n
k . Figure 9 below gives a

schematic illustration of Vk’s for some k ≥ 1.

When k ≤ 0 and z ∈ Ak ∩ Y , then f 1−k(z) ∈ A1 ∩ Y , and therefore z ∈ Ŵ n
n ⊂ A1 for

some Ŵ n
n ∈ Ĉ1. In this case, define V n

k to be the component of (f 1−k)−1(Ŵ n
n ) that contains

z. Doing this for all z, we obtain a countable collection of topological disks which we denote

by Vk. We make the same notational conventions as we do when k ≥ 1; individual elements

are referred to as V n
k and a collection of components is of the form V n

k if each individual

component could be labeled as V n
k . Figure 10 gives a schematic illustration of Vk’s for some

k much smaller than 0.

Let’s turn our attention back to Ŵ n
n ∈ Ĉ1, Ŵ n

n ⊂ ΩA
1 . Ŵ n

n corresponds to one comple-

mentary component of Ω1 in ΩA
1 that contains a central series of Fatou components truncated

at n. Let ωj, j ≤ n denote the Fatou components of j-type that make up this copy of the
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central series. The nth iterate of f conformally maps this copy of the central series inside

Ŵ n
n to the actual central series of Fatou components truncated at n. Therefore elements of

Ĉ2 contained inside of Ŵ n
n are precisely the preimages of the elements of Vj for j ≤ n.

5.2 Refining Away from Bf

In the next two sections, we show that our refining and polynomial hull taking refine-

ments to the coverings in the previous section result in a decreased (s + ε0)-sum of the

diameters of the elements in the coverings. First we need an estimate comparing the diam-

eter of W n
k to the diameter of the component W n

k−1 that it surrounds whenever k ≥ 1. See

Figure 8. The following is inequality (17.1) in [Bis18]. We include the proof to emphasize an

important detail, and because it is the simplest situation that illustrates how Lemma 2.1.2

will be used in the next two sections. Define R0 := diam(Ω0).

Lemma 5.2.1. Let k ≥ 1, α ≥ s. Suppose that W n
k−1,W

n
k are both elements of Cm for some

m, and suppose that W n
k−1 ⊂ Ŵ n

k . Then R may be chosen large enough so that

diam(W n
k−1)α ≤ 1

8
diam(W n

k )α.

Proof. Observe that we have fn(W n
k ) = Ak and fn(W n

k−1) = Ak−1, and fn is conformal on

a topological ball B containing W n
k . Indeed, if n > 1, then fn−1(W n

k ) is contained in some

petal Rj · Ωp
nj

, and the proof of Lemma 3.4.5 says that we may take f to be conformal on

some ball B′ ⊂ Rj · Ωp
nj

which contains fn−1(Ŵ n
k ) such that the modulus of B′ \ fn−1(Ŵ n

k )

is bounded below by some universal constant. Then we can take B to be the appropriate

connected component of (fn−1)−1(B′). If n = 1, we may take B′ = B directly from R1 ·Ωp
n1

.

In either case, by Lemma 2.1.2 there exists a constant C so that

diam(W n
k−1)α

diam(W n
k )α

≤ C
diam(Ak−1)α

diam(Ak)α
≤ C

Rα
k−1

Rα
k

≤ C
1√
Rα

1

.

67



When R is sufficiently large, this proves the lemma.

Figure 5.1: A schematic for Lemma 5.2.1. W n
k and W n

k−1 belong to the same covering Cm,
and W n

k−1 is contained inside of the bounded complementary component of W n
k . When R

is large and k ≥ 1, both components are approximately round and the diameter of W n
k−1 is

controlled in terms of the diameter of W n
k .

The next lemma is more complicated. It says that at any stage, when we refine a

component W n
k for k ≥ 1, we can control the sum of the diameters of the refined components

inside W n
k in terms of the diameter of W n

k . See Figure 8. This Lemma corresponds to

inequality (17.2) in [Bis18]. We will clarify the part of the proof with an estimate related to

the “petal map”; the rest of the proof is the same.

Lemma 5.2.2. Let k ≥ 1, α ≥ s. Suppose that W n
k ∈ Cm with k ≥ 1 for some m. Let

Ŵ n+q
k+q−1 be components of Ĉm+1 contained inside of W n

k . Let W n
k (q) denote the components

of the form Ŵ n+q
k+q−1 for a fixed q ≥ 1. Then

∑
q≥1

∑
Wn
k (q)

diam(Ŵ n+q
k+q−1)α ≤ 1

8
diam(W n

k )α
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Figure 5.2: A schematic for Lemma 5.2.2. W n
k belongs to the covering Cm and is the an-

nulus bounded by the innermost and outermost boundary curves. The filled components
correspond to elements Ŵ n+q

k+q−1 of Ĉm+1 for q = 1, 2, 3, 4. Lemma 5.2.2 says when R is large

enough and k ≥ 1, the α-sum of these components in Ĉm+1 can be controlled in terms of
diam(W n

k )α.

Proof. We have Ŵ n+q
k+q−1 ⊂ W n

k ⊂ A1. Then fn(Ŵ n+q
k+q−1) ⊂ B ⊂ Ak, where B is a ball where

f q is conformal, constructed similarly by a pullback of some ball B′ of as in the proof of

Lemma 5.2.1. By one application of Lemma 2.1.2 for all q ≥ 1 we have

diam(Ŵ n+q
k+q−1)α

diam(W n
k )α

≤ C
diam(fn(Ŵ n+q

k+q−1))α

Rα
k

. (5.2.1)

If q = 1, then fn(Ŵ n+1
k ) belongs to a petal Rk ·Ωp

nk
and diam(fn(Ŵ n+1

k )) = O(R−2
k ) by

Lemma 3.4.2. Therefore for sufficiently large R, (5.2.1) yields

diam(Ŵ n+1
k )α

diam(W n
k )α

≤ C

Rα
k

.

If q ≥ 2, we need to be a little more careful. Another application of Lemma 2.1.2 with
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B where is as above gives

diam(fn(Ŵ n+q
k+q−1))α

diam(B)α
≤ C

diam(fn+q−1(Ŵ n+q
k+q−1))α

diam(B′)α
. (5.2.2)

Then diam(fn+q−1(Ŵ n+q
k+q−1)) = O(R−2

k+q−1) by Lemma 3.4.2. If R is large enough, we combine

(5.2.2) with (5.2.1) to obtain

diam(Ŵ n+q
k+q−1)α

diam(W n
k )α

≤ C

Rα
k

.

The rest of the lemma follows similarly to the proof of Lemma 16.3 on page 449 in [Bis18].

5.3 Refining Close to Bf

Let Ŵ n
k ∈ Ĉm be given. Lemma 5.2.2 only works for components in Ĉm+1 contained in

the Jordan annuli W n
j ∈ Cm with W n

j ⊂ Ŵ n
k and j ≥ 1. However, there are also components

of Cm+1 contained in W n
j ∈ Cm with W n

j ⊂ Ŵ n
k for j < 1 that we must consider as well. The

methods of the above two lemmas do not work as j → −∞. We handle this difficulty by

using a Whitney-type decomposition.

First, we need to recall some notation from Section 11. Let A1 be as above and k ≤ 0.

Then Ak is the component of (f 1−k)−1(A1) that surrounds the origin. Choose z ∈ Y ∩ Ak.

Then f 1−k(z) ∈ A1 ∩ Y , and therefore z ∈ Ŵ n
n ⊂ A1 for some Ŵ n

n ∈ Ĉ1. Then define V n
k to

be the component of (f 1−k)−1(Ŵ n
n ) that contains z. Let Vk denote the set of all components

V n
k contained in A−k obtained in this way. Let V =

⋃
k≤0 Vk. See Figure 5.3.

Lemma 5.3.1. Fix ε0 > 0, and let α ≥ s + ε0 and R0 = diam(Ω0). With the notation as

above, there exists a constant C (depending on ε0) so that for sufficiently large R,

∑
V nk ∈V

diam(V n
k )α ≤ C2NRα

0 .
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Figure 5.3: A schematic for Lemma 5.3.1. We see a portion of Bf , and we see annular
regions representing the innermost and outermost boundaries of Fatou components Ωk for
k ≤ 0. The complimentary components of Ωk contained in ΩA

k are filled in and correspond
to the elements in Vk. Inside each annular region, we have depicted the pieces of Ωk that
make up the collection Q, which is a Whitney-type decomposition of a neighborhood of the
unbounded complementary component of Jf .

Proof. For each Ωk, k ≤ 0, f : ΩA
k → ΩA

k+1 is a 2N -to-1 covering map, so each ΩA
k can

be decomposed into 2N(−k+1) pieces each of which maps conformally onto ΩA
1 minus a slit,

denoted as ΩS
1 := ΩA

1 \ R+. This process breaks ΩA
k into 2N(−k+1) pieces and we denote this

collection by Qk. Define Q = ∪k≤0Qk. We also choose to define Q by the dynamics of f ,

so that each Q ∈ Qk maps onto some Q′ ∈ Qk+1. To accomplish this, it suffices to choose

an appropriate decomposition of ΩA
0 , and then define the decomposition of Ωk for k < 0 by

inverse images, similar to Example 2.2.4. Also see Figure 5.3.

With this procedure, it is not necessarily true that each V n
k is compactly contained in

some Q ∈ Q. Doing the same procedure above, but with ΩA
1 \ R−, we obtain a similar but

“rotated” collection iQ =
⋃
k≤0 iQk. Then each V n

k is compactly contained inside at least
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one element of Qk or iQk.

We claim Q and iQ form Whitney-type decompositions of a neighborhood of the com-

plement of the filled Julia set Kf of the polynomial-like map f . Indeed, (f, Ω̂0, Ω̂1) is a

degree 2N polynomial-like mapping with a connected filled Julia set and is therefore qua-

siconformally conjugate in Ω̂0 \ D to z2N . Moreover, elements of Q correspond under this

conjugacy correspond to a Whitney-type decomposition of a neighborhood of the comple-

ment of B(0, 1), as in Example 2.2.4. The same discussion applies to iQ. It follows from

Lemma 2.2.8 that Q and iQ are Whitney-type decompositions of a neighborhood of the

complement of Kf .

Now, fix some k ≤ 0 and let Q ∈ Qk be given. Let V n
k ∈ Vk be compactly contained

in Q for some n ≥ 1. Then fk+1 conformally maps V n
k onto some Ŵ n

n ∈ Ĉ1, and by Lemma

2.1.2

diam(V n
k )α

diam(Q)α
≤ C

diam(Ŵ n
n )α

diam(Ω1)α
.

Next, for this fixed k ≤ 0, we sum over all components of the form V n
k for any n ≥ 1 that

are compactly contained inside of Q. We denote this collection by V n
k ⊂⊂ Q. We obtain

∑
V nk ⊂⊂Q

diam(V n
k )α

diam(Q)α
≤ C

∑
Ŵn
n∈Ĉ1

diam(Ŵ n
n )α

diam(Ω1)α
≤ C

Rα
1

∑
Ŵn
n∈Ĉ1

diam(Ŵ n
n )α.

For this fixed k ≥ 0, we now sum over all components of the form V n
k for any n ≥ 1 that are

compactly contained in some Q ∈ Qk. Then

∑
Q∈Qk

∑
V nk ⊂⊂Q

diam(V n
k )α ≤ C

Rα
1

∑
Ŵn
n∈Ĉ1

diam(Ŵ n
n )α ·

∑
Q∈Qk

diam(Q)α.

For this fixed k ≤ 0, if we did the procedure above, except this time using each Q′ ∈ iQk we

72



obtain in a similar way

∑
Q′∈iQk

∑
V nk ⊂⊂Q′

diam(V n
n )α ≤ C

Rα
1

∑
Ŵn
n∈Ĉ1

diam(Ŵ n
n )α ·

∑
Q′∈iQk

diam(Q′)α.

Note that every V n
k is compactly contained in at least one element of Q or iQ. So for this

fixed k ≤ 0, we have

∑
V nk ∈Vk

diam(V n
n )α ≤ C

Rα
1

(∑
Q∈Qk

diam(Q)α +
∑

Q′∈iQk

diam(Q′)α

) ∑
Ŵn
n∈Ĉ1

diam(Ŵ n
n )α.

Finally, this estimate is true for all k ≤ 0, so summing over all such k gives us

∑
V nk ∈V

diam(V n
k )α ≤ C

Rα
1

∑
Ŵn
n∈Ĉ1

diam(Ŵ n
n )α ·

(∑
Q∈Q

diam(Q)α +
∑
Q′∈iQ

diam(Q′)α

)
.

Recall thatQ and iQ are Whitney-type decompositions of a neighborhood of the complement

of Kf . Since dimH(Jf ) = dimM(Jf ) = s, and since α ≥ s + ε0, by Lemma 2.2.7, the α-sum

of elements of Q and iQ converges, and the α-sum of elements in Q and iQ is comparable

to the α-sum of elements in Q0. By these observations and Lemma 5.2.2, for all sufficiently

large R, we have

∑
V nk ∈V

diam(V n
n )α ≤ C · 2NRα

0

Rα
1

·
∑

Ŵn
n∈C1

diam(Ŵ n
n )α ≤ C2NRα

0 .

This is exactly what we wanted.

If Ŵ n
k ∈ Ĉm, then some iterate of f maps Ŵ n

k conformally onto Âk. The components

of Ĉm+1 that are contained inside of W n
j ∈ Cm with W n

j ⊂ Ŵ n
k for j < 1 get conformally

mapped onto the elements of V . This allows us to prove the following more general lemma.

Lemma 5.3.2. Fix ε0 > 0 and α ≥ s + ε0. Consider an element of the form Ŵ n
k ∈ Ĉm for

some m. Let W n
j for j ≤ 1 be the elements of Cm which are contained in Ŵ n

k . Let W n
j (q)
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denote the components of the form Ŵ n+q
j+q−1 in Ĉm+1 which are contained in W n

j (we define

W n
j (q) to be empty if j + q − 1 ≤ 0). Then there exists a sufficiently large R so that the

α-sum of all the components Ŵ n+q
j+q−1 ∈ Ĉm+1 contained in W n

j for j < 1 satisfies

∑
j≤0

∞∑
q=1

∑
Wn
j (q)

diam(Ŵ n+q
j+q−1)α ≤ 1

8
diam(W n

1 ). (5.3.1)

Proof. Choose some Ŵ n
k ∈ Ĉm. Then fn(Ŵ n

k ) = Âk, and this mapping is conformal. The

elements being summed in (5.3.1) are mapped conformally onto V . Therefore, by Lemma

2.1.2,

∑
j≤0

∞∑
q=1

∑
Wn
j (q)

diam(Ŵ n+q
j+q−1)α ≤ C

diam(W n
1 )α

diam(A1)α

∑
V nk ∈V

diam(V n
k )α

≤ C · 2N ·Rα
0

Rα
1

· diam(W n
1 )α

≤ 1

8
diam(W n

1 )α,

whenever R is large enough, as desired.

We now have everything we need to prove Theorem 4.2.1.

Proof of Theorem 4.2.1. It is sufficient to show that the (s+ ε0)-sum of the elements in Ĉm+1

is at most half the (s+ε0)-sum of the elements in Ĉm, because then the (s+ε0)-sum in (4.2.1)

is geometric. To accomplish this, it suffices to show that for any Ŵ n
k ∈ Ĉm, the (s+ ε0)-sum

of all the elements of Ĉm+1 contained in Ŵ n
k is at most half of diam(W n

k )s+ε0 .

To that end, let Ŵ n
k ∈ Ĉm be given. Using the notation of the previous lemmas, the

(s+ ε0)-sum of all the elements of Ĉm+1 contained in Ŵ n
k is represented by

I =
∑
j≤k

∑
q≥1

∑
Wn
j (q)

diam(Ŵ n+q
j+q−1)s+ε0 =

k∑
j=1

∑
q≥1

∑
Wn
j (q)

diam(Ŵ n+q
j+q−1)s+ε0

+
∑
j≤0

∑
q≥1

∑
Wn
j (q)

diam(Ŵ n+q
j+q−1)s+ε0 .

74



By Lemma 5.3.2 we have

∑
j≤0

∑
q≥1

∑
Wn
j (q)

diam(Ŵ n+q
j+q−1)s+ε0 ≤ 1

8
diam(W n

1 )s+ε0 .

Combining this with Lemma 5.2.2 to estimate the other sum, we have

I ≤ 1

4

k∑
j=1

diam(W n
j )s+ε0 .

Then repeatedly using Lemma 5.2.1 we can conclude that I ≤ 1
2

diam(W n
k )s+ε0 .

Corollary 5.3.3. Let ε0 > 0. Then for sufficiently large R, we have dimH(Y ) ≤ s+ ε0.

Proof. Each Ĉm is a covering of Y ∩A1. The proof of Theorem 4.2.1 shows that the (s+ ε0)-

sum of all components of all Ĉm’s converges, and therefore the (s+ ε0)-sum of the elements

in Ĉm tends to 0 as m → ∞. Therefore dimH(Y ∩ A1) ≤ s + ε0. The same arguments in

these sections can be modified to show that dimH(Y ∩Ak) ≤ s+ ε0 for all k ∈ Z. Therefore

dimH(Y ) ≤ s+ ε0.

75



Chapter 6

Estimating the Packing Dimension

6.1 Estimating the Packing Dimension

In this section, we prove that the packing dimension of J (f) can be taken to be arbi-

trarily close to its Hausdorff dimension. We do this by estimating the local upper Minkowski

dimension using Theorem 2.2.7. To do this, we will need to show the (s + ε0)-sum of a

Whitney-type decomposition of the complement of the Julia set contained in the neighbor-

hood ΩA
1 is finite. This will require separating the components into wiggly, round, and basin

components, and performing some useful decompositions of these components.

The following result follows from the results of Sullivan in [Sul83] (see Theorems 3 and

4). Recall that if f is polynomial-like, Kf denotes its filled Julia set.

Theorem 6.1.1. Let f : U → V be a hyperbolic polynomial-like map. Then we have

dimP(∂Kf ) = dimH(∂Kf ) = dimM(∂Kf ).

In particular, this result applies to f when viewed as a polynomial-like map. So this result

applies to Jf , the quasicircle Julia set of f .

In order to apply Lemma 2.2.7, we need to decompose the Fatou components of f into

simpler pieces. First we collect the following lemmas proved in Section 20 of [Bis18]. The first

lemma will allow us to break the infinitely connected Fatou components into simpler, annular

regions and still conclude the convergence of a t-sum of a Whitney-type decomposition.
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Lemma 6.1.2. Let Ω be a bounded open set containing disjoint open subsets {Ωj}∞j=1 so that

Ω\
⋃∞
j=1 Ωj has zero Lebesgue measure. Let W (Ω) be a Whitney-type decomposition of Ω and

for each j ≥ 1, let W (Ωj) be a Whitney-type decomposition for Ωj. Then for any t ∈ (1, 2]

we have ∑
Q∈W (Ω)

diam(Q)t ≤
∞∑
j=1

∑
Q∈W (Ωj)

diam(Q)t.

Figure 11 illustrates how Lemma 6.1.2 will be implemented. By Theorem 10.9, the

complementary components of the Fatou component Ω1 contained in ΩA
1 are arranged in

approximately circular rings, which can be connected by an approximate circle. Doing this

for every ring of complementary components, we obtain a countable union of Jordan annuli.

This can be done for every Fatou component ω ⊂ ΩA
1 . We call this procedure necklacing the

Fatou component.

Figure 6.1: A schematic for the necklacing construction. Holes of Ωk in the same circular ring
are connected via approximate circles, and this construction can be repeated for all ω ⊂ ΩA

k

by pulling back this construction. The result is the multiply connected Fatou components
are now decomposed into topological annuli, which can be straightened into round annuli by
a biLipshitz map. Lemmas 14.2 says that it suffices to estimate the critical exponent for a
Whitney-type decomposition of the complement of the “necklaced” Julia set of f .

Lemma 6.1.3. Suppose f : Ω1 → Ω2 is L-biLipschitz, and let W (Ω1) and W (Ω2) be
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Whitney-type decompositions for Ω1 and Ω2. Then for any t ∈ (0, 2], there is a constant

C depending only on L and the constants defining the Whitney-type decompositions so that

we have

1

C

∑
Q′∈W (Ω2)

diam(Q′)t ≤
∑

Q∈W (Ω1)

diam(Q)t ≤ C
∑

Q′∈W (Ω2)

diam(Q′)t.

Proof. The image of W (Ω1) under f is a Whitney-type decomposition by Lemma 2.2.8;

indeed, L-BiLipschitz maps are always L2-quasiconformal. So by Corollary 2.2.10, the t-

sums of W (f(Ω1)) and W (Ω2) are comparable depending on L and the constants defin-

ing the Whitney-type decompositions. If Q ∈ W (Ω1) then by the biLipschitz condition,

L−1 diam(Q) ≤ diam(f(Q)) ≤ L diam(Q). Therefore the t-sums of W (f(Ω1)) and W (Ω1)

are comparable depending on L, and the result follows.

We will use Lemma 6.1.3 to map the decomposed round components onto round annuli,

where we can estimate the t-sum directly.

Lemma 6.1.4. Let A = A(ρ, ρ(1 + δ)) = {z : ρ ≤ |z| ≤ ρ(1 + δ)} be a round annulus with

δ, ρ > 0. Let W (A) denote a Whitney-type decomposition of A. Then for t > 1,

∑
Q∈W (A)

diam(Q)t ≤ O

(
1

1− 2t−1
δt−1ρt

)
.

Proof. We first construct a suitable Whitney-type decomposition of A(1, 1 + δ); see Figure

12. The result will follow from the observations in Section 4 and applying the map z 7→ ρz.

For the given δ > 0 there exists N so that δ ∈ [2−N , 2−N+1). Let

S = {z = re2πiθ : r ∈ (1 + δ/4, 1 + 3δ/4), θ ∈ (0, 2−N)}.

Both diam(S) and dist(S, ∂A) are comparable to 2−N . Then rotating S exactly 2N many

times gives the first layer of the Whitney-type decomposition which we denote by S1. To
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get subsequent layers, we define

S1 = {z = reiθ : R ∈ (R + δ/8, R + δ/4), θ ∈ (0, 2−N−1)}.

S ′1 = {z = re2πiθ : R ∈ (R + 3δ/4, R + 7δ/8), θ ∈ (0, 2−N−1)}.

Then diam(S1) and dist(S1, ∂A) are both comparable to 2−N−1, and the same is true for S ′1.

Then rotating S1 and S ′1 2N+1 many times generates S2, the second layer of the Whitney-type

decomposition. Proceeding inductively, we obtain a Whitney-type decomposition W (A).

The t-sum for the elements in S1 is comparable to 2N(1−t), and the t-sum for the ele-

ments in Sn+1 is comparable to 2(N+n)(1−t). Therefore, the t-sum of W (A) is geometric and

comparable to the quantity

2N(1−t)

1− 21−t .

2N and 1/δ are both comparable so we obtain

∑
Q∈W (A)

diam(Q)t = O

(
1

1− 21−t δ
t−1
j

)
,

as desired.

The following is the fundamental estimate for round Fatou components. See Theorem

20.3 in [Bis18]; we sketch the proof below.

Theorem 6.1.5. W (ωk) be a Whitney-type decomposition for a Fatou component ωk of

k-type, k ≥ 1, and let t ≥ s+ ε0. Then

∑
Q∈W (ωk)

diam(Q)t = O

(
1

1− 21−t diam(ωk)
t

)
.

Proof. First, perform the necklacing decomposition on ωk, decomposing ωk into countably

many Jordan annuli. By Lemma 6.1.2, it suffices to estimate the t-sum of a Whitney-type
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Figure 6.2: An illustration of a Whitney-type decomposition of the annulus described in
Lemma 14.4

decomposition of all of these Jordan annuli. By Lemma 4.2.11 and Lemma 2.1.2, these annuli

are biLipschitz equivalent to round annuli A(r, r(1 + δj)), where r is the diameter of ωk, and

{δj}∞j=1 tends superexponentially to 0. Therefore, by Lemmas 6.1.3 and 6.1.4, we have,

∑
Q∈W (ωk)

diam(Q)t = O

(
1

1− 21−t

∞∑
j=1

δt−1
j diam(ωk)

t

)
= O

(
1

1− 21−t diam(ωk)
t

)
,

as desired.

Next we show how to control the critical exponent for the boundaries of the central

series of Fatou components.

Lemma 6.1.6. Fix some n ≥ 1. Let W (J (f)) be a Whitney-type decomposition of the

complement of J (f), and let W denote the elements of W (J (f)) contained in Bf∪(∪k≤nΩk).

Then ∑
Q∈W

diam(Q)s+ε0 ≤Mn <∞. (6.1.1)
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Proof. We split the (s+ ε0)-sum into two pieces

∑
Q∈W

diam(Q)s+ε0 = I + II + III.

I is the sum of the Q ∈ W contained in Bf , II is the sum of the Q ∈ W contained in round

Ωk, and III is the sum of the Q ∈ W contained in wiggly Ωk.

I converges by definition of the critical exponent. The Q ∈ W which satisfy Q ∈ Bf

form a Whitney-type decomposition of the bounded complementary component of Jf . Since

dimM(Jf ) = s, I converges.

II converges by Lemma 6.1.5.

III requires some work. The necklacing construction pulls back to Ωk for k ≤ 0. Let

Q =
⋃
k≤0Qk be the collection of pieces from Lemma 5.3.1. The boundaries of the elements

Q ∈ Q further decompose the necklaced versions of Ωk into necklaced quadrilateral-type

pieces. By Lemma 6.1.2, it is sufficient to estimate the (s + ε0)-sum III by estimating a

(s+ ε0)-sum for a Whitney-type decomposition W of the complement of all of the necklaced

quadrilateral-type pieces of Ωk.

Choose some Q ∈ Qk (note that k ≤ 0). Lemma 2.1.2 implies that for all S ∈ W ,

S ⊂ Q, we have

diam(S)s+ε0

diam(Q)s+ε0
≤ C

diam(f−k+1(S))s+ε0

diam(Ω1)s+ε0
.

Since f is conformal on Q, the Whitney-type decomposition for the necklaced pieces of Ωk

get mapped to a Whitney-type decomposition for the necklaced ΩS
1 , where ΩS

1 = Ω1 \ R≥0

is the slit version of Ω1. Similar to the proofs of Theorem 6.1.5 and Theorem 6.1.4, the

(s+ ε0)-sum of a Whitney-type decomposition for the necklaced ΩS
1 is finite and comparable

to diam(Ω1)s+ε0 . Summing over all S ⊂ Q and applying Corollary 2.2.10, we have

∑
S∈W,S⊂Q

diam(S)s+ε0 ≤ C

Rs+ε0
1

diam(Q)s+ε0 .

81



Therefore, when summing over all S ∈ W , we sum over all Q ∈ Q and obtain

III ≤
∑
S∈W

diam(S)s+ε0 ≤ C

Rs+ε0
1

∑
Q∈Q

diam(Q)s+ε0 <∞, (6.1.2)

where the sum converges by Lemma 2.2.7.

Let W (ΩA
1 ) denote a Whitney-type decomposition for ΩA

1 \ J (f).

Theorem 6.1.7. The (s+ ε0)-sum of the Whitney-type decomposition W (ΩA
1 ) converges.

Proof. Similar to Lemma 6.1.6, the Fatou components have three types, and we decompose

the (s+ ε0)-sum into three pieces. We write

∑
Q⊂W (ΩA1 )

diam(Q)s+ε0 = I + II + III.

Recalling Definition 4.2.7, I represents the (s + ε0)-sum in basin Fatou components, II

represents the (s + ε0)-sum in round components, and III represents the (s + ε0)-sum in

wiggly components.

First we estimate I. Let B′f ⊂ ΩA
1 be a basin. Then there exists a positive integer m

and a unique Fatou component ω1 of 1-type so that B′f ⊂ ω̂1 and fm : ω̂1 → Ω̂1 is conformal.

So for all Q ⊂ B′f , by Lemma 2.1.2,

∑
Q∈B′f

diam(Q)s+ε0 ≤ C diam(ω1)s+ε0
∑

fm(Q)∈Bf

diam(fm(Q))s+ε0 .

By Corollary 2.2.10, the sum above is comparable to an (s+ε0)-sum of a fixed Whitney-type

decomposition for Bf , which we discussed converges in the proof of Lemma 14.6. Therefore,

by summing over every basin B′f ⊂ Ω1, we can apply Theorem 4.2.1 and conclude that

I ≤ C
∑
ω1⊂ΩA1

diam(ω1)s+ε0 <∞.
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II converges by Theorem 6.1.5 and Theorem 4.2.1.

Finally we estimate III. For every component ω of 1-type contained in ΩA
1 , ω̂ contains

a unique sequence of components ωk of k-type for k ≤ 0 so that there exists a positive integer

m so that fm(ω) = Ω1, fm(ωk) = Ωk, and fm is conformal on ω̂. Let ω be of 1-type and

ωk be its associated sequence of wiggly components. By Lemma 6.1.6, for some fixed choice

of Whitney-type decomposition, the convergent sum in (6.1.2) is bounded above by some

constant M1, defined in (6.1.1). Therefore, we may apply Corollary 2.2.10 and Lemma 2.1.2

to conclude that ∑
k≤0

∑
Q⊂ωk

diam(Q)s+ε0 ≤ C ·M1 · diam(ω)s+ε0 . (6.1.3)

Again, Theorem 4.2.1 allows us to use (6.1.3) to conclude that III <∞.

Corollary 6.1.8. The packing dimension of J (f) is at most s+ ε0.

Proof. By Theorem 6.1.7, the critical exponent for J (f) ∩ ΩA
1 is less than or equal to s +

ε0. Since J (f) has zero Lebesgue measure, Theorem 2.2.7 says that the upper Minkowski

dimension of J (f)∩ΩA
1 is also less than or equal to s+ ε0. By Theorem 1.2 of [RS05], since

f has no exceptional values, the upper Minkowski dimension of J (f) ∩ ΩA
1 coincides with

the packing dimension of J (f), so that dimP(J(f)) ≤ s+ ε0.
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[PU10] Feliks Przytycki and Mariusz Urbański. Conformal fractals: ergodic theory meth-
ods, volume 371 of London Mathematical Society Lecture Note Series. Cambridge
University Press, Cambridge, 2010.

[RGS17] Lasse Rempe-Gillen and Dave Sixsmith. Hyperbolic entire functions and the
Eremenko-Lyubich class: class B or not class B? Math. Z., 286(3-4):783–800,
2017.

[RS05] P. J. Rippon and G. M. Stallard. Dimensions of Julia sets of meromorphic func-
tions. J. London Math. Soc. (2), 71(3):669–683, 2005.

[RS12] P. J. Rippon and G. M. Stallard. Fast escaping points of entire functions. Proc.
Lond. Math. Soc. (3), 105(4):787–820, 2012.

[Sch10] Dierk Schleicher. Dynamics of entire functions. In Holomorphic dynamical systems,
volume 1998 of Lecture Notes in Math., pages 295–339. Springer, Berlin, 2010.

[Shi98] Mitsuhiro Shishikura. The Hausdorff dimension of the boundary of the Mandelbrot
set and Julia sets. Ann. of Math. (2), 147(2):225–267, 1998.

[Sta91] Gwyneth M. Stallard. The Hausdorff dimension of Julia sets of entire functions.
Ergodic Theory Dynam. Systems, 11(4):769–777, 1991.

[Sta96] Gwyneth M. Stallard. The Hausdorff dimension of Julia sets of entire functions.
II. Math. Proc. Cambridge Philos. Soc., 119(3):513–536, 1996.

[Sta97] Gwyneth M. Stallard. The Hausdorff dimension of Julia sets of entire functions.
III. Math. Proc. Cambridge Philos. Soc., 122(2):223–244, 1997.

[Sta00] Gwyneth M. Stallard. The Hausdorff dimension of Julia sets of entire functions.
IV. J. London Math. Soc. (2), 61(2):471–488, 2000.

[Sta08] Gwyneth M. Stallard. Dimensions of Julia sets of transcendental meromorphic
functions. In Transcendental dynamics and complex analysis, volume 348 of London
Math. Soc. Lecture Note Ser., pages 425–446. Cambridge Univ. Press, Cambridge,
2008.

[Ste70] Elias M. Stein. Singular integrals and differentiability properties of functions.
Princeton Mathematical Series, No. 30. Princeton University Press, Princeton,
N.J., 1970.

[Sul83] Dennis Sullivan. Conformal dynamical systems. In Geometric dynamics (Rio de
Janeiro, 1981), volume 1007 of Lecture Notes in Math., pages 725–752. Springer,
Berlin, 1983.

[Var11] Dror Varolin. Riemann surfaces by way of complex analytic geometry, volume 125
of Graduate Studies in Mathematics. American Mathematical Society, Providence,
RI, 2011.

[Zhe06] Jian-Hua Zheng. On multiply-connected Fatou components in iteration of mero-
morphic functions. J. Math. Anal. Appl., 313(1):24–37, 2006.

85


	List of Figures
	Acknowledgments
	Introduction
	Statement of Results
	Outline of the Dissertation
	Notation

	Background
	Conformal, Quasiconformal, and Polynomial-Like Mappings
	Dimension and Whitney-type Decompositions

	Construction and Basic Properties of the function f
	Defining f
	Mapping Properties of f Far from the Origin
	Mapping Properties of f near the Origin
	Branched Covering Map Properties of f

	Structure of the Fatou and Julia set of f.
	Fatou Components with C1 Boundary
	A Detailed Description of the Dynamics of f

	The Proof of Theorem 4.2.1.
	A Labeling System for Complementary Components
	Refining Away from Bf
	Refining Close to Bf

	Estimating the Packing Dimension
	Estimating the Packing Dimension
	References


