Mirror Symmetry for Gromov-Witten Invariants of a Quintic Threefold

Aleksey Zinger
Stony Brook University

December 6, 2007

From String Theory to Gromov-Witten Theory

Mirror Symmetry Principle of String Theory produces predictions for GW-Invariants

- especially for Calabi-Yau 3-fold
- especially for quintic 3-fold $X_{5} \subset \mathbb{P}^{4}$

From String Theory to Gromov-Witten Theory

Mirror Symmetry Principle of String Theory produces predictions for GW-Invariants

- especially for Calabi-Yau 3-fold
- especially for quintic 3-fold $X_{5} \subset \mathbb{P}^{4}$

From String Theory to Gromov-Witten Theory

Mirror Symmetry Principle of String Theory produces predictions for GW-Invariants

- especially for Calabi-Yau 3-fold
- especially for quintic 3-fold $X_{5} \subset \mathbb{P}^{4}$

From String Theory to Gromov-Witten Theory

Mirror Symmetry Principle of String Theory produces predictions for GW-Invariants

- especially for Calabi-Yau 3-fold
- especially for quintic 3-fold $X_{5} \subset \mathbb{P}^{4}$ $X_{5}=$ degree 5 hypersurface in \mathbb{P}^{4}

Some Predictions of String Theory

- Candelas-de la Ossa-Green-Parkes'91: $g=0$ for X_{5}
- Bershadsky-Cecotti-Ooguri-Vafa'93 (BCOV): $g=1$ for X_{5}
- Huang-Klemm-Quackenbush'06: $g \leq 52$ for X_{5}
- Klemm-Pandharipande'07: $g=1$ for X_{6}

Some Predictions of String Theory

- Candelas-de la Ossa-Green-Parkes'91: $g=0$ for X_{5}
- Bershadsky-Cecotti-Ooguri-Vafa'93 (BCOV): $g=1$ for X_{5}
- Huang-Klemm-Quackenbush'06: $g \leq 52$ for X_{5}
- Klemm-Pandharipande'07: $g=1$ for X_{6}

Some Predictions of String Theory

- Candelas-de la Ossa-Green-Parkes'91: $g=0$ for X_{5}
- Bershadsky-Cecotti-Ooguri-Vafa'93 (BCOV): $g=1$ for X_{5}
- Huang-Klemm-Quackenbush'06: $g \leq 52$ for X_{5}
- Klemm-Pandharipande'07: $g=1$ for X_{6}

Some Predictions of String Theory

- Candelas-de la Ossa-Green-Parkes'91: $g=0$ for X_{5}
- Bershadsky-Cecotti-Ooguri-Vafa'93 (BCOV): $g=1$ for X_{5}
- Huang-Klemm-Quackenbush'06: $g \leq 52$ for X_{5}
- Klemm-Pandharipande'07: $g=1$ for X_{6}

Some Predictions of String Theory

- Candelas-de la Ossa-Green-Parkes'91: $g=0$ for X_{5}
- Bershadsky-Cecotti-Ooguri-Vafa'93 (BCOV): $g=1$ for X_{5}
- Huang-Klemm-Quackenbush'06: $g \leq 52$ for X_{5}
- Klemm-Pandharipande'07: $g=1$ for X_{6} $X_{6}=$ degree 6 hypersurface in \mathbb{P}^{5}

Mirror Symmetry Verifications

Theorem (Givental'96, Lian-Liu-Yau'97,........~'00) $g=0$ predict. holds for X_{5}; generalizes to other hypersurfaces

Mirror Symmetry Verifications

> Theorem (Givental'96, Lian-Liu-Yau'97,........~'00)
> $g=0$ predict. holds for X_{5}; generalizes to other hypersurfaces

Theorem (Z.'07)
$g=1$ predictions hold for X_{5}, X_{6}; generalize to X_{n}
$X_{n}=$ degree n hypersurface in $\mathbb{P}^{n-1}: c_{1}(X)=0$

Mirror Symmetry Verifications

Theorem (Givental'96, Lian-Liu-Yau'97,........~'00)

$g=0$ predict. holds for X_{5}; generalizes to other hypersurfaces

Theorem (Z.'07)

$g=1$ predictions hold for X_{5}, X_{6}; generalize to X_{n}
$X_{n}=$ degree n hypersurface in $\mathbb{P}^{n-1}: c_{1}(X)=0$

A Curious Identity for $n=3$

- $X_{3}=$ cubic in \mathbb{P}^{2}, smooth curve of genus 1
- genus 1 GWs \longleftrightarrow counts of unbranched covers
- comparison with $n=3$ case of $g=1$ thm gives identity for
- With $Q \equiv q \cdot e^{\mathbb{I}_{1}(q) / \mathbb{I}_{0}(q)}$,

A Curious Identity for $n=3$

- $X_{3}=$ cubic in \mathbb{P}^{2}, smooth curve of genus 1
- genus 1 GWs \longleftrightarrow counts of unbranched covers
- comparison with $n=3$ case of $g=1$ thm gives identity for
- With $Q \equiv q \cdot e^{\mathbb{I}_{1}(q) / \mathbb{I}_{0}(q)}$,

A Curious Identity for $n=3$

- $X_{3}=$ cubic in \mathbb{P}^{2}, smooth curve of genus 1
- genus 1 GWs \longleftrightarrow counts of unbranched covers
- comparison with $n=3$ case of $g=1$ thm gives identity for

- With $Q \equiv q \cdot e^{\mathbb{I}_{1}(q) / \mathbb{I}_{0}(q)}$

A Curious Identity for $n=3$

- $X_{3}=$ cubic in \mathbb{P}^{2}, smooth curve of genus 1
- genus 1 GWs \longleftrightarrow counts of unbranched covers
- comparison with $n=3$ case of $g=1$ thm gives identity for

- With $Q \equiv q \cdot e^{\mathbb{I}_{1}(q) / \mathbb{I}_{0}(q)}$,

A Curious Identity for $n=3$

- $X_{3}=$ cubic in \mathbb{P}^{2}, smooth curve of genus 1
- genus 1 GWs \longleftrightarrow counts of unbranched covers
- comparison with $n=3$ case of $g=1$ thm gives identity for

$$
\mathbb{I}_{0}(q) \equiv 1+\sum_{d=1}^{\infty} q^{d} \frac{(3 d)!}{(d!)^{3}}, \quad \mathbb{I}_{1}(q) \equiv \sum_{d=1}^{\infty} q^{d}\left(\frac{(3 d)!}{(d!)^{3}} \sum_{r=d+1}^{3 d} \frac{3}{r}\right)
$$

- With $Q \equiv q \cdot e^{\mathbb{I}_{1}(q) / \mathbb{I}_{0}(q)}$

A Curious Identity for $n=3$

- $X_{3}=$ cubic in \mathbb{P}^{2}, smooth curve of genus 1
- genus 1 GWs \longleftrightarrow counts of unbranched covers
- comparison with $n=3$ case of $g=1$ thm gives identity for

$$
\mathbb{I}_{0}(q) \equiv 1+\sum_{d=1}^{\infty} q^{d} \frac{(3 d)!}{(d!)^{3}}, \quad \mathbb{I}_{1}(q) \equiv \sum_{d=1}^{\infty} q^{d}\left(\frac{(3 d)!}{(d!)^{3}} \sum_{r=d+1}^{3 d} \frac{3}{r}\right)
$$

- With $Q \equiv q \cdot e^{\mathbb{I}_{1}(q) / \mathbb{I}_{0}(q)}$,

A Curious Identity for $n=3$

- $X_{3}=$ cubic in \mathbb{P}^{2}, smooth curve of genus 1
- genus 1 GWs \longleftrightarrow counts of unbranched covers
- comparison with $n=3$ case of $g=1$ thm gives identity for

$$
\mathbb{I}_{0}(q) \equiv 1+\sum_{d=1}^{\infty} q^{d} \frac{(3 d)!}{(d!)^{3}}, \quad \mathbb{I}_{1}(q) \equiv \sum_{d=1}^{\infty} q^{d}\left(\frac{(3 d)!}{(d!)^{3}} \sum_{r=d+1}^{3 d} \frac{3}{r}\right)
$$

- With $Q \equiv q \cdot e^{\mathbb{I}_{1}(q) / \mathbb{I}_{0}(q)}$,

$$
q^{3}(1-27 q) \mathbb{I}_{0}(q)^{12}=Q^{3} \prod_{d=1}^{\infty}\left(1-Q^{3 d}\right)^{24}
$$

Approach to GWs of X_{n}

Step 1: relate GWs of $X_{n} \subset \mathbb{P}^{n-1}$ to GWs of \mathbb{P}^{n-1} Step 2: use $\left(\mathbb{C}^{*}\right)^{n}$-action on \mathbb{P}^{n-1} to compute each GW by localization
 Step 3: find some degree-recursive feature(s) to compute all GWs for fixed genus

Approach to GWs of X_{n}

Step 1: relate GWs of $X_{n} \subset \mathbb{P}^{n-1}$ to GWs of \mathbb{P}^{n-1}
 Step 2: use $\left(\mathbb{C}^{*}\right)^{n}$-action on \mathbb{P}^{n-1} to compute each GW by localization
 Step 3: find some degree-recursive feature(s) to compute all GWs for fixed genus

Approach to GWs of X_{n}

Step 1: relate GWs of $X_{n} \subset \mathbb{P}^{n-1}$ to GWs of \mathbb{P}^{n-1} Step 2: use $\left(\mathbb{C}^{*}\right)^{n}$-action on \mathbb{P}^{n-1} to compute each GW by localization
Step 3: find some degree-recursive feature(s) to compute all GWs for fixed genus

Approach to GWs of X_{n}

Step 1: relate GWs of $X_{n} \subset \mathbb{P}^{n-1}$ to GWs of \mathbb{P}^{n-1}
Step 2: use $\left(\mathbb{C}^{*}\right)^{n}$-action on \mathbb{P}^{n-1} to compute each GW by localization
Step 3: find some degree-recursive feature(s) to compute all GWs for fixed genus

Base Spaces

- $\overline{\mathfrak{M}}_{g, k}\left(\mathbb{P}^{n-1}, d\right)=\left\{\right.$ deg. d genus- $g k$-pointed maps to $\left.\mathbb{P}^{n-1}\right\}$
- $\overline{\mathfrak{M}}_{1, k}^{0}\left(\mathbb{P}^{n-1}, d\right) \subset \overline{\mathfrak{M}}_{1, k}\left(\mathbb{P}^{n-1}, d\right)$ main irred. component
- $\widetilde{\mathfrak{M}}_{g, k}^{0}\left(\mathbb{P}^{n-1}, d\right) \longrightarrow \overline{\mathfrak{M}}_{g, k}^{0}\left(\mathbb{P}^{n-1}, d\right)$ natural desingularization
- $\mathrm{ev}_{i}: \widetilde{\mathfrak{M}}_{g, k}^{0}\left(\mathbb{P}^{n-1}, d\right) \longrightarrow \mathbb{P}^{n-1}$ evaluation at i th marked pt

Base Spaces

- $\overline{\mathfrak{M}}_{g, k}\left(\mathbb{P}^{n-1}, d\right)=\left\{\right.$ deg. d genus- $g k$-pointed maps to $\left.\mathbb{P}^{n-1}\right\}$
- $\overline{\mathfrak{M}}_{1, k}^{0}\left(\mathbb{P}^{n-1}, d\right) \subset \overline{\mathfrak{M}}_{1, k}\left(\mathbb{P}^{n-1}, d\right)$ main irred. component closure of $\left\{\left[u: \Sigma \longrightarrow \mathbb{P}^{n-1}\right]: \Sigma\right.$ is smooth $\}$
- $\widetilde{\mathfrak{M}}_{g, k}^{0}\left(\mathbb{P}^{n-1}, d\right) \longrightarrow \overline{\mathfrak{M}}_{g, k}^{0}\left(\mathbb{P}^{n-1}, d\right)$ natural desingularization
- $\mathrm{ev}_{i}: \widetilde{\mathfrak{M}}_{g, k}^{0}\left(\mathbb{P}^{n-1}, d\right) \longrightarrow \mathbb{P}^{n-1}$ evaluation at i th marked pt

Base Spaces

- $\overline{\mathfrak{M}}_{g, k}\left(\mathbb{P}^{n-1}, d\right)=\left\{\right.$ deg. d genus- $g k$-pointed maps to $\left.\mathbb{P}^{n-1}\right\}$
- $\overline{\mathfrak{M}}_{1, k}^{0}\left(\mathbb{P}^{n-1}, d\right) \subset \overline{\mathfrak{M}}_{1, k}\left(\mathbb{P}^{n-1}, d\right)$ main irred. component closure of $\left\{\left[u: \Sigma \longrightarrow \mathbb{P}^{n-1}\right]: \Sigma\right.$ is smooth $\}$
- $\widetilde{\mathfrak{M}}_{g, k}^{0}\left(\mathbb{P}^{n-1}, d\right) \longrightarrow \overline{\mathfrak{N}}_{g, k}^{0}\left(\mathbb{P}^{n-1}, d\right)$ natural desingularization
- $\mathrm{ev}_{i}: \widetilde{\mathfrak{M}}_{g, k}^{0}\left(\mathbb{P}^{n-1}, d\right) \longrightarrow \mathbb{P}^{n-1}$ evaluation at i th marked pt

Base Spaces

- $\overline{\mathfrak{M}}_{g, k}\left(\mathbb{P}^{n-1}, d\right)=\left\{\right.$ deg. d genus- $g k$-pointed maps to $\left.\mathbb{P}^{n-1}\right\}$
- $\overline{\mathfrak{M}}_{1, k}^{0}\left(\mathbb{P}^{n-1}, d\right) \subset \overline{\mathfrak{M}}_{1, k}\left(\mathbb{P}^{n-1}, d\right)$ main irred. component closure of $\left\{\left[u: \Sigma \longrightarrow \mathbb{P}^{n-1}\right]: \Sigma\right.$ is smooth $\}$
- $\widetilde{\mathfrak{M}}_{g, k}^{0}\left(\mathbb{P}^{n-1}, d\right) \longrightarrow \overline{\mathfrak{M}}_{g, k}^{0}\left(\mathbb{P}^{n-1}, d\right)$ natural desingularization $\widetilde{M}_{0, k}^{0}\left(\mathbb{P}^{n-1}, d\right)=\bar{M}_{0, k}\left(\mathbb{P}^{n-1}, d\right)$
- $\mathrm{ev}_{i}: \widetilde{\mathfrak{M}}_{g, k}^{0}\left(\mathbb{P}^{n-1}, d\right) \longrightarrow \mathbb{P}^{n-1}$ evaluation at i th marked pt

Base Spaces

- $\overline{\mathfrak{M}}_{g, k}\left(\mathbb{P}^{n-1}, d\right)=\left\{\right.$ deg. d genus- $g k$-pointed maps to $\left.\mathbb{P}^{n-1}\right\}$
- $\overline{\mathfrak{M}}_{1, k}^{0}\left(\mathbb{P}^{n-1}, d\right) \subset \overline{\mathfrak{M}}_{1, k}\left(\mathbb{P}^{n-1}, d\right)$ main irred. component closure of $\left\{\left[u: \Sigma \longrightarrow \mathbb{P}^{n-1}\right]: \Sigma\right.$ is smooth $\}$
- $\widetilde{\mathfrak{M}}_{g, k}^{0}\left(\mathbb{P}^{n-1}, d\right) \longrightarrow \overline{\mathfrak{M}}_{g, k}^{0}\left(\mathbb{P}^{n-1}, d\right)$ natural desingularization $\widetilde{\mathfrak{M}}_{0, k}^{0}\left(\mathbb{P}^{n-1}, d\right)=\overline{\mathfrak{M}}_{0, k}\left(\mathbb{P}^{n-1}, d\right)$
- $\mathrm{ev}_{i}: \widetilde{\mathfrak{N}}_{\mathrm{g}, \mathrm{k}}^{0}\left(\mathbb{P}^{n-1}, d\right) \longrightarrow \mathbb{P}^{n-1}$ evaluation at ith marked pt

Base Spaces

- $\overline{\mathfrak{M}}_{g, k}\left(\mathbb{P}^{n-1}, d\right)=\left\{\right.$ deg. d genus- $g k$-pointed maps to $\left.\mathbb{P}^{n-1}\right\}$
- $\overline{\mathfrak{M}}_{1, k}^{0}\left(\mathbb{P}^{n-1}, d\right) \subset \overline{\mathfrak{M}}_{1, k}\left(\mathbb{P}^{n-1}, d\right)$ main irred. component closure of $\left\{\left[u: \Sigma \longrightarrow \mathbb{P}^{n-1}\right]: \Sigma\right.$ is smooth $\}$
- $\widetilde{\mathfrak{M}}_{g, k}^{0}\left(\mathbb{P}^{n-1}, d\right) \longrightarrow \overline{\mathfrak{M}}_{g, k}^{0}\left(\mathbb{P}^{n-1}, d\right)$ natural desingularization $\widetilde{\mathfrak{M}}_{0, k}^{0}\left(\mathbb{P}^{n-1}, d\right)=\overline{\mathfrak{M}}_{0, k}\left(\mathbb{P}^{n-1}, d\right)$
- $\mathrm{ev}_{i}: \widetilde{\mathfrak{M}}_{g, k}^{0}\left(\mathbb{P}^{n-1}, d\right) \longrightarrow \mathbb{P}^{n-1}$ evaluation at ith marked pt $\left[u: \Sigma \longrightarrow \mathbb{P}^{n-1} ; x_{1}, \ldots, x_{k}\right] \longrightarrow u\left(x_{i}\right)$

From $X_{n} \subset \mathbb{P}^{n-1}$ to \mathbb{P}^{n-1}

$$
\begin{gathered}
\mathcal{L} \equiv \mathcal{O}(n) \\
\pi \\
\forall \\
\mathbb{P}^{n-1}
\end{gathered}
$$

$g=1$ Hyperplane Property: sufficient to compute

From $X_{n} \subset \mathbb{P}^{n-1}$ to \mathbb{P}^{n-1}

$g=1$ Hyperplane Property: sufficient to compute

From $X_{n} \subset \mathbb{P}^{n-1}$ to \mathbb{P}^{n-1}

$$
\begin{aligned}
& \widetilde{\mathcal{V}}_{g, d} \equiv \widetilde{\mathfrak{M}}_{g, k}^{0}(\mathcal{L}, d) \\
& \downarrow \tilde{\pi} \\
& \widetilde{\mathfrak{M}}_{g, k}^{0}\left(\mathbb{P}^{n-1}, d\right)
\end{aligned}
$$

$g=1$ Hyperplane Property: sufficient to compute

From $X_{n} \subset \mathbb{P}^{n-1}$ to \mathbb{P}^{n-1}

$$
\left.\right|_{\pi} ^{\mathcal{L}} \equiv \mathcal{O}(n)
$$

$$
\begin{aligned}
\widetilde{\mathcal{V}}_{g, d} & \equiv \widetilde{\mathfrak{M}}_{g, k}^{0}(\mathcal{L}, d) \\
& \downarrow_{\tilde{\pi}}
\end{aligned}
$$

$$
\widetilde{\mathfrak{M}}_{g, k}^{0}\left(\mathbb{P}^{n-1}, d\right)
$$

$g=1$ Hyperplane Property: sufficient to compute

$x \in H^{2}\left(\mathbb{P}^{n-1}\right)$ hyperplane class

From $X_{n} \subset \mathbb{P}^{n-1}$ to \mathbb{P}^{n-1}

$$
\underset{\downarrow}{\mathcal{L}} \equiv \mathcal{O}(n)
$$

$$
\begin{aligned}
\widetilde{\mathcal{V}}_{g, d} & \equiv \widetilde{\mathfrak{M}}_{g, k}^{0}(\mathcal{L}, d) \\
& \downarrow_{\tilde{\pi}}
\end{aligned}
$$

$$
\widetilde{\mathfrak{M}}_{g, k}^{0}\left(\mathbb{P}^{n-1}, d\right)
$$

$g=1$ Hyperplane Property: sufficient to compute

$$
F(Q) \equiv \sum_{d=1}^{\infty} Q^{d} \int_{\widetilde{M}_{1,1}^{0}\left(\mathbb{P}^{n-1}, d\right)} e\left(\widetilde{\mathcal{V}}_{1, d}\right) \operatorname{ev}_{1}^{*} x
$$

$x \in H^{2}\left(\mathbb{P}^{n-1}\right)$ hyperplane class

From $X_{n} \subset \mathbb{P}^{n-1}$ to \mathbb{P}^{n-1}

$$
\underset{\substack{\mathcal{L}}}{\mathbb{P}^{n-1}}
$$

$$
\begin{aligned}
& \widetilde{\mathcal{V}}_{g, d} \equiv \widetilde{\mathfrak{M}}_{g, k}^{0}(\mathcal{L}, d) \\
& \mid \tilde{\pi} \\
& \widetilde{\mathfrak{M}}_{g, k}^{0}\left(\mathbb{P}^{n-1}, d\right)
\end{aligned}
$$

$g=1$ Hyperplane Property: sufficient to compute

$$
F(Q) \equiv \sum_{d=1}^{\infty} Q^{d} \int_{\widetilde{\mathfrak{M}}_{1,1}^{0}\left(\mathbb{P}^{n-1}, d\right)} e\left(\widetilde{\mathcal{V}}_{1, d}\right) \operatorname{ev}_{1}^{*} x
$$

$x \in H^{2}\left(\mathbb{P}^{n-1}\right)$ hyperplane class

Torus Actions

- $\mathbb{T} \equiv\left(\mathbb{C}^{*}\right)^{n}$ acts on \mathbb{P}^{n-1} (with n fixed pts)
$\bullet \Longrightarrow$ on $\mathcal{V}_{g, d} \longrightarrow \mathfrak{M}_{g, k}^{0}\left(\mathbb{P}^{n-1}, d\right)$ by composition - \Longrightarrow Atiyah-Bott Localization Thm reduces

Torus Actions

- $\mathbb{T} \equiv\left(\mathbb{C}^{*}\right)^{n}$ acts on \mathbb{P}^{n-1} (with n fixed pts)
- \Longrightarrow on $\widetilde{\mathcal{V}}_{g, d} \longrightarrow \widetilde{\mathfrak{M}}_{g, k}^{0}\left(\mathbb{P}^{n-1}, d\right)$ by composition with simple fixed loci
- \Longrightarrow Atiyah-Bott Localization Thm reduces

Torus Actions

- $\mathbb{T} \equiv\left(\mathbb{C}^{*}\right)^{n}$ acts on \mathbb{P}^{n-1} (with n fixed pts)
- \Longrightarrow on $\widetilde{\mathcal{V}}_{g, d} \longrightarrow \widetilde{\mathfrak{M}}_{g, k}^{0}\left(\mathbb{P}^{n-1}, d\right)$ by composition with simple fixed loci

- \Longrightarrow Atiyah-Bott Localization Thm reduces

Torus Actions

- $\mathbb{T} \equiv\left(\mathbb{C}^{*}\right)^{n}$ acts on \mathbb{P}^{n-1} (with n fixed pts)
- \Longrightarrow on $\widetilde{\mathcal{V}}_{g, d} \longrightarrow \widetilde{\mathfrak{M}}_{g, k}^{0}\left(\mathbb{P}^{n-1}, d\right)$ by composition with simple fixed loci
- \Longrightarrow Atiyah-Bott Localization Thm reduces

$$
\int_{\widetilde{\mathfrak{M}}_{g, k}^{0}\left(\mathbb{P}^{n-1}, d\right)} e\left(\mathcal{V}_{g, d}\right) \eta
$$

to integrals over fixed loci $\rightsquigarrow \sum_{\text {graphs }}$

Summing over all Genus 1 Graphs

- split genus 1 graphs into many genus 0 graphs at special vertex
- make use of good properties of genus 0 numbers to eliminate infinite sums
- extract non-equivariant part of elements in $H_{*}^{*}\left(\mathbb{P}^{n-1}\right)$

Summing over all Genus 1 Graphs

- split genus 1 graphs into many genus 0 graphs at special vertex
- make use of good properties of genus 0 numbers to eliminate infinite sums
- extract non-equivariant part of elements in $H_{\mathbb{T}}^{*}\left(\mathbb{P}^{n-1}\right)$

Summing over all Genus 1 Graphs

- split genus 1 graphs into many genus 0 graphs at special vertex
- make use of good properties of genus 0 numbers to eliminate infinite sums
- extract non-equivariant part of elements in $H_{\mathbb{T}}^{*}\left(\mathbb{P}^{n-1}\right)$

Genus 0 Data

What we know

- $H_{\mathbb{T}}^{*}\left(\mathbb{P}^{n-1}\right)=\mathbb{Q}\left[x, \alpha_{1}, \ldots, \alpha_{n}\right] / \prod_{k}\left(x-\alpha_{k}\right)$ - With $\mathrm{ev}_{1}, \mathrm{ev}_{2}: \overline{\mathfrak{M}}_{0,2}\left(\mathbb{P}^{n-1}, d\right) \longrightarrow \mathbb{P}^{n-1}$,

Genus 0 Data

What we know

- $H_{\mathbb{T}}^{*}\left(\mathbb{P}^{n-1}\right)=\mathbb{Q}\left[x, \alpha_{1}, \ldots, \alpha_{n}\right] / \prod_{k}\left(x-\alpha_{k}\right)$ - With $\mathrm{ev}_{1}, \mathrm{ev}_{2}: \overline{\mathfrak{M}}_{0,2}\left(\mathbb{P}^{n-1}, d\right)$

Genus 0 Data

What we know

- $H_{\mathbb{T}}^{*}\left(\mathbb{P}^{n-1}\right)=\mathbb{Q}\left[x, \alpha_{1}, \ldots, \alpha_{n}\right] / \prod_{k}\left(x-\alpha_{k}\right)$
- With $\mathrm{ev}_{1}, \mathrm{ev}_{2}: \overline{\mathfrak{M}}_{0,2}\left(\mathbb{P}^{n-1}, d\right) \longrightarrow \mathbb{P}^{n-1}$,
- Givental'96:
- Z'07:

Genus 0 Data

What we know

- $H_{\mathbb{T}}^{*}\left(\mathbb{P}^{n-1}\right)=\mathbb{Q}\left[x, \alpha_{1}, \ldots, \alpha_{n}\right] / \prod_{k}\left(x-\alpha_{k}\right)$
- With $\mathrm{ev}_{1}, \mathrm{ev}_{2}: \overline{\mathfrak{M}}_{0,2}\left(\mathbb{P}^{n-1}, d\right) \longrightarrow \mathbb{P}^{n-1}$,
- Givental'96:

$$
\mathcal{Z}^{*}(\hbar, x, Q) \equiv \sum_{d=1}^{\infty} Q^{d} \operatorname{ev}_{1 *}\left(\frac{e\left(\mathcal{V}_{0, d}\right)}{\hbar-\psi_{1}}\right) \in \mathbb{Q}(x, \alpha)\left[\left[\hbar^{-1}, Q\right]\right]
$$

- Z'07:

Genus 0 Data

What we know

- $H_{\mathbb{T}}^{*}\left(\mathbb{P}^{n-1}\right)=\mathbb{Q}\left[x, \alpha_{1}, \ldots, \alpha_{n}\right] / \prod_{k}\left(x-\alpha_{k}\right)$
- With $\mathrm{ev}_{1}, \mathrm{ev}_{2}: \overline{\mathfrak{M}}_{0,2}\left(\mathbb{P}^{n-1}, d\right) \longrightarrow \mathbb{P}^{n-1}$,
- Givental'96:

$$
\mathcal{Z}^{*}(\hbar, x, Q) \equiv \sum_{d=1}^{\infty} Q^{d} \operatorname{ev}_{1 *}\left(\frac{e\left(\mathcal{V}_{0, d}\right)}{\hbar-\psi_{1}}\right) \in \mathbb{Q}(x, \alpha)\left[\left[\hbar^{-1}, Q\right]\right]
$$

- Z'07:

$$
\widetilde{\mathcal{Z}}^{*} \equiv \frac{1}{2 \hbar_{1} \hbar_{2}} \sum_{d=1}^{\infty} Q^{d}\left\{\mathrm{ev}_{1} \times \mathrm{ev}_{2}\right\}_{*}\left(\frac{e\left(\mathcal{V}_{0, d}\right)}{\left(\hbar_{1}-\psi_{1}\right)\left(\hbar_{2}-\psi_{2}\right)}\right)
$$

Good Properties of \mathcal{Z}^{*}

$\mathcal{Z}_{i}^{*} \equiv \mathcal{Z}\left(X=\alpha_{i}\right) \quad$ satisfies: for all $a \geq 0$

$\mathfrak{R}_{\hbar=0} \equiv$ residue at $\hbar=0$

Good Properties of \mathcal{Z}^{*}

$$
\mathcal{Z}_{i}^{*} \equiv \mathcal{Z}\left(x=\alpha_{i}\right) \quad \text { satisfies: for all } a \geq 0
$$

$$
\begin{array}{r}
\sum_{m=2}^{\infty} \frac{1}{m(m-1)} \sum_{\substack{a_{l}=m-2-a \\
a_{l} \geq 0}} \frac{(-1)^{a_{l}}}{a_{l}!} \Re_{\hbar=0}\left\{\hbar^{-a_{l}} \mathcal{Z}_{i}^{*}(\hbar)\right\} \\
=a!\Re_{h=0}\left\{\hbar^{a+1} \mathcal{Z}_{i}^{*}(\hbar)\right\}
\end{array}
$$

$\mathfrak{R}_{\hbar=0} \equiv$ residue at $\hbar=0$

Good Properties of \mathcal{Z}^{*}

$$
\mathcal{Z}_{i}^{*} \equiv \mathcal{Z}\left(x=\alpha_{i}\right) \quad \text { satisfies: for all } a \geq 0
$$

$$
\begin{array}{r}
\sum_{m=2}^{\infty} \frac{1}{m(m-1)} \sum_{\substack{a_{l}=m-2-a \\
a_{l} \geq 0}} \frac{(-1)^{a_{l}}}{a_{l}!} \Re_{\hbar=0}\left\{\hbar^{-a_{l}} \mathcal{Z}_{i}^{*}(\hbar)\right\} \\
=a!\Re_{\hbar=0}\left\{\hbar^{a+1} \mathcal{Z}_{i}^{*}(\hbar)\right\}
\end{array}
$$

$\mathfrak{R}_{\hbar=0} \equiv$ residue at $\hbar=0$

Good Properties of \mathcal{Z}^{*}

Lemma 1: $\mathcal{Z} \in Q \cdot \mathbb{Q}(\hbar)[[Q]]$ satisfies $\quad \forall a \geq 0$ iff

$\exists \eta \in Q \cdot \mathbb{Q}[[Q]]$ and $\overline{\mathcal{Z}} \in Q \cdot \mathbb{Q}(\hbar)[[Q]]$ regular at $\hbar=0$ s.t.

$$
1+\mathcal{Z}=e^{\eta / \hbar}(1+\overline{\mathcal{Z}}(\hbar))
$$

such $(\eta, \overline{\mathcal{Z}})$ must be unique

Good Properties of \mathcal{Z}^{*}

Lemma 1: $\mathcal{Z} \in Q \cdot \mathbb{Q}(\hbar)[[Q]]$ satisfies a $\forall a \geq 0$ iff

$\exists \eta \in Q \cdot \mathbb{Q}[[Q]]$ and $\overline{\mathcal{Z}} \in Q \cdot \mathbb{Q}(\hbar)[[Q]]$ regular at $\hbar=0$ s.t.

such (η, \bar{Z}) must be unique

 Lemma 2: If $\mathcal{Z} \in Q$ - $O(F)\|Q\|$ satisfies above, then $V a \geq 0$
Good Properties of \mathcal{Z}^{*}

Lemma 1: $\mathcal{Z} \in Q \cdot \mathbb{Q}(\hbar)[[Q]]$ satisfies a $\forall a \geq 0$ iff

$\exists \eta \in Q \cdot \mathbb{Q}[[Q]]$ and $\overline{\mathcal{Z}} \in Q \cdot \mathbb{Q}(\hbar)[[Q]]$ regular at $\hbar=0$ s.t.

$$
1+\mathcal{Z}=e^{\eta / \hbar}(1+\overline{\mathcal{Z}}(\hbar))
$$

such (η, \bar{z}) must be unique

Good Properties of \mathcal{Z}^{*}

Lemma 1: $\mathcal{Z} \in Q \cdot \mathbb{Q}(\hbar)[[Q]]$ satisfies a $\forall a \geq 0$ iff

$\exists \eta \in Q \cdot \mathbb{Q}[[Q]]$ and $\overline{\mathcal{Z}} \in Q \cdot \mathbb{Q}(\hbar)[[Q]]$ regular at $\hbar=0$ s.t.

$$
1+\mathcal{Z}=e^{\eta / \hbar}(1+\overline{\mathcal{Z}}(\hbar))
$$

such $(\eta, \overline{\mathcal{Z}})$ must be unique Lemma 2: If $\mathbb{Z} \in Q \cdot Q(h)[Q]$ satisfies above, then $\forall a \geq 0$

Good Properties of \mathcal{Z}^{*}

Lemma 1: $\mathcal{Z} \in Q \cdot \mathbb{Q}(\hbar)[[Q]]$ satisfies $\quad \forall a \geq 0$ iff

$\exists \eta \in Q \cdot \mathbb{Q}[[Q]]$ and $\overline{\mathcal{Z}} \in Q \cdot \mathbb{Q}(\hbar)[[Q]]$ regular at $\hbar=0$ s.t.

$$
1+\mathcal{Z}=e^{\eta / \hbar}(1+\overline{\mathcal{Z}}(\hbar))
$$

such $(\eta, \overline{\mathcal{Z}})$ must be unique
Lemma 2: If $\mathcal{Z} \in Q \cdot \mathbb{Q}(\hbar)[[Q]]$ satisfies above, then $\forall a \geq 0$

Good Properties of \mathcal{Z}^{*}

Lemma 1: $\mathcal{Z} \in Q \cdot \mathbb{Q}(\hbar)[[Q]]$ satisfies $\quad \forall a \geq 0$ iff

$\exists \eta \in Q \cdot \mathbb{Q}[[Q]]$ and $\overline{\mathcal{Z}} \in Q \cdot \mathbb{Q}(\hbar)[[Q]]$ regular at $\hbar=0$ s.t.

$$
1+\mathcal{Z}=e^{\eta / \hbar}(1+\overline{\mathcal{Z}}(\hbar))
$$

such $(\eta, \overline{\mathcal{Z}})$ must be unique
Lemma 2: If $\mathcal{Z} \in Q \cdot \mathbb{Q}(\hbar)[[Q]]$ satisfies above, then $\forall a \geq 0$

$$
\sum_{m=0}^{\infty} \sum_{\sum \substack{a_{l}=m-a \\ a_{l} \geq 0}} \frac{(-1)^{a_{1}}}{a_{l}!} \Re_{\hbar=0}\left\{\hbar^{-a_{l}} \mathcal{Z}_{i}^{*}(\hbar)\right\}=\frac{\eta^{a}}{1+\bar{Z}(h=0)}
$$

Good Properties of \mathcal{Z}^{*}

Lemma 1: $\mathcal{Z} \in Q \cdot \mathbb{Q}(\hbar)[[Q]]$ satisfies $\quad \forall a \geq 0$ iff

$\exists \eta \in Q \cdot \mathbb{Q}[[Q]]$ and $\overline{\mathcal{Z}} \in Q \cdot \mathbb{Q}(\hbar)[[Q]]$ regular at $\hbar=0$ s.t.

$$
1+\mathcal{Z}=e^{\eta / \hbar}(1+\overline{\mathcal{Z}}(\hbar))
$$

such $(\eta, \overline{\mathcal{Z}})$ must be unique
Lemma 2: If $\mathcal{Z} \in Q \cdot \mathbb{Q}(\hbar)[[Q]]$ satisfies above, then $\forall a \geq 0$

$$
\sum_{m=0}^{\infty} \sum_{\substack{a_{1}=m-a \\ a_{1} \geq 0}} \frac{(-1)^{a_{1}}}{a_{l}!} \Re_{\hbar=0}\left\{\hbar^{\left.-a_{l} \mathcal{Z}_{i}^{*}(\hbar)\right\}=\frac{\eta^{a}}{1+\overline{\mathcal{Z}}(\hbar=0)}}\right.
$$

What We Know

If $\mathrm{ev}_{1}, \mathrm{ev}_{2}: \overline{\mathfrak{M}}_{0,2}\left(\mathbb{P}^{n-1}, d\right) \longrightarrow \mathbb{P}^{n-1}:$

What We Know

If $\mathrm{ev}_{1}, \mathrm{ev}_{2}: \overline{\mathfrak{M}}_{0,2}\left(\mathbb{P}^{n-1}, d\right) \longrightarrow \mathbb{P}^{n-1}:$

$$
\mathcal{Z}^{*}(\alpha ; \hbar, x, Q) \equiv \sum_{d=1}^{\infty} Q^{d} \operatorname{ev}_{1 *}\left(\frac{e\left(\mathcal{V}_{0, d}\right)}{\hbar-\psi_{1}}\right)
$$

What We Know

If $\mathrm{ev}_{1}, \mathrm{ev}_{2}: \overline{\mathfrak{M}}_{0,2}\left(\mathbb{P}^{n-1}, d\right) \longrightarrow \mathbb{P}^{n-1}:$

$$
\begin{aligned}
& \mathcal{Z}^{*}(\alpha ; \hbar, x, Q) \equiv \sum_{d=1}^{\infty} Q^{d} \operatorname{ev}_{1 *}\left(\frac{e\left(\mathcal{V}_{0, d}\right)}{\hbar-\psi_{1}}\right) \\
& \mathcal{A}_{i}^{(a)} \equiv \sum_{m=0}^{\infty} \sum_{\substack{a_{l}=m-a \\
a_{l} \geq 0}} \frac{(-1)^{a_{l}}}{a_{l}!} \Re_{\hbar=0}\left\{\hbar^{-a_{l}} \mathcal{Z}^{*}\left(x=\alpha_{i}\right)\right\} \\
& \widetilde{Z}^{*} \equiv \frac{1}{2 \hbar_{1} \hbar_{2}} \sum_{d=1}^{\infty} Q^{d}\left\{e v_{1} \times e v_{2}\right\} *\left(\frac{e\left(V_{0, d}\right)}{\left(\hbar_{1}-\psi_{1}\right)\left(\hbar_{2}-\psi_{2}\right)}\right)
\end{aligned}
$$

What We Know

If $\mathrm{ev}_{1}, \mathrm{ev}_{2}: \overline{\mathfrak{M}}_{0,2}\left(\mathbb{P}^{n-1}, d\right) \longrightarrow \mathbb{P}^{n-1}:$

$$
\begin{aligned}
& \mathcal{Z}^{*}(\alpha ; \hbar, x, Q) \equiv \sum_{d=1}^{\infty} Q^{d} \operatorname{ev}_{1 *}\left(\frac{e\left(\mathcal{V}_{0, d}\right)}{\hbar-\psi_{1}}\right) \\
& \mathcal{A}_{i}^{(a)} \equiv \sum_{m=0}^{\infty} \sum_{\substack{a_{l}=m-a \\
a_{l} \geq 0}} \frac{(-1)^{a_{l}}}{a_{l}!} \Re_{\hbar=0}\left\{\hbar^{-a_{l}} \mathcal{Z}^{*}\left(x=\alpha_{i}\right)\right\} \\
& \widetilde{\mathcal{Z}}^{*} \equiv \frac{1}{2 \hbar_{1} \hbar_{2}} \sum_{d=1}^{\infty} Q^{d}\left\{\operatorname{ev}_{1} \times \operatorname{ev}_{2}\right\}_{*}\left(\frac{e\left(\mathcal{V}_{0, d}\right)}{\left(\hbar_{1}-\psi_{1}\right)\left(\hbar_{2}-\psi_{2}\right)}\right)
\end{aligned}
$$

Genus 1 Setup

- What we want to know: if $\mathrm{ev}_{1}: \mathfrak{N}_{1,1}^{0}\left(\mathbb{P}^{n-1}, d\right) \longrightarrow \mathbb{P}^{n-1}$ $F(Q) \equiv \sum_{d=1}^{\infty} Q^{d} e v_{1 *}\left(e\left(\tilde{\mathcal{V}}_{1, d}\right)\right)$ - Atiyah-Boot reduces F to \sum over genus 1 graphs

Genus 1 Setup

- What we want to know: if $\mathrm{ev}_{1}: \widetilde{\mathfrak{M}}_{1,1}^{0}\left(\mathbb{P}^{n-1}, d\right) \longrightarrow \mathbb{P}^{n-1}$

$$
F(Q) \equiv \sum_{d=1}^{\infty} Q^{d} e v_{1 *}\left(e\left(\tilde{\mathcal{V}}_{1, d}\right)\right)
$$

- Atiyah-Boot reduces F to \sum over genus 1 graphs

Genus 1 Setup

- What we want to know: if $\mathrm{ev}_{1}: \widetilde{\mathfrak{M}}_{1,1}^{0}\left(\mathbb{P}^{n-1}, d\right) \longrightarrow \mathbb{P}^{n-1}$

$$
F(Q) \equiv \sum_{d=1}^{\infty} Q^{d} e v_{1_{*}}\left(e\left(\widetilde{\mathcal{V}}_{1, d}\right)\right)
$$

- Atiyah-Boot reduces F to \sum over genus 1 graphs

Genus 1 Setup

- What we want to know: if $\mathrm{ev}_{1}: \widetilde{\mathfrak{M}}_{1,1}^{0}\left(\mathbb{P}^{n-1}, d\right) \longrightarrow \mathbb{P}^{n-1}$

$$
F(Q) \equiv \sum_{d=1}^{\infty} Q^{d} e v_{1_{*}}\left(e\left(\widetilde{\mathcal{V}}_{1, d}\right)\right)
$$

- Atiyah-Boot reduces F to \sum over genus 1 graphs w. special node

From Genus 1 to 0

Each genus 1 graphs breaks at special node into genus 0 strands:

- each genus 0 strand contributes to
- at most one strand contributes to $\widetilde{\mathcal{Z}}^{*}$, $\operatorname{Coeff}_{\hbar_{2}^{-2}}\left(\widetilde{\mathcal{Z}}^{*}\right)$ each
- remaining stands make up either Log of something simple

From Genus 1 to 0

Each genus 1 graphs breaks at special node into genus 0 strands:

- each genus 0 strand contributes to
- at most one strand contributes to $\widetilde{\mathcal{Z}}^{*}$, Coeff $\hbar_{\hbar_{2}^{-2}}\left(\widetilde{\mathcal{Z}}^{*}\right)$ each
- remaining stands make up either Log of something simple

From Genus 1 to 0

Each genus 1 graphs breaks at special node into genus 0 strands:

- each genus 0 strand contributes to
- at most one strand contributes to \mathcal{Z}^{*}, Coeff $\hbar_{\hbar_{2}^{-2}}\left(\mathcal{Z}^{*}\right)$ each
- remaining stands make up either Log of something simple

From Genus 1 to 0

Each genus 1 graphs breaks at special node into genus 0 strands:

- each genus 0 strand contributes to $\mathcal{Z}^{*}, \widetilde{\mathcal{Z}}^{*}$, or \hbar_{2}^{-2}-coefficient of $\widetilde{\mathcal{Z}}^{*}$
- at most one strand contributes to \widetilde{Z}^{*}, Coeff $\hbar_{\hbar_{2}^{-2}}\left(\widetilde{Z}^{*}\right)$ each
- remaining stands make up either Log of something simple

From Genus 1 to 0

Each genus 1 graphs breaks at special node into genus 0 strands:

- each genus 0 strand contributes to $\mathcal{Z}^{*}, \widetilde{\mathcal{Z}}^{*}$, or \hbar_{2}^{-2}-coefficient of $\widetilde{\mathcal{Z}}^{*}$
- at most one strand contributes to $\widetilde{\mathcal{Z}}^{*}$, $\operatorname{Coeff}_{\hbar_{2}^{-2}}\left(\widetilde{\mathcal{Z}}^{*}\right)$ each
- remaining stands make up either Log of something simple

From Genus 1 to 0

Each genus 1 graphs breaks at special node into genus 0 strands:

- each genus 0 strand contributes to $\mathcal{Z}^{*}, \widetilde{\mathcal{Z}}^{*}$, or \hbar_{2}^{-2}-coefficient of $\widetilde{\mathcal{Z}}^{*}$
- at most one strand contributes to $\widetilde{\mathcal{Z}}^{*}, \operatorname{Coeff}_{\hbar_{2}^{-2}}\left(\widetilde{\mathcal{Z}}^{*}\right)$ each
- remaining stands make up either Log of something simple

From Genus 1 to 0

Each genus 1 graphs breaks at special node into genus 0 strands:

- each genus 0 strand contributes to $\mathcal{Z}^{*}, \widetilde{\mathcal{Z}}^{*}$, or \hbar_{2}^{-2}-coefficient of $\widetilde{\mathcal{Z}}^{*}$
- at most one strand contributes to $\widetilde{\mathcal{Z}}^{*}, \operatorname{Coeff}_{\hbar_{2}^{-2}}\left(\widetilde{\mathcal{Z}}^{*}\right)$ each
- remaining stands make up either Log of something simple or $\mathcal{A}_{i}^{(a)}$!

