On the Geometry of Genus 1 Gromov-Witten Invariants

Aleksey Zinger

Stony Brook University

December 5, 2007

Stony Brook University

Aleksey Zinger

From String Theory to Enumerative Geometry

A-Model partition function for Calabi-Yau 3-fold X

B-Model partition function for mirror (family) of X

generating function for GWs "counts of complex curves in" X something about geometry of moduli spaces of CYs

Image: A matrix

Stony Brook University

Aleksey Zinger

From String Theory to Enumerative Geometry

Aleksey Zinger

Stony Brook University

From String Theory to Enumerative Geometry

Aleksey Zinger

Stony Brook University

• quintic 3-fold X_5 = degree 5 hypersurface in \mathbb{P}^4

- expected # of genus g degree d curves is finite: n_{g,d}
- genus g degree d GW-invariant $N_{a,d}$ is made up of $n_{h,d}$

• A-model partition function:

$$F_g^A(q) = \sum_{d=1}^{\infty} N_{g,d} q^d.$$

 B-model partition function F^B_g "measures" geometry of moduli spaces of CYs

Geometry of Genus 1 GW-Invariants

Aleksev Zinger

- quintic 3-fold X_5 = degree 5 hypersurface in \mathbb{P}^4
- expected # of genus g degree d curves is finite: ng,d
- genus g degree d GW-invariant N_{g,d} is made up of n_{h,d}
 A-model partition function:

$$F_g^A(q) = \sum_{d=1}^{\infty} N_{g,d} q^d.$$

Stony Brook University

 B-model partition function F^B_g "measures" geometry of moduli spaces of CYs

- quintic 3-fold X_5 = degree 5 hypersurface in \mathbb{P}^4
- expected # of genus g degree d curves is finite: ng,d
- genus g degree d GW-invariant $N_{a,d}$ is made up of $n_{h,d}$

• A-model partition function:

$$F_g^A(q) = \sum_{d=1}^{\infty} N_{g,d} q^d.$$

Stony Brook University

 B-model partition function F^B_g "measures" geometry of moduli spaces of CYs

- quintic 3-fold X_5 = degree 5 hypersurface in \mathbb{P}^4
- expected # of genus g degree d curves is finite: ng,d
- genus g degree d GW-invariant $N_{g,d}$ is made up of $n_{h,d}$
- A-model partition function:

$$F_g^A(q) = \sum_{d=1}^{\infty} N_{g,d} q^d.$$

Stony Brook University

 B-model partition function F^B_g "measures" geometry of moduli spaces of CYs

Aleksey Zinger

- quintic 3-fold X_5 = degree 5 hypersurface in \mathbb{P}^4
- expected # of genus g degree d curves is finite: n_{g,d}
- genus g degree d GW-invariant $N_{g,d}$ is made up of $n_{h,d}$
- A-model partition function:

$$F_g^A(q) = \sum_{d=1}^{\infty} N_{g,d} q^d.$$

 B-model partition function F^B_g "measures" geometry of moduli spaces of CYs

Geometry of Genus 1 GW-Invariants

Aleksev Zinger

Candelas-de la Ossa-Green-Parkes'91 construct mirror family, compute F^B₀

 Bershadsky-Cecotti-Ooguri-Vafa'93 (BCOV) compute F^B₁ using physics arguments

• Fang-Z. Lu-Yoshikawa'03 compute F^B₁ mathematically

• Huang-Klemm-Quackenbush'06 compute F_g^B , $g \le 52$ using physics

Aleksey Zinger

Stony Brook University

Image: A matrix

- Candelas-de la Ossa-Green-Parkes'91 construct mirror family, compute F^B₀
- Bershadsky-Cecotti-Ooguri-Vafa'93 (BCOV) compute F₁^B using physics arguments
- Fang-Z. Lu-Yoshikawa'03 compute F₁^B mathematically
- Huang-Klemm-Quackenbush'06 compute F_g^B , $g \le 52$ using physics

Aleksey Zinger

- Candelas-de la Ossa-Green-Parkes'91 construct mirror family, compute F^B₀
- Bershadsky-Cecotti-Ooguri-Vafa'93 (BCOV) compute F₁^B using physics arguments

Fang-Z. Lu-Yoshikawa'03 compute F^B₁ mathematically

• Huang-Klemm-Quackenbush'06 compute F_g^B , $g \le 52$ using physics

Aleksey Zinger

Stony Brook University

- Candelas-de la Ossa-Green-Parkes'91 construct mirror family, compute F^B₀
- Bershadsky-Cecotti-Ooguri-Vafa'93 (BCOV) compute F^B₁ using physics arguments
- Fang-Z. Lu-Yoshikawa'03 compute F^B₁ mathematically
- Huang-Klemm-Quackenbush'06 compute F_g^B , $g \le 52$ using physics

Geometry of Genus 1 GW-Invariants

Aleksev Zinger

Mirror Symmetry Predictions and Verifications

Predictions

$$F_g^A(q) \equiv \sum_{d=1}^{\infty} N_{g,d} q^d \stackrel{?}{=} F_g^B(q).$$

Theorem (Givental'96, Lian-Liu-Yau'97,.....~'00)

g = 0 predict. of Candelas-de la Ossa-Green-Parkes'91 holds

Theorem (Z.'07)

g = 1 predict. of Bershadsky-Cecotti-Ooguri-Vafa'93 holds

Aleksey Zinger

Stony Brook University

イロト イヨト イヨト イヨト

Mirror Symmetry Predictions and Verifications

Predictions

$$F_g^A(q) \equiv \sum_{d=1}^{\infty} N_{g,d} q^d \stackrel{?}{=} F_g^B(q).$$

Theorem (Givental'96, Lian-Liu-Yau'97,.....~'00)

g = 0 predict. of Candelas-de la Ossa-Green-Parkes'91 holds

Theorem (Z.'07)

g = 1 predict. of Bershadsky-Cecotti-Ooguri-Vafa'93 holds

Aleksey Zinger

Stony Brook University

<ロ> <四> <四> <三</p>

Mirror Symmetry Predictions and Verifications

Predictions

$$F_g^A(q) \equiv \sum_{d=1}^{\infty} N_{g,d} q^d \stackrel{?}{=} F_g^B(q).$$

Theorem (Givental'96, Lian-Liu-Yau'97,.....~'00)

g = 0 predict. of Candelas-de la Ossa-Green-Parkes'91 holds

Theorem (Z.'07)

g = 1 predict. of Bershadsky-Cecotti-Ooguri-Vafa'93 holds

Aleksey Zinger

Stony Brook University

<ロ> <四> <四> <三</p>

Need to compute each $N_{g,d}$ and all of them (for fixed g):

Step 1: relate $N_{g,d}$ to GWs of $\mathbb{P}^4 \supset X_5$

Step 2: use $(\mathbb{C}^*)^5$ -action on \mathbb{P}^4 to compute each $N_{g,d}$ by localization

Step 3: find some recursive feature(s) to compute $N_{g,d} \quad \forall d \iff F_g^A$

Stony Brook University

• • • • • • • • • • • • •

Aleksey Zinger

Need to compute each $N_{g,d}$ and all of them (for fixed g):

Step 1: relate $N_{g,d}$ to GWs of $\mathbb{P}^4 \supset X_5$

Step 2: use $(\mathbb{C}^*)^5$ -action on \mathbb{P}^4 to compute each $N_{g,d}$ by localization

Step 3: find some recursive feature(s) to compute $N_{g,d} \quad \forall d \iff F_g^A$

Stony Brook University

イロト イヨト イヨト イ

Aleksey Zinger

Need to compute each $N_{g,d}$ and all of them (for fixed g):

Step 1: relate $N_{g,d}$ to GWs of $\mathbb{P}^4 \supset X_5$

Step 2: use $(\mathbb{C}^*)^5$ -action on \mathbb{P}^4 to compute each $N_{g,d}$ by localization

Step 3: find some recursive feature(s) to compute $N_{g,d} \forall d \iff F_g^A$

Stony Brook University

Aleksey Zinger

Need to compute each $N_{g,d}$ and all of them (for fixed *g*):

Step 1: relate $N_{g,d}$ to GWs of $\mathbb{P}^4 \supset X_5$

Step 2: use $(\mathbb{C}^*)^5$ -action on \mathbb{P}^4 to compute each $N_{g,d}$ by localization

Step 3: find some recursive feature(s) to compute $N_{g,d} \quad \forall d \iff F_g^A$

Stony Brook University

• • • • • • • • • • • •

Aleksey Zinger

$\overline{\mathfrak{M}}_{g}(X_{5},d) = \left\{ [u: \Sigma \longrightarrow X_{5}] | g(\Sigma) = g, \deg u = d, \, \overline{\partial}u = \mathbf{0} \right\}$

$$N_{g,d} \equiv \deg \left[\overline{\mathfrak{M}}_{g}(X_{5}, d) \right]^{vir} \\ \equiv \# \left\{ \left[u \colon \Sigma \longrightarrow X_{5} \right] \mid g(\Sigma) = g, \deg u = d, \ \bar{\partial}u = \nu(u) \right\}$$

 ν = small generic deformation of $\bar{\partial}$ -equation

Aleksey Zinger

Stony Brook University

$$\overline{\mathfrak{M}}_{g}(X_{5},d) = \left\{ [u \colon \Sigma \longrightarrow X_{5}] | \ g(\Sigma) = g, \deg u = d, \ \overline{\partial}u = \mathbf{0}
ight\}$$

$$N_{g,d} \equiv \deg \left[\overline{\mathfrak{M}}_{g}(X_{5}, d) \right]^{vir} \\ \equiv \# \left\{ \left[u \colon \Sigma \longrightarrow X_{5} \right] \mid g(\Sigma) = g, \deg u = d, \ \bar{\partial}u = \nu(u) \right\}$$

 ν = small generic deformation of $\bar{\partial}$ -equation

Aleksey Zinger

Stony Brook University

$$\overline{\mathfrak{M}}_{g}(X_{5},d) = \left\{ [u \colon \Sigma \longrightarrow X_{5}] | \ g(\Sigma) = g, \deg u = d, \ \overline{\partial}u = \mathbf{0}
ight\}$$

$$N_{g,d} \equiv \deg \left[\overline{\mathfrak{M}}_{g}(X_{5}, d) \right]^{vir} \\ \equiv \# \left\{ \left[u \colon \Sigma \longrightarrow X_{5} \right] \mid g(\Sigma) = g, \deg u = d, \ \overline{\partial}u = \nu(u) \right\}$$

 ν = small generic deformation of $\bar{\partial}$ -equation

Aleksey Zinger

Stony Brook University

$$\overline{\mathfrak{M}}_{g}(X_{5},d) = \left\{ [u \colon \Sigma \longrightarrow X_{5}] | \ g(\Sigma) = g, \deg u = d, \ \overline{\partial}u = \mathbf{0}
ight\}$$

$$N_{g,d} \equiv \deg \left[\overline{\mathfrak{M}}_{g}(X_{5}, d) \right]^{vir} \\ \equiv \# \left\{ \left[u \colon \Sigma \longrightarrow X_{5} \right] \mid g(\Sigma) = g, \deg u = d, \ \overline{\partial}u = \nu(u) \right\}$$

 ν = small generic deformation of $\bar{\partial}$ -equation

Aleksey Zinger

Stony Brook University

$X_5 \equiv s^{-1}(0) \subset \mathbb{P}^4$

▲□▶▲圖▶▲≣▶▲≣▶ = ● - ● ●

Aleksey Zinger

Stony Brook University

$$\mathcal{L} \equiv \mathcal{O}(5)$$
 $s \left(ig |_{\pi} X_5 \equiv s^{-1}(0) \subset \mathbb{P}^4
ight)$

$\overline{\mathfrak{M}}_{g}(\mathbb{P}^{4},d)$

・ロト・雪・・雪・・雪・ うらぐ

Aleksey Zinger

Stony Brook University

$$\mathcal{L} \equiv \mathcal{O}(5$$
 $s \left(igg|_{\pi} X_5 \equiv s^{-1}(0) \subset \mathbb{P}^4
ight)$

$$\mathcal{V}_{g,d} \equiv \overline{\mathfrak{M}}_{g}(\mathcal{L}, d)$$
 $\tilde{\mathfrak{s}} \left(igg|_{ ilde{\pi}} \\ \overline{\mathfrak{M}}_{g}(\mathbb{P}^{4}, d)
ight)$

돌▶ ≪ 돌▶ 글 ∽) ९.0 Stony Brook University

Geometry of Genus 1 GW-Invariants

Aleksey Zinger

$$\begin{split} \tilde{\pi} \big([\xi \colon \Sigma \longrightarrow \mathcal{L}] \big) &= [\pi \circ \xi \colon \Sigma \longrightarrow \mathbb{P}^4] \\ \tilde{s} \big([u \colon \Sigma \longrightarrow \mathbb{P}^4] \big) &= [s \circ u \colon \Sigma \longrightarrow \mathcal{L}] \end{split}$$

▶ ৰ ≣ ▶ ≣ ৵িও Stony Brook University

(ロ) (四) (日) (日) (日)

Aleksey Zinger

$$\begin{split} \tilde{\pi}\big([\xi\colon \Sigma \longrightarrow \mathcal{L}]\big) &= [\pi \circ \xi\colon \Sigma \longrightarrow \mathbb{P}^4]\\ \tilde{s}\big([u\colon \Sigma \longrightarrow \mathbb{P}^4]\big) &= [s \circ u\colon \Sigma \longrightarrow \mathcal{L}] \end{split}$$

Aleksey Zinger

$$\begin{array}{ccc} \mathcal{L} \equiv \mathcal{O}(5) & \mathcal{V}_{g,d} \equiv \overline{\mathfrak{M}}_g(\mathcal{L},d) \\ s \left(\bigvee_{\pi} & & \\ X_5 \equiv s^{-1}(0) \subset \mathbb{P}^4 & \overline{\mathfrak{M}}_g(X_5,d) \equiv \tilde{s}^{-1}(0) \subset \overline{\mathfrak{M}}_g(\mathbb{P}^4,d) \end{array} \right)$$

This suggests: *Hyperplane Property*

$$N_{g,d} \equiv \deg \left[\overline{\mathfrak{M}}_g(X_5, d) \right]^{vir} \equiv \left. \pm \right| \tilde{s}^{-1}(0) \right|$$

Aleksey Zinger

Stony Brook University

This suggests: Hyperplane Property

$$egin{aligned} & \mathcal{N}_{g,d} \equiv \deg\left[\overline{\mathfrak{M}}_g(X_5,d)
ight]^{\mathit{vir}} \equiv \ ^{\pm} & \left| \widetilde{s}^{-1}(0)
ight| \ & \stackrel{?}{=} \left\langle e(\mathcal{V}_{g,d}), \overline{\mathfrak{M}}_g(\mathbb{P}^4,d)
ight
angle \end{aligned}$$

Aleksey Zinger

Stony Brook University

Genus 0 vs. Positive Genus

g = 0 everything is as expected:

- $\overline{\mathfrak{M}}_{g}(\mathbb{P}^{4}, d)$ is smooth
- $[\overline{\mathfrak{M}}_g(\mathbb{P}^4, d)]^{vir} = [\overline{\mathfrak{M}}_g(\mathbb{P}^4, d)]$
- $\mathcal{V}_{0,d} \longrightarrow \overline{\mathfrak{M}}_g(\mathbb{P}^4, d)$ is vector bundle
- hyperplane prop. makes sense and holds

 $g \ge 1$ none of these holds

Stony Brook University

Aleksey Zinger

Stony Brook University

Genus 0 vs. Positive Genus

g = 0 everything is as expected:

- $\overline{\mathfrak{M}}_{g}(\mathbb{P}^{4}, d)$ is smooth
- $[\overline{\mathfrak{M}}_{g}(\mathbb{P}^{4},d)]^{vir} = [\overline{\mathfrak{M}}_{g}(\mathbb{P}^{4},d)]$
- $\mathcal{V}_{0,d} \longrightarrow \overline{\mathfrak{M}}_g(\mathbb{P}^4, d)$ is vector bundle

hyperplane prop. makes sense and holds

 $g \ge 1$ none of these holds

Aleksey Zinger

Genus 0 vs. Positive Genus

g = 0 everything is as expected:

- $\overline{\mathfrak{M}}_{g}(\mathbb{P}^{4}, d)$ is smooth
- $[\overline{\mathfrak{M}}_{g}(\mathbb{P}^{4}, d)]^{vir} = [\overline{\mathfrak{M}}_{g}(\mathbb{P}^{4}, d)]$
- $\mathcal{V}_{0,d} \longrightarrow \overline{\mathfrak{M}}_{g}(\mathbb{P}^{4}, d)$ is vector bundle
- hyperplane prop. makes sense and holds

 $g \ge 1$ none of these holds

Aleksey Zinger

Stony Brook University

Genus 0 vs. Positive Genus

g = 0 everything is as expected:

- $\overline{\mathfrak{M}}_{g}(\mathbb{P}^{4}, d)$ is smooth
- $[\overline{\mathfrak{M}}_g(\mathbb{P}^4, d)]^{vir} = [\overline{\mathfrak{M}}_g(\mathbb{P}^4, d)]$
- $\mathcal{V}_{0,d} \longrightarrow \overline{\mathfrak{M}}_{g}(\mathbb{P}^{4}, d)$ is vector bundle
- hyperplane prop. makes sense and holds

 $g \ge 1$ none of these holds

Stony Brook University

Aleksey Zinger

Genus 1 Analogue

Thm. A (J. Li-Z.'04): HP holds for reduced genus 1 GWs

$$\left[\overline{\mathfrak{M}}_{1}(X_{5},d)\right]^{vir}=e(\mathcal{V}_{1,d})\cap\overline{\mathfrak{M}}_{1}^{0}(\mathbb{P}^{4},d).$$

This generalizes to complete intersections $X \subset \mathbb{P}^n$.

- *V*_{1,d} → m
 ⁰₁(P⁴, d) not vector bundle, but
 e(V_{1,d}) well-defined (0-set of generic section)

Aleksey Zinger

Stony Brook University

<ロ> (日) (日) (日) (日) (日)
Thm. A (J. Li-Z.'04): HP holds for reduced genus 1 GWs

$$\left[\overline{\mathfrak{M}}_{1}(X_{5},d)
ight]^{\textit{vir}}= e(\mathcal{V}_{1,d})\cap\overline{\mathfrak{M}}_{1}^{0}(\mathbb{P}^{4},d).$$

This generalizes to complete intersections $X \subset \mathbb{P}^n$.

- *V*_{1,d} → m
 ⁰₁(P⁴, d) not vector bundle, but
 e(V_{1,d}) well-defined (0-set of generic section)

Aleksey Zinger

Stony Brook University

<ロ> (日) (日) (日) (日) (日)

Thm. A (J. Li-Z.'04): HP holds for reduced genus 1 GWs

$$\left[\overline{\mathfrak{M}}_{1}(X_{5},d)\right]^{\textit{vir}}=e(\mathcal{V}_{1,d})\cap\overline{\mathfrak{M}}_{1}^{0}(\mathbb{P}^{4},d).$$

This generalizes to complete intersections $X \subset \mathbb{P}^n$.

- V_{1,d} → m
 ⁰₁(P⁴, d) not vector bundle, but e(V_{1,d}) well-defined (0-set of generic section

Aleksey Zinger

Stony Brook University

Thm. A (J. Li-Z.'04): HP holds for reduced genus 1 GWs

$$\left[\overline{\mathfrak{M}}_{1}(X_{5},d)\right]^{\textit{vir}}=e(\mathcal{V}_{1,d})\cap\overline{\mathfrak{M}}_{1}^{0}(\mathbb{P}^{4},d).$$

This generalizes to complete intersections $X \subset \mathbb{P}^n$.

- *V*_{1,d} → m
 ⁰₁(P⁴, d) not vector bundle, but
 e(V_{1,d}) well-defined (0-set of generic section)

Aleksey Zinger

Stony Brook University

Thm. A (J. Li-Z.'04): HP holds for reduced genus 1 GWs

$$\left[\overline{\mathfrak{M}}_{1}(X_{5},d)\right]^{\textit{vir}}=e(\mathcal{V}_{1,d})\cap\overline{\mathfrak{M}}_{1}^{0}(\mathbb{P}^{4},d).$$

This generalizes to complete intersections $X \subset \mathbb{P}^n$.

- *V*_{1,d} → *m*⁰₁(*P*⁴, *d*) not vector bundle, but *e*(*V*_{1,d}) well-defined (0-set of generic section)

Aleksey Zinger

Stony Brook University

イロン イヨン イヨン イヨン

Thm. A (J. Li-Z.'04): HP holds for reduced genus 1 GWs

$$\left[\overline{\mathfrak{M}}_{1}(X_{5},d)\right]^{\textit{vir}}=e(\mathcal{V}_{1,d})\cap\overline{\mathfrak{M}}_{1}^{0}(\mathbb{P}^{4},d).$$

This generalizes to complete intersections $X \subset \mathbb{P}^n$.

- $\mathcal{V}_{1,d} \longrightarrow \overline{\mathfrak{M}}_1^0(\mathbb{P}^4, d)$ not vector bundle, but $e(\mathcal{V}_{1,d})$ well-defined (0-set of generic section)

Aleksey Zinger

Stony Brook University

・ロト ・回ト ・ヨト ・ヨト

Thm. A
$$\implies N_{1,d}^0 \equiv \deg [\overline{\mathfrak{M}}_1^0(X,d)]^{vir} = \int_{\overline{\mathfrak{M}}_1^0(\mathbb{P}^4,d)} e(\mathcal{V}_{1,d})$$

$$\overline{\mathfrak{M}}_1^0(X,d) \equiv \overline{\mathfrak{M}}_1^0(\mathbb{P}^4,d) \cap \overline{\mathfrak{M}}_1(X,d)$$

Thm. B (Z.'04,'07):
$$N_{1,d} - N_{1,d}^0 = \frac{1}{12}N_{0,d}$$

This generalizes to all symplectic manifolds:

[standard] – [reduced genus 1 GW] = f(genus 0 GW)

: to check BCOV, enough to compute $\int_{\overline{\mathfrak{M}}_{1}^{0}(\mathbb{P}^{4},d)} e(\mathcal{V}_{1,d})$

Stony Brook University

Aleksey Zinger

Thm. A
$$\implies N_{1,d}^0 \equiv \deg [\overline{\mathfrak{M}}_1^0(X,d)]^{vir} = \int_{\overline{\mathfrak{M}}_1^0(\mathbb{P}^4,d)} e(\mathcal{V}_{1,d})$$

$$\overline{\mathfrak{M}}_1^0(X,d) \equiv \overline{\mathfrak{M}}_1^0(\mathbb{P}^4,d) \cap \overline{\mathfrak{M}}_1(X,d)$$

Thm. B (Z.'04,'07):
$$N_{1,d} - N_{1,d}^0 = \frac{1}{12}N_{0,d}$$

This generalizes to all symplectic manifolds:

[standard] – [reduced genus 1 GW] = f(genus 0 GW)

: to check BCOV, enough to compute $\int_{\overline{\mathfrak{M}}_{1}^{0}(\mathbb{P}^{4},d)} e(\mathcal{V}_{1,d})$

Stony Brook University

イロン イロン イヨン イヨ

Aleksey Zinger

Thm. A
$$\implies N_{1,d}^0 \equiv \deg [\overline{\mathfrak{M}}_1^0(X,d)]^{vir} = \int_{\overline{\mathfrak{M}}_1^0(\mathbb{P}^4,d)} e(\mathcal{V}_{1,d})$$

$$\overline{\mathfrak{M}}_1^0(X,d) \equiv \overline{\mathfrak{M}}_1^0(\mathbb{P}^4,d) \cap \overline{\mathfrak{M}}_1(X,d)$$

Thm. B (Z.'04,'07): $N_{1,d} - N_{1,d}^0 = \frac{1}{12}N_{0,d}$

This generalizes to all symplectic manifolds:

[standard] – [reduced genus 1 GW] = f(genus 0 GW)

: to check BCOV, enough to compute $\int_{\overline{\mathfrak{M}}^0_{+}(\mathbb{P}^4,d)} e(\mathcal{V}_{1,d})$

Stony Brook University

イロン イロン イヨン イヨ

Aleksey Zinger

Thm. A
$$\implies N_{1,d}^0 \equiv \deg [\overline{\mathfrak{M}}_1^0(X,d)]^{vir} = \int_{\overline{\mathfrak{M}}_1^0(\mathbb{P}^4,d)} e(\mathcal{V}_{1,d})$$

$$\overline{\mathfrak{M}}_1^0(X,d) \equiv \overline{\mathfrak{M}}_1^0(\mathbb{P}^4,d) \cap \overline{\mathfrak{M}}_1(X,d)$$

Thm. B (Z.'04,'07):
$$N_{1,d} - N_{1,d}^0 = \frac{1}{12}N_{0,d}$$

This generalizes to all symplectic manifolds:

[standard] - [reduced genus 1 GW] = f(genus 0 GW)

: to check BCOV, enough to compute $\int_{\overline{\mathfrak{M}}^0_1(\mathbb{P}^4,d)} e(\mathcal{V}_{1,d})$

Aleksey Zinger

Stony Brook University

Thm. A
$$\implies N_{1,d}^0 \equiv \deg [\overline{\mathfrak{M}}_1^0(X,d)]^{vir} = \int_{\overline{\mathfrak{M}}_1^0(\mathbb{P}^4,d)} e(\mathcal{V}_{1,d})$$

$$\overline{\mathfrak{M}}_1^0(X,d) \equiv \overline{\mathfrak{M}}_1^0(\mathbb{P}^4,d) \cap \overline{\mathfrak{M}}_1(X,d)$$

Thm. B (Z.'04,'07): $N_{1,d} - N_{1,d}^0 = \frac{1}{12}N_{0,d}$

This generalizes to all symplectic manifolds:

[standard] – [reduced genus 1 GW] = f(genus 0 GW)

: to check BCOV, enough to compute $\int_{\overline{\mathfrak{M}}_{1}^{0}(\mathbb{P}^{4},d)} e(\mathcal{V}_{1,d})$

Aleksey Zinger

Stony Brook University

<ロ> <四> <四> <三</p>

Thm. A
$$\implies N_{1,d}^0 \equiv \deg [\overline{\mathfrak{M}}_1^0(X,d)]^{vir} = \int_{\overline{\mathfrak{M}}_1^0(\mathbb{P}^4,d)} e(\mathcal{V}_{1,d})$$

$$\overline{\mathfrak{M}}_1^0(X,d) \equiv \overline{\mathfrak{M}}_1^0(\mathbb{P}^4,d) \cap \overline{\mathfrak{M}}_1(X,d)$$

Thm. B (Z.'04,'07): $N_{1,d} - N_{1,d}^0 = \frac{1}{12}N_{0,d}$

This generalizes to all symplectic manifolds:

[standard] – [reduced genus 1 GW] = f(genus 0 GW)

 \therefore to check BCOV, enough to compute $\int_{\overline{\mathfrak{M}}_1^0(\mathbb{P}^4,d)} e(\mathcal{V}_{1,d})$

Stony Brook University

イロト イヨト イヨト イヨト

Aleksey Zinger

• $(\mathbb{C}^*)^5$ acts on \mathbb{P}^4 (with 5 fixed pts)

• \Longrightarrow on $\overline{\mathfrak{M}}_{g}(\mathbb{P}^{4}, d)$ (with simple fixed loci) and on $\mathcal{V}_{q,d} \longrightarrow \overline{\mathfrak{M}}_{q}(\mathbb{P}^{4}, d)$

• $\int_{\overline{\mathfrak{M}}_{q}^{0}(\mathbb{P}^{4},d)} e(\mathcal{V}_{g,d})$ localizes to fixed loci

g = 0: Atiyah-Bott Localization Thm reduces \int to \sum_{graphs}

 $\mathcal{V} = 1: \mathfrak{M}_{g}^{\circ}(\mathbb{P}^{4}, d), \mathcal{V}_{g,d}$ singular \Longrightarrow AB does not apply

Aleksey Zinger

Geometry of Genus 1 GW-Invariants

Stony Brook University

イロト イヨト イヨト イ

- $(\mathbb{C}^*)^5$ acts on \mathbb{P}^4 (with 5 fixed pts)
- \Longrightarrow on $\overline{\mathfrak{M}}_{g}(\mathbb{P}^{4}, d)$ (with simple fixed loci) and on $\mathcal{V}_{g,d} \longrightarrow \overline{\mathfrak{M}}_{g}(\mathbb{P}^{4}, d)$
- $\int_{\overline{\mathfrak{M}}_{q}^{0}(\mathbb{P}^{4},d)} e(\mathcal{V}_{g,d})$ localizes to fixed loci

g= 0: Atiyah-Bott Localization Thm reduces \int to \sum_{graphs}

 $g = 1: \overline{\mathfrak{M}}_{g}^{0}(\mathbb{P}^{4}, d), \mathcal{V}_{g,d} \text{ singular} \Longrightarrow \mathsf{AB} \text{ does not apply}$

Aleksey Zinger

Geometry of Genus 1 GW-Invariants

Stony Brook University

• • • • • • • • • • • •

- $(\mathbb{C}^*)^5$ acts on \mathbb{P}^4 (with 5 fixed pts)
- \Longrightarrow on $\overline{\mathfrak{M}}_{g}(\mathbb{P}^{4}, d)$ (with simple fixed loci) and on $\mathcal{V}_{g,d} \longrightarrow \overline{\mathfrak{M}}_{g}(\mathbb{P}^{4}, d)$

• $\int_{\overline{\mathfrak{M}}^0_{\sigma}(\mathbb{P}^4,d)} e(\mathcal{V}_{g,d})$ localizes to fixed loci

g= 0: Atiyah-Bott Localization Thm reduces \int to \sum_{graphs}

• • • • • • • • • • • • •

Stony Brook University

 $g = 1: \overline{\mathfrak{M}}_{g}^{0}(\mathbb{P}^{4}, d), \mathcal{V}_{g,d}$ singular \Longrightarrow AB does not apply

Aleksey Zinger

- $(\mathbb{C}^*)^5$ acts on \mathbb{P}^4 (with 5 fixed pts)
- \Longrightarrow on $\overline{\mathfrak{M}}_{g}(\mathbb{P}^{4}, d)$ (with simple fixed loci) and on $\mathcal{V}_{g,d} \longrightarrow \overline{\mathfrak{M}}_{g}(\mathbb{P}^{4}, d)$
- $\int_{\overline{\mathfrak{M}}^0_{q}(\mathbb{P}^4,d)} e(\mathcal{V}_{g,d})$ localizes to fixed loci

g = 0: Atiyah-Bott Localization Thm reduces \int to $\sum_{graphs} q = 1$: $\overline{\mathfrak{M}}^0(\mathbb{P}^4, d)$)/2, \mathcal{A} singular \longrightarrow AB does not apply

< □ > < □ > < □ > < □ > <

Aleksey Zinger

- $(\mathbb{C}^*)^5$ acts on \mathbb{P}^4 (with 5 fixed pts)
- \Longrightarrow on $\overline{\mathfrak{M}}_{g}(\mathbb{P}^{4}, d)$ (with simple fixed loci) and on $\mathcal{V}_{g,d} \longrightarrow \overline{\mathfrak{M}}_{g}(\mathbb{P}^{4}, d)$
- $\int_{\overline{\mathfrak{M}}^0_{q}(\mathbb{P}^4,d)} e(\mathcal{V}_{g,d})$ localizes to fixed loci

g = 0: Atiyah-Bott Localization Thm reduces \int to \sum_{graphs}

 $g = 1: \overline{\mathfrak{M}}^0_q(\mathbb{P}^4, d), \mathcal{V}_{g,d}$ singular \Longrightarrow AB does not apply

Aleksey Zinger

Geometry of Genus 1 GW-Invariants

Stony Brook University

イロン イロン イヨン イヨ

- $(\mathbb{C}^*)^5$ acts on \mathbb{P}^4 (with 5 fixed pts)
- \Longrightarrow on $\overline{\mathfrak{M}}_{g}(\mathbb{P}^{4}, d)$ (with simple fixed loci) and on $\mathcal{V}_{g,d} \longrightarrow \overline{\mathfrak{M}}_{g}(\mathbb{P}^{4}, d)$
- $\int_{\overline{\mathfrak{M}}_g^0(\mathbb{P}^4,d)} e(\mathcal{V}_{g,d})$ localizes to fixed loci

g= 0: Atiyah-Bott Localization Thm reduces \int to \sum_{graphs}

g = 1: $\overline{\mathfrak{M}}_{g}^{0}(\mathbb{P}^{4}, d), \mathcal{V}_{g,d}$ singular \Longrightarrow AB does not apply

Stony Brook University

Aleksey Zinger

Genus 1 Bypass

Thm. C (Vakil–Z.'05): $\mathcal{V}_{1,d} \longrightarrow \overline{\mathfrak{M}}_1^0(\mathbb{P}^4, d)$ admit natural desingularizations:

Stony Brook University

- < ≣ > <

Aleksey Zinger

Genus 1 Bypass

Thm. C (Vakil–Z.'05): $\mathcal{V}_{1,d} \longrightarrow \overline{\mathfrak{M}}_1^0(\mathbb{P}^4, d)$ admit natural desingularizations:

$$\qquad \qquad \int_{\overline{\mathfrak{M}}_1^0(\mathbb{P}^4,d)} e(\mathcal{V}_{1,d}) = \int_{\widetilde{\mathfrak{M}}_1^0(\mathbb{P}^4,d)} e(\widetilde{\mathcal{V}}_{1,d})$$

Stony Brook University

Aleksey Zinger

Genus 1 Bypass

Thm. C (Vakil–Z.'05): $\mathcal{V}_{1,d} \longrightarrow \overline{\mathfrak{M}}_1^0(\mathbb{P}^4, d)$ admit natural desingularizations:

$$\widetilde{\mathcal{V}}_{1,d} \xrightarrow{} \mathcal{V}_{1,d} \\ \downarrow \\ \widetilde{\mathfrak{M}}_1^0(\mathbb{P}^4, d) \xrightarrow{} \overline{\mathfrak{M}}_1^0(\mathbb{P}^4, d)$$

$$\implies \qquad \int_{\overline{\mathfrak{M}}_1^0(\mathbb{P}^4,d)} \boldsymbol{e}(\mathcal{V}_{1,d}) = \int_{\widetilde{\mathfrak{M}}_1^0(\mathbb{P}^4,d)} \boldsymbol{e}(\widetilde{\mathcal{V}}_{1,d})$$

Stony Brook University

< ∃ > <

Aleksey Zinger

Thm. C generalizes to all $\mathcal{V}_{1,d} \longrightarrow \overline{\mathfrak{M}}_{1,k}^{0}(\mathbb{P}^{n}, d)$:

∴ Thms A,B,C provide an algorithm for computing genus 1 GWs of complete intersections $X \subset \mathbb{P}^n$

Aleksey Zinger

Stony Brook University

イロン イヨン イヨン イヨン

Thm. C generalizes to all $\mathcal{V}_{1,d} \longrightarrow \overline{\mathfrak{M}}_{1,k}^{0}(\mathbb{P}^{n}, d)$:

: Thms A,B,C provide an algorithm for computing genus 1 GWs of complete intersections $X \subset \mathbb{P}^n$

Aleksey Zinger

Stony Brook University

Thm. C generalizes to all $\mathcal{V}_{1,d} \longrightarrow \overline{\mathfrak{M}}_{1,k}^{0}(\mathbb{P}^{n}, d)$:

∴ Thms A,B,C provide an algorithm for computing genus 1 GWs of complete intersections $X \subset \mathbb{P}^n$

Aleksey Zinger

Stony Brook University

イロン イロン イヨン イヨ

Thm. C generalizes to all $\mathcal{V}_{1,d} \longrightarrow \overline{\mathfrak{M}}_{1,k}^{0}(\mathbb{P}^{n},d)$:

Thms A,B,C provide an algorithm for computing genus 1 GWs of complete intersections $X \subset \mathbb{P}^n$

Aleksey Zinger

Stony Brook University

イロン イロン イヨン イヨ

Thm. C generalizes to all $\mathcal{V}_{1,d} \longrightarrow \overline{\mathfrak{M}}_{1,k}^{0}(\mathbb{P}^{n}, d)$:

:. Thms A,B,C provide an algorithm for computing genus 1 GWs of complete intersections $X \subset \mathbb{P}^n$

Aleksey Zinger

Stony Brook University

イロン イロン イヨン イヨ

Computation of $N_{1,d}$ for all d

split genus 1 graphs into many genus 0 graphs at special vertex

- make use of good properties of genus 0 numbers to eliminate infinite sums
- extract non-equivariant part of elements in $H^*_{\mathbb{T}}(\mathbb{P}^4)$

Stony Brook University

Aleksey Zinger

Computation of $N_{1,d}$ for all d

- split genus 1 graphs into many genus 0 graphs at special vertex
- make use of good properties of genus 0 numbers to eliminate infinite sums
- extract non-equivariant part of elements in $H^*_{\mathbb{T}}(\mathbb{P}^4)$

Aleksey Zinger

Stony Brook University

Computation of $N_{1,d}$ for all d

- split genus 1 graphs into many genus 0 graphs at special vertex
- make use of good properties of genus 0 numbers to eliminate infinite sums
- extract non-equivariant part of elements in $H^*_{\mathbb{T}}(\mathbb{P}^4)$

Geometry of Genus 1 GW-Invariants

Aleksey Zinger

Key Geometric Foundation

A Sharp Gromov's Compactness Thm in Genus 1 (Z.'04)

- describes limits of sequences of pseudo-holomorphic maps
- describes limiting behavior for sequences of solutions of a $\bar\partial\text{-}\text{equation}$ with limited perturbation
- allows use of topological techniques to study genus 1 GWs

Aleksey Zinger

Stony Brook University

ヘロト ヘロト ヘヨト

Key Geometric Foundation

A Sharp Gromov's Compactness Thm in Genus 1 (Z.'04)

- describes limits of sequences of pseudo-holomorphic maps
- describes limiting behavior for sequences of solutions of a $\bar{\partial}\text{-}\text{equation}$ with limited perturbation
- allows use of topological techniques to study genus 1 GWs

< D > < B > < E > <</p>

Stony Brook University

Aleksev Zinger

Key Geometric Foundation

A Sharp Gromov's Compactness Thm in Genus 1 (Z.'04)

- describes limits of sequences of pseudo-holomorphic maps
- describes limiting behavior for sequences of solutions of a $\bar{\partial}$ -equation with limited perturbation
- allows use of topological techniques to study genus 1 GWs

Aleksey Zinger

Stony Brook University

• • • • • • • • • • • •

Key Geometric Foundation

A Sharp Gromov's Compactness Thm in Genus 1 (Z.'04)

- describes limits of sequences of pseudo-holomorphic maps
- describes limiting behavior for sequences of solutions of a $\bar\partial$ -equation with limited perturbation
- allows use of topological techniques to study genus 1 GWs

Aleksey Zinger

Stony Brook University

Analysis of Local Obstructions

- study obstructions to smoothing pseudo-holomorphic maps from smooth domains
- not just potential existence of obstructions

・ロ・・母・・ヨ・・ヨ・・日・ うへの

Aleksey Zinger

Stony Brook University

Analysis of Local Obstructions

- study obstructions to smoothing pseudo-holomorphic maps from smooth domains
- not just potential existence of obstructions

Aleksey Zinger

Analysis of Local Obstructions

- study obstructions to smoothing pseudo-holomorphic maps from smooth domains
- not just potential existence of obstructions

・ロ・・団・・団・・日・ シック

Aleksey Zinger

Stony Brook University

Analysis of Local Obstructions

- study obstructions to smoothing pseudo-holomorphic maps from smooth domains
- not just potential existence of obstructions

Aleksey Zinger

Stony Brook University