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Summary

Classical enumerative geometry: examples
Modern tools: Gromov-Witten invariants
counts of holomorphic maps
Insights from string theory:

quantum cohomology: refinement of usual cohomology
mirror symmetry formulas
duality between symplectic/holomorphic structures
integrality predictions for GW-invariants
geometric explanation yet to be discovered
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What is Classical EG about?

How many geometric objects satisfy given geometric
conditions?

objects = curves, surfaces, ...

conditions = passing through given points, curves,...
tangent to given curves, surfaces,...
having given shape: genus, singularities, degree

Aleksey Zinger Stony Brook University
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Example 0

Q: How many lines pass through 2 distinct points?
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Example 1

Q: How many lines pass thr 1 point and 2 lines in 3-space?
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lines thr. the point and 1st line form a plane
2nd line intersects the plane in 1 point
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Example 2

Q: How many lines pass thr 4 general lines in 3-space?
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bring two of the lines together so that
they intersect in a point and form a plane
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Example 2

Q: How many lines pass thr 4 general lines in 3-space?
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1 line passes thr the intersection pt and lines #3,4
1 line lies in the plane and passes thr lines #3,4
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General Line Counting Problems

All/most line counting problems in vector space V
reduce to computing intersections of cycles on

G(2,V ) ≡
{

2 dim linear subspaces of V
}

∼=
{

(affine) lines in V
}

This is a special case of Schubert Calculus
(very treatable)

Aleksey Zinger Stony Brook University
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Example 0 (a semi-modern view)

Q: How many lines pass through 2 distinct points?

A line in the plane is described by (A,B,C)6= 0:

Ax + By + C = 0.

(A,B,C) and (A′,B′,C′) describe the same line iff

(A′,B′,C′) = λ(A,B,C)

∴
{

lines in (x , y)-plane
}

=
{

1dim lin subs of (A,B,C)-space
}

≡ P2.

Aleksey Zinger Stony Brook University
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Example 0 (a semi-modern view)

Q: How many lines pass through 2 distinct points?
�� ��1

∴ = # of lines [A,B,C] ∈ P2 solving{
Ax1 + By1 + C = 0
Ax2 + By2 + C = 0

(x1, y1), (x2, y2)=fixed points

The system has 1 1dim lin space of solutions in (A,B,C)

Aleksey Zinger Stony Brook University
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Example 0′ (higher-degree plane curves)

degree d curve in (x , y)-plane
≡ 0-set of nonzero degree d polynomial in (x , y)

polynomials Q and Q′ determine same curve iff Q′ = λQ

# coefficients of Q is
(d+2

2

)
=⇒

{
deg d curves in (x , y)-plane

}
=
{

1dim lin subs of
(

d +2
2

)
-dim v.s.

}
≡ PN(d) N(d) ≡

(
d + 2

2

)
− 1
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Example 0′ (higher-degree plane curves)

{
deg d curves in (x , y)-plane

}
= PN(d)

"Passing thr a point" = 1 linear eqn on coefficients of Q
=⇒ get hyperplane in

(d+2
2

)
-dim v.s. of coefficients{

deg d curves in (x , y)-plane thr. (xi , yi)
}
≈ PN(d)−1 ⊂ PN(d)

intersection of
(d+2

2

)
−1 HPs in

(d+2
2

)
-dim v.s. is 1 1dim lin subs

intersection of N(d) HPs in PN(d) is 1 point

Aleksey Zinger Stony Brook University

Enumerative Geometry



Summary Classical Enumerative Geometry Modern Approach Outline of Proof On Thms A,B,C

Example 0′ (higher-degree plane curves)

∃! degree d plane curve thr N(d) ≡
(d+2

2

)
− 1 general pts

d = 1 : ∃! line thr 2 distinct pts in the plane
d = 2 : ∃! conic thr 5 general pts in the plane
d = 3 : ∃! cubic thr 9 general pts in the plane

Aleksey Zinger Stony Brook University
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Typical Enumerative Problems

Count complex curves = (singular) Riemann surfaces Σ
of fixed genus g, fixed degree d
in Cn, CPn = Cn t Cn−1 t . . . t C0

in a hypersurface Y ⊂ Cn,CPn (0-set of a polynomial)

g(Σ) ≡ genus of Σ− singular points
d(Σ) ≡ # intersections of Σ with a generic hyperplane

Aleksey Zinger Stony Brook University
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Adjunction Formula

If Σ ⊂ CP2 is smooth and of degree d ,

g(Σ) =

(
d − 1

2

)

every line, conic is of genus 0
every smooth plane cubic is of genus 1
every smooth plane quartic is of genus 3

Aleksey Zinger Stony Brook University
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Classical Problem

nd ≡ # genus 0 degree d plane curves thr. (3d-1) general pts

n1 = 1: # lines thr 2 pts
n2 = 1: # conics thr 5 pts
n3 = 12: # nodal cubics thr 8 pts =⇒

∫
M1,1

ψ1 = 1
24

n3 = # zeros of transverse bundle section over CP1×CP2

= euler class of rank 3 vector bundle over CP1×CP2

CP1 = cubics thr. 8 general pts; CP2 = possibilities for node

Aleksey Zinger Stony Brook University

Enumerative Geometry



Summary Classical Enumerative Geometry Modern Approach Outline of Proof On Thms A,B,C

Genus 0 Plane Quartics thr 11 pts

n4 = # plane quartics thr 11 pts with 3 non-separating nodes
Zeuthen’1870s: n4 = 620 = 675− 55

3! · 675 = euler class of rank 9 vector bundle over CP3×(CP2)3

minus excess contributions of a certain section
CP3 = quartics thr 11 pts; CP2 = possibilities for i-th node

Details in
Counting Rational Plane Curves: Old and New Approaches

Aleksey Zinger Stony Brook University
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Kontsevich’s Formula (Ruan-Tian’1993)

nd ≡ # genus 0 degree d plane curves thr. (3d-1) general pts
n1 = 1

nd =
1

6(d−1)

∑
d1+d2=d

(
d1d2− 2

(d1−d2)2

3d − 2

)(
3d−2
3d1−1

)
d1d2nd1nd2

n2 = 1, n3 = 12, n4 = 620, n5 = 87,304, n6 = 26,312,976, ...

Aleksey Zinger Stony Brook University
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Gromov’s 1985 paper

Consider equivalence classes of maps f : (Σ, j) −→ CPn

(Σ, j)=connected Riemann surface, possibly with nodes

f : (Σ, j) −→ CPn and f ′ : (Σ′, j ′) −→ CPn are equivalent if
f = f ′ ◦ τ for some τ : (Σ, j) −→ (Σ′, j ′)

f : (Σ, j) −→ CPn is stable if

Aut(f ) ≡
{
τ : (Σ, j)−→(Σ, j)|f ◦ τ = f

}
is finite

non-constant holomorphic f : (Σ, j) −→ CPn is stable iff
the restr. of f to any S2⊂Σ w. fewer than 3 nodes is not const

Aleksey Zinger Stony Brook University
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Gromov’s Compactness Theorem

genus of f : (Σ, j)−→CPn is # of holes in Σ (≥ g(Σ))

degree d of f ≡ |f−1(H)| for a generic hyperplane:

f∗[Σ] = d [CP1] ∈ H2(CPn; Z) = Z[CP1]

Theorem: With respect to a natural topology,

Mg(CPn,d) ≡
{

[f : (Σ, j)−→CPn] : g(f )=g, d(f )=d , f holomor
}

is compact

Aleksey Zinger Stony Brook University
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Maps vs. Curves

Image of holomorphic f : (Σ, j) −→ CPn is a curve
genus of f (Σ) ≤ g(f ); degree of f (Σ) ≤ d(f )

=⇒ nd ≡ # genus 0 degree d curves thr. (3d-1) pts in CP2

= # degree d f : (S2, j)−→CP2 s.t. pi ∈ f (CP1)
i = 1, . . . ,3d−1

= #
{

[f : (Σ, j)−→CP2]∈M0(CP2,d) : pi ∈ f (Σ)
}

Aleksey Zinger Stony Brook University
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Physics Insight I: Quantum (Co)homology

Use counts of genus 0 maps to CPn to deform ∪-product on H∗,

H∗(CPn) = Z[x ]/xn+1, xa ∪ xb = xa+b,

to ∗-product on H∗(CPn)[q0, . . . ,qn]
xa ∗ xb = xa+b+ q-corrections counting genus 0 maps

thr. CPn−a, CPn−b

Theorem (McDuff-Salamon’93, Ruan-Tian’93, ...)
The product ∗ is associative

∗ generalizes to all cmpt algebraic/symplectic manifolds

Aleksey Zinger Stony Brook University
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Physics Insight I: Quantum (Co)homology

Associativity of quantum multiplication is equivalent to
Kontsevich’s formula for CP2, extension to CPn

gluing formula for counts of genus 0 maps

Remark: Classical proof of Kontsevich’s formula for CP2 only:
Z. Ran’95, elaborating on ’89

Aleksey Zinger Stony Brook University
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Other Enumerative Applications of Stable Maps

Genus 0 with singularities: Pandharipande, Vakil, Z.-
Genus 1: R. Pandharipande, Ionel, Z.-
Genus 2,3: Z.-

Aleksey Zinger Stony Brook University
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Gromov-Witten Invariants

Y = CPn, = hypersurface in CPn (0-set of a polynomial),...
µ1, . . . , µk ⊂ Y cycles

GWY
g,d (µ) ≡ ”#”

{
[f : (Σ, j)−→Y ]∈Mg(Y ,d) : f (Σ) ∩µi 6=∅

}
g = 0, Y = CPn: Mg(Y ,d) is smooth, of expected dim, "#"=#

Typically, Mg(Y ,d) is highly singular, of wrong dim

Aleksey Zinger Stony Brook University
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Example: Quintic Threefold

Y5 ⊂ CP4 0-set of a degree 5 polynomial Q
Schubert Calculus: Y5 contains 2,875 (isolated) lines
S. Katz’86 (via Schubert): Y5 contains 609,250 conics

For each line L⊂Y5 and conic C⊂Y5,{
[f : (Σ, j)−→Y5] ∈M0(Y5,2) : f (Σ)⊂L

}
≈M0(CP1,2){

[f : (Σ, j)−→Y5]∈M0(Y5,2) : f (Σ)⊂C
}
≈M0(CP1,1)

are connected components of M0(Y5,2) of dimensions 2 and 0

Aleksey Zinger Stony Brook University
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Expected dimension of M0(Y5, d)

Y5 = Q−1(0) ⊂ CP4 for a degree 5 polynomial Q

=⇒ M0(Y5,d) =
{

[f : (Σ, j)−→CP4]∈M0(CP4,d) : Q ◦ f = 0
}

holomorphic degree d f : CP1−→CP4 has the form

f ([u, v ]) =
[
R1(u, v), . . . ,R5(u, v)

]
R1, . . . ,R5 = homogeneous polynomials of degree d

=⇒ dim M0(CP4,d) = 5 · (d +1)− 1− 3

Q ◦ f is homogen of degree 5d
=⇒ Q ◦ f = 0 is 5d +1 conditions on R1, . . . ,R5

Aleksey Zinger Stony Brook University
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Expected dimension of M0(Y5, d)

=⇒ dimvir M0(Y5,d) = dim M0(CP4,d)− (5d + 1) = 0

A more elaborate computation gives

dimvir Mg(Y5,d) = 0 ∀ g

=⇒ want to define

Ng,d ≡ GWY5
g,d () ≡

∣∣Mg(Y5,d)
∣∣vir

Aleksey Zinger Stony Brook University
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GW-Invariants of Y5 ⊂ CP4

Mg(Y5,d) =
{

[f : (Σ, j)−→Y5]| g(f )=g,d(f )=d , ∂̄j f = 0
}

∂̄j f ≡ df + JY5 ◦ df ◦ j

Ng,d ≡
∣∣Mg(Y5,d)

∣∣vir

≡ #
{

[f : (Σ, j)−→Y5]| g(f )=g,d(f )=d , ∂̄j f = ν(f )
}

ν = small generic deformation of ∂̄-equation

ν multi-valued =⇒ Ng,d ∈ Q

Aleksey Zinger Stony Brook University
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What is special about Y5?

Y5 is Calabi-Yau 3-fold:
c1(TY5) = 0
Y5 is "flat on average": RicY5=0

CY 3-folds are central to string theory

Aleksey Zinger Stony Brook University
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Physics Insight II: Mirror Symmetry

�



�
	A-Model partition function

for Calabi-Yau 3-fold Y
MIRROR

principle

�



�
	B-Model partition function

for mirror (family) of Y

generating function for GWs of Y :
F A

g (q) =
∑∞

d=1 Ng,dqd

��

KS

? F B
g “measures" geometry of

moduli spaces of mirror CYs

��

KS
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B-Side Computations for Y = Y5

Candelas-de la Ossa-Green-Parkes’91
construct mirror family, compute F B

0

Bershadsky-Cecotti-Ooguri-Vafa’93 (BCOV)
compute F B

1 using physics arguments
Fang-Z. Lu-Yoshikawa’03 compute F B

1 mathematically
Huang-Klemm-Quackenbush’06

compute F B
g , g ≤ 51 using physics

Aleksey Zinger Stony Brook University
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Mirror Symmetry Predictions and Verifications

Predictions

F A
g (q) ≡

∞∑
d=1

Ng,dqd ?
= F B

g (q).

Theorem (Givental’96, Lian-Liu-Yau’97,.........∼’00)
g = 0 predict. of Candelas-de la Ossa-Green-Parkes’91 holds

Theorem (Z.’07)
g = 1 predict. of Bershadsky-Cecotti-Ooguri-Vafa’93 holds

Aleksey Zinger Stony Brook University
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General Approach to Verifying F A
g = F B

g

(works for g = 0, 1)

Need to compute each Ng,d and all of them (for fixed g):
Step 1: relate Ng,d to GWs of CP4 ⊃ Y5

Step 2: use (C∗)5-action on CP4 to compute each Ng,d
by localization

Step 3: find some recursive feature(s) to compute Ng,d ∀d
⇐⇒ F A

g

Aleksey Zinger Stony Brook University
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From Y5 ⊂ CP4 to CP4

L

π

��

≡ O(5) Mg(L,d)Vg,d ≡

π̃
��

CP4Y5 ≡ Q−1(0) ⊂

Q

II

Mg(CP4,d)Mg(Y5,d) ≡ Q̃−1(0) ⊂

Q̃

JJ

π̃
(
[ξ : Σ−→L]

)
= [π◦ξ : Σ−→CP4]

Q̃
(
[f : Σ−→CP4]

)
= [Q◦f : Σ−→L]
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From Y5 ⊂ CP4 to CP4

L

π

��

≡ O(5) Mg(L,d)Vg,d ≡

π̃
��

CP4Y5 ≡ Q−1(0) ⊂

Q

II

Mg(CP4,d)Mg(Y5,d) ≡ Q̃−1(0) ⊂

Q̃

JJ

This suggests: Hyperplane Property

Ng,d ≡
∣∣Mg(Y5,d)

∣∣vir ≡
∣∣Q̃−1(0)

∣∣vir

?
=
〈
e(Vg,d ), [Mg(CP4,d)]vir〉

Aleksey Zinger Stony Brook University
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Genus 0 vs. Positive Genus

g = 0 everything is as expected:

Mg(CP4,d) is smooth
[Mg(CP4,d)]vir = [Mg(CP4,d)]
Vg,d −→Mg(CP4,d) is vector bundle
hyperplane prop. makes sense and holds

g ≥ 1 none of these holds

Aleksey Zinger Stony Brook University
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Genus 1 Analogue

Thm. A (J. Li–Z.’04): HP holds for reduced genus 1 GWs∣∣M0
1(Y5,d)

∣∣vir
= e(V1,d ) ∩M

0
1(CP4,d).

This generalizes to complete intersections Y ⊂ CPn.

M
0
1(CP4,d) ⊂M1(CP4,d) main irred. component

closure of
{

[f : Σ−→CP4]∈M1(CP4,d) : Σ is smooth
}

V1,d −→M
0
1(CP4,d) not vector bundle, but

e(V1,d ) well-defined (0-set of generic section)

Aleksey Zinger Stony Brook University
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Standard vs. Reduced GWs

Thm. A =⇒ N0
1,d ≡

∣∣M0
1(Y5,d)

∣∣vir
=

∫
M

0
1(CP4,d)

e(V1,d )

M
0
1(Y5,d) ≡M

0
1(CP4,d) ∩M1(Y5,d)

Thm. B (Z.’04,’07): N1,d − N0
1,d = 1

12N0,d

This generalizes to all symplectic manifolds:

[standard] − [reduced genus 1 GW] = F (genus 0 GW)

∴ to check BCOV, enough to compute
∫
M

0
1(CP4,d)

e(V1,d )

Aleksey Zinger Stony Brook University

Enumerative Geometry



Summary Classical Enumerative Geometry Modern Approach Outline of Proof On Thms A,B,C

Torus Actions

(C∗)5 acts on CP4 (with 5 fixed pts)
=⇒ on Mg(CP4,d) (with simple fixed loci)

and on Vg,d−→Mg(CP4,d)∫
M

0
g(CP4,d)

e(Vg,d ) localizes to fixed loci

g = 0: Atiyah-Bott Localization Thm reduces
∫

to
∑

graphs

g = 1: M
0
g(CP4,d),Vg,d singular =⇒ AB does not apply

Aleksey Zinger Stony Brook University
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Genus 1 Bypass

Thm. C (Vakil–Z.’05): V1,d −→M
0
1(CP4,d) admit

natural desingularizations:

Ṽ1,d
//

��

V1,d

��

M̃0
1(CP4,d) // M

0
1(CP4,d)

=⇒
∫

M
0
1(CP4,d)

e(V1,d ) =

∫
M̃0

1(CP4,d)
e(Ṽ1,d )

Aleksey Zinger Stony Brook University
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Computation of Genus 1 GWs of CIs

Thm. C generalizes to all V1,d −→M
0
1,k (CPn,d):

L

π

��

≡ O(a) M1,k (L,d)V1,d ≡

π̃
��

CPn M1,k (CPn,d)

∴ Thms A,B,C provide an algorithm for computing
genus 1 GWs of complete intersections X ⊂ CPn

Aleksey Zinger Stony Brook University
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Computation of N1,d for all d

split genus 1 graphs into many genus 0 graphs
at special vertex
make use of good properties of genus 0 numbers to
eliminate infinite sums
extract non-equivariant part of elements in H∗T(P4)

Aleksey Zinger Stony Brook University
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Key Geometric Foundation

A Sharp Gromov’s Compactness Thm in Genus 1 (Z.’04)
describes limits of sequences of pseudo-holomorphic
maps
describes limiting behavior for sequences of solutions of
a ∂̄-equation with limited perturbation
allows use of topological techniques to study genus 1 GWs

Aleksey Zinger Stony Brook University
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Main Tool

Analysis of Local Obstructions
study obstructions to smoothing pseudo-holomorphic maps
from singular domains
not just potential existence of obstructions

Aleksey Zinger Stony Brook University
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