Enumerative Geometry: from Classical to Modern

Aleksey Zinger

Stony Brook University
February 28, 2008

Summary

- Classical enumerative geometry: examples
- Modern tools: Gromov-Witten invariants counts of holomorphic maps
- Insights from string theory:
- quantum cohomology: refinement of usual cohomology
- mirror symmetry formulas duality between symplectic/holomorphic structures
- integrality predictions for GW-invariants geometric explanation yet to be discovered

What is Classical EG about?

How many geometric objects satisfy given geometric conditions?
objects $=$ curves, surfaces, \ldots
conditions $=$ passing through given points, curves,... tangent to given curves, surfaces,... having given shape: genus, singularities, degree

Example 0

Q: How many lines pass through 2 distinct points? 1

Example 1

Q: How many lines pass thr 1 point and 2 lines in 3 -space?

lines thr. the point and 1st line form a plane 2nd line intersects the plane in 1 point

Example 2

Q: How many lines pass thr 4 general lines in 3-space?

bring two of the lines together so that they intersect in a point and form a plane

Example 2

Q: How many lines pass thr 4 general lines in 3-space? (2)

1 line passes thr the intersection pt and lines \#3,4
1 line lies in the plane and passes thr lines \#3,4

General Line Counting Problems

All/most line counting problems in vector space V reduce to computing intersections of cycles on

$$
\begin{aligned}
G(2, V) & \equiv\{2 \text { dim linear subspaces of } V\} \\
& \cong\{\text { (affine }) \text { lines in } V\}
\end{aligned}
$$

This is a special case of Schubert Calculus (very treatable)

Example 0 (a semi-modern view)

Q: How many lines pass through 2 distinct points?
A line in the plane is described by $(A, B, C) \neq 0$:

$$
A x+B y+C=0 .
$$

(A, B, C) and $\left(A^{\prime}, B^{\prime}, C^{\prime}\right)$ describe the same line iff

$$
\left(A^{\prime}, B^{\prime}, C^{\prime}\right)=\lambda(A, B, C)
$$

$\therefore \quad\{$ lines in (x, y)-plane $\}=\{1$ dim lin subs of (A, B, C)-space $\}$

$$
\equiv \mathbb{P}^{2}
$$

Example 0 (a semi-modern view)

Q: How many lines pass through 2 distinct points? 1

$\therefore=\#$ of lines $[A, B, C] \in \mathbb{P}^{2}$ solving

$$
\left\{\begin{array}{l}
A x_{1}+B y_{1}+C=0 \\
A x_{2}+B y_{2}+C=0
\end{array}\right.
$$

$\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)=$ fixed points
The system has 1 1dim lin space of solutions in (A, B, C)

Example 0' (higher-degree plane curves)

degree d curve in (x, y)-plane
$\equiv 0$-set of nonzero degree d polynomial in (x, y) polynomials Q and Q^{\prime} determine same curve iff $Q^{\prime}=\lambda Q$
\# coefficients of Q is $\binom{d+2}{2} \quad \Longrightarrow$
$\{$ deg d curves in (x, y)-plane $\}=\left\{1\right.$ dim lin subs of $\binom{d+2}{2}$-dim v.s. $\}$

$$
\equiv \mathbb{P}^{N(d)} \quad N(d) \equiv\binom{d+2}{2}-1
$$

Example 0^{\prime} (higher-degree plane curves)

$$
\{\text { deg d curves in }(x, y) \text {-plane }\}=\mathbb{P}^{N(d)}
$$

"Passing thr a point" $=1$ linear eqn on coefficients of Q
\Longrightarrow get hyperplane in $\binom{d+2}{2}$-dim v.s. of coefficients
$\left\{\right.$ deg d curves in (x, y)-plane thr. $\left.\left(x_{i}, y_{i}\right)\right\} \approx \mathbb{P}^{N(d)-1} \subset \mathbb{P}^{N(d)}$
intersection of $\binom{d+2}{2}-1 \mathrm{HPs}$ in $\binom{d+2}{2}$-dim v.s. is 11 dim lin subs intersection of $N(d)$ HPs in $\mathbb{P}^{N(d)}$ is 1 point

Example 0^{\prime} (higher-degree plane curves)

ق! degree d plane curve thr $N(d) \equiv\binom{d+2}{2}-1$ general pts
$d=1: \exists$! line thr 2 distinct pts in the plane
$d=2$: \exists ! conic thr 5 general pts in the plane
$d=3$: \exists ! cubic thr 9 general pts in the plane

Typical Enumerative Problems

Count complex curves = (singular) Riemann surfaces Σ of fixed genus g, fixed degree d in $\mathbb{C}^{n}, \mathbb{C} P^{n}=\mathbb{C}^{n} \sqcup \mathbb{C}^{n-1} \sqcup \ldots \sqcup \mathbb{C}^{0}$ in a hypersurface $Y \subset \mathbb{C}^{n}, \mathbb{C} P^{n}$ (0-set of a polynomial)
$g(\Sigma) \equiv$ genus of Σ - singular points $d(\Sigma) \equiv$ \# intersections of Σ with a generic hyperplane

Adjunction Formula

If $\Sigma \subset \mathbb{C} P^{2}$ is smooth and of degree d,

$$
g(\Sigma)=\binom{d-1}{2}
$$

every line, conic is of genus 0 every smooth plane cubic is of genus 1 every smooth plane quartic is of genus 3

Classical Problem

$n_{d} \equiv \#$ genus 0 degree d plane curves thr. (3d-1) general pts
$n_{1}=1$: \# lines thr 2 pts
$n_{2}=1$: \# conics thr 5 pts
$n_{3}=12: \#$ nodal cubics thr 8 pts $\quad \Longrightarrow \quad \int_{\overline{\mathcal{M}}_{1,1}} \psi_{1}=\frac{1}{24}$
$n_{3}=\#$ zeros of transverse bundle section over $\mathbb{C} P^{1} \times \mathbb{C} P^{2}$
= euler class of rank 3 vector bundle over $\mathbb{C} P^{1} \times \mathbb{C} P^{2}$
$\mathbb{C} P^{1}=$ cubics thr. 8 general pts; $\mathbb{C} P^{2}=$ possibilities for node

Genus 0 Plane Quartics thr 11 pts

$n_{4}=\#$ plane quartics thr 11 pts with 3 non-separating nodes
Zeuthen'1870s: $n_{4}=620=675-55$
$3!\cdot 675=$ euler class of rank 9 vector bundle over $\mathbb{C} P^{3} \times\left(\mathbb{C} P^{2}\right)^{3}$ minus excess contributions of a certain section
$\mathbb{C} P^{3}=$ quartics thr $11 \mathrm{pts} ; \mathbb{C} P^{2}=$ possibilities for i-th node
Details in
Counting Rational Plane Curves: Old and New Approaches

Kontsevich's Formula (Ruan-Tian'1993)

$$
\begin{aligned}
& n_{d} \equiv \# \text { genus } 0 \text { degree d plane curves thr. (3d-1) general pts } \\
& n_{1}=1
\end{aligned}
$$

$$
n_{d}=\frac{1}{6(d-1)} \sum_{d_{1}+d_{2}=d}\left(d_{1} d_{2}-2 \frac{\left(d_{1}-d_{2}\right)^{2}}{3 d-2}\right)\binom{3 d-2}{3 d_{1}-1} d_{1} d_{2} n_{d_{1}} n_{d_{2}}
$$

$$
n_{2}=1, n_{3}=12, n_{4}=620, n_{5}=87,304, n_{6}=26,312,976, \ldots
$$

Gromov's 1985 paper

Consider equivalence classes of maps $f:(\Sigma, j) \longrightarrow \mathbb{C} P^{n}$ ($\Sigma, j)=$ connected Riemann surface, possibly with nodes
$f:(\Sigma, j) \longrightarrow \mathbb{C} P^{n}$ and $f^{\prime}:\left(\Sigma^{\prime}, j^{\prime}\right) \longrightarrow \mathbb{C} P^{n}$ are equivalent if $f=f^{\prime} \circ \tau$ for some $\tau:(\Sigma, j) \longrightarrow\left(\Sigma^{\prime}, j^{\prime}\right)$
$f:(\Sigma, j) \longrightarrow \mathbb{C} P^{n}$ is stable if

$$
\operatorname{Aut}(f) \equiv\{\tau:(\Sigma, j) \longrightarrow(\Sigma, j) \mid f \circ \tau=f\} \quad \text { is finite }
$$

non-constant holomorphic $f:(\Sigma, j) \longrightarrow \mathbb{C} P^{n}$ is stable iff the restr. of f to any $S^{2} \subset \Sigma w$. fewer than 3 nodes is not const

Gromov's Compactness Theorem

genus of $f:(\Sigma, j) \longrightarrow \mathbb{C} P^{n}$ is \# of holes in $\Sigma(\geq g(\Sigma))$ degree d of $f \equiv\left|f^{-1}(H)\right|$ for a generic hyperplane:

$$
f_{*}[\Sigma]=d\left[\mathbb{C} P^{1}\right] \in H_{2}\left(\mathbb{C} P^{n} ; \mathbb{Z}\right)=\mathbb{Z}\left[\mathbb{C} P^{1}\right]
$$

Theorem: With respect to a natural topology,

$$
\begin{aligned}
& \overline{\mathfrak{M}}_{g}\left(\mathbb{C} P^{n}, d\right) \equiv\left\{\left[f:(\Sigma, j) \longrightarrow \mathbb{C} P^{n}\right]: g(f)=g, d(f)=d, f \text { holomor }\right\} \\
& \text { is compact }
\end{aligned}
$$

Maps vs. Curves

Image of holomorphic $f:(\Sigma, j) \longrightarrow \mathbb{C} P^{n}$ is a curve genus of $f(\Sigma) \leq g(f)$; degree of $f(\Sigma) \leq d(f)$
$\Longrightarrow n_{d} \equiv \#$ genus 0 degree d curves thr. (3d-1) pts in $\mathbb{C} P^{2}$
$=\#$ degree d $f:\left(S^{2}, j\right) \longrightarrow \mathbb{C} P^{2}$ s.t. $p_{i} \in f\left(\mathbb{C} P^{1}\right)$ $i=1, \ldots, 3 d-1$ $=\#\left\{\left[f:(\Sigma, j) \longrightarrow \mathbb{C} P^{2}\right] \in \overline{\mathfrak{M}}_{0}\left(\mathbb{C} P^{2}, d\right): p_{i} \in f(\Sigma)\right\}$

Physics Insight I: Quantum (Co)homology

Use counts of genus 0 maps to $\mathbb{C} P^{n}$ to deform \cup-product on H^{*},

$$
H^{*}\left(\mathbb{C} P^{n}\right)=\mathbb{Z}[x] / x^{n+1}, \quad x^{a} \cup x^{b}=x^{a+b}
$$

to $*$-product on $H^{*}\left(\mathbb{C} P^{n}\right)\left[q_{0}, \ldots, q_{n}\right]$
$x^{a} * x^{b}=x^{a+b}+q$-corrections counting genus 0 maps thr. $\mathbb{C} P^{n-a}, \mathbb{C} P^{n-b}$

Theorem (McDuff-Salamon'93, Ruan-Tian'93, ...)

The product $*$ is associative

* generalizes to all cmpt algebraic/symplectic manifolds

Physics Insight I: Quantum (Co)homology

Associativity of quantum multiplication is equivalent to

- Kontsevich's formula for $\mathbb{C} P^{2}$, extension to $\mathbb{C} P^{n}$
- gluing formula for counts of genus 0 maps

Remark: Classical proof of Kontsevich's formula for $\mathbb{C} P^{2}$ only:
Z. Ran'95, elaborating on '89

Other Enumerative Applications of Stable Maps

- Genus 0 with singularities: Pandharipande, Vakil, Z.-
- Genus 1: R. Pandharipande, lonel, Z.-
- Genus 2,3: Z.-

Gromov-Witten Invariants

$Y=\mathbb{C} P^{n},=$ hypersurface in $\mathbb{C} P^{n}(0$-set of a polynomial), \ldots $\mu_{1}, \ldots, \mu_{k} \subset Y$ cycles

$$
\operatorname{GW}_{g, d}^{Y}(\mu) \equiv " \# "\left\{[f:(\Sigma, j) \longrightarrow Y] \in \overline{\mathfrak{M}}_{g}(Y, d): f(\Sigma) \cap \mu_{i} \neq \emptyset\right\}
$$

$g=0, Y=\mathbb{C} P^{n}: \overline{\mathfrak{M}}_{g}(Y, d)$ is smooth, of expected dim, "\#"=\#
Typically, $\overline{\mathfrak{M}}_{g}(Y, d)$ is highly singular, of wrong dim

Example: Quintic Threefold

$Y_{5} \subset \mathbb{C} P^{4} 0$-set of a degree 5 polynomial Q
Schubert Calculus: Y_{5} contains 2,875 (isolated) lines S. Katz'86 (via Schubert): Y_{5} contains 609,250 conics

For each line $L \subset Y_{5}$ and conic $C \subset Y_{5}$,

$$
\begin{aligned}
\left\{\left[f:(\Sigma, j) \longrightarrow Y_{5}\right] \in \overline{\mathfrak{M}}_{0}\left(Y_{5}, 2\right): f(\Sigma) \subset L\right\} & \approx \overline{\mathfrak{M}}_{0}\left(\mathbb{C} P^{1}, 2\right) \\
\left\{\left[f:(\Sigma, j) \longrightarrow Y_{5}\right] \in \overline{\mathfrak{M}}_{0}\left(Y_{5}, 2\right): f(\Sigma) \subset C\right\} & \approx \overline{\mathfrak{M}}_{0}\left(\mathbb{C} P^{1}, 1\right)
\end{aligned}
$$

are connected components of $\overline{\mathfrak{M}}_{0}\left(Y_{5}, 2\right)$ of dimensions 2 and 0

Expected dimension of $\overline{\mathfrak{M}}_{0}\left(Y_{5}, d\right)$

$$
\begin{aligned}
& Y_{5}=Q^{-1}(0) \subset \mathbb{C} P^{4} \text { for a degree } 5 \text { polynomial } Q \\
& \Longrightarrow \overline{\mathfrak{M}}_{0}\left(Y_{5}, d\right)=\left\{\left[f:(\Sigma, j) \longrightarrow \mathbb{C} P^{4}\right] \in \overline{\mathfrak{M}}_{0}\left(\mathbb{C} P^{4}, d\right): Q \circ f=0\right\}
\end{aligned}
$$

holomorphic degree $d f: \mathbb{C} P^{1} \longrightarrow \mathbb{C} P^{4}$ has the form

$$
f([u, v])=\left[R_{1}(u, v), \ldots, R_{5}(u, v)\right]
$$

$R_{1}, \ldots, R_{5}=$ homogeneous polynomials of degree d

$$
\Longrightarrow \quad \operatorname{dim} \overline{\mathfrak{M}}_{0}\left(\mathbb{C} P^{4}, d\right)=5 \cdot(d+1)-1-3
$$

$Q \circ f$ is homogen of degree $5 d$
$\Longrightarrow \quad Q \circ f=0$ is $5 d+1$ conditions on R_{1}, \ldots, R_{5}

Expected dimension of $\overline{\mathfrak{M}}_{0}\left(Y_{5}, d\right)$

$$
\Longrightarrow \quad \operatorname{dim}^{\operatorname{vir}} \overline{\mathfrak{M}}_{0}\left(Y_{5}, d\right)=\operatorname{dim} \overline{\mathfrak{M}}_{0}\left(\mathbb{C} P^{4}, d\right)-(5 d+1)=0
$$

A more elaborate computation gives

$$
\operatorname{dim}^{\operatorname{vir}} \overline{\mathfrak{M}}_{g}\left(Y_{5}, d\right)=0 \quad \forall g
$$

\Longrightarrow want to define

$$
N_{g, d} \equiv \mathrm{GW}_{g, d}^{Y_{5}}() \equiv\left|\overline{\mathfrak{M}}_{g}\left(Y_{5}, d\right)\right|^{\text {vir }}
$$

GW-Invariants of $Y_{5} \subset \mathbb{C} P^{4}$

$$
\begin{aligned}
& \overline{\mathfrak{M}}_{g}\left(Y_{5}, d\right)=\left\{\left[f:(\Sigma, j) \longrightarrow Y_{5}\right] \mid g(f)=g, d(f)=d, \bar{\partial}_{j} f=0\right\} \\
& \bar{\partial}_{j} f \equiv d f+J_{Y_{5}} \circ d f \circ j \\
& N_{g, d} \equiv\left|\overline{\mathfrak{M}}_{g}\left(Y_{5}, d\right)\right|^{v i r} \\
& \equiv \#\left\{\left[f:(\Sigma, j) \longrightarrow Y_{5}\right] \mid g(f)=g, d(f)=d, \bar{\partial}_{j} f=\nu(f)\right\}
\end{aligned}
$$

$\nu=$ small generic deformation of $\bar{\partial}$-equation
ν multi-valued $\Longrightarrow N_{g, d} \in \mathbb{Q}$

What is special about Y_{5} ?

Y_{5} is Calabi-Yau 3-fold:

- $c_{1}\left(T Y_{5}\right)=0$
- Y_{5} is "flat on average": $\operatorname{Ric}_{Y_{5}}=0$

CY 3-folds are central to string theory

Physics Insight II: Mirror Symmetry

B-Side Computations for $Y=Y_{5}$

- Candelas-de la Ossa-Green-Parkes'91 construct mirror family, compute F_{0}^{B}
- Bershadsky-Cecotti-Ooguri-Vafa'93 (BCOV) compute F_{1}^{B} using physics arguments
- Fang-Z. Lu-Yoshikawa'03 compute F_{1}^{B} mathematically
- Huang-Klemm-Quackenbush'06
compute $F_{g}^{B}, g \leq 51$ using physics

Mirror Symmetry Predictions and Verifications

Predictions

$$
F_{g}^{A}(q) \equiv \sum_{d=1}^{\infty} N_{g, d} q^{d} \stackrel{?}{=} F_{g}^{B}(q)
$$

Theorem (Givental'96, Lian-Liu-Yau'97,.........~'00)
$g=0$ predict. of Candelas-de la Ossa-Green-Parkes'91 holds
Theorem (Z.'07)
$g=1$ predict. of Bershadsky-Cecotti-Ooguri-Vafa'93 holds

General Approach to Verifying $F_{g}^{A}=F_{g}^{B}$ (works for $g=0,1$)

Need to compute each $N_{g, d}$ and all of them (for fixed g):
Step 1: relate $N_{g, d}$ to GWs of $\mathbb{C} P^{4} \supset Y_{5}$
Step 2: use $\left(\mathbb{C}^{*}\right)^{5}$-action on $\mathbb{C} P^{4}$ to compute each $N_{g, d}$ by localization
Step 3: find some recursive feature(s) to compute $N_{g, d} \forall d$ $\Longleftrightarrow F_{g}^{A}$

From $Y_{5} \subset \mathbb{C} P^{4}$ to $\mathbb{C} P^{4}$

$$
\begin{gathered}
\mathcal{L} \equiv \mathcal{O}(5) \\
Q \nmid \|_{\pi} \\
Y_{5} \equiv Q^{-1}(0) \subset \mathbb{C} P^{4} \quad \overline{\mathcal{M}}_{g}\left(Y_{5}, d\right) \equiv \overline{\mathfrak{M}}_{g}(\mathcal{L}, d) \\
\tilde{Q}|\mid \tilde{\Perp} \\
\tilde{\pi}([\xi: \Sigma \longrightarrow \mathcal{L}])=\left[\pi \circ \xi: \Sigma \longrightarrow \mathbb{C} P^{4}\right] \\
\tilde{Q}\left(\left[f: \Sigma \longrightarrow \mathbb{C} P^{4}\right]\right)=[Q \circ f: \Sigma \longrightarrow \mathcal{L}]
\end{gathered}
$$

From $Y_{5} \subset \mathbb{C} P^{4}$ to $\mathbb{C} P^{4}$

$$
\begin{array}{cr}
\mathcal{L} \equiv \mathcal{O}(5) & \mathcal{V}_{g, d} \equiv \overline{\mathfrak{M}}_{g}(\mathcal{L}, d) \\
Q \|_{\pi} & \tilde{Q}\left|\left|\left.\right|_{\tilde{\pi}}\right.\right. \\
Y_{5} \equiv Q^{-1}(0) \subset \mathbb{C} P^{4} & \overline{\mathfrak{M}}_{g}\left(Y_{5}, d\right) \equiv \tilde{Q}^{-1}(0) \subset \overline{\mathfrak{M}}_{g}\left(\mathbb{C} P^{4}, d\right)
\end{array}
$$

This suggests: Hyperplane Property

$$
\begin{aligned}
N_{g, d} & \equiv\left|\overline{\mathfrak{M}}_{g}\left(Y_{5}, d\right)\right|^{\text {vir }} \equiv\left|\tilde{Q}^{-1}(0)\right|^{\text {vir }} \\
& \stackrel{?}{=}\left\langle e\left(\mathcal{V}_{g, d}\right),\left[\overline{\mathfrak{M}}_{g}\left(\mathbb{C} P^{4}, d\right)\right]^{\text {vir }}\right\rangle
\end{aligned}
$$

Genus 0 vs. Positive Genus

$g=0$ everything is as expected:

- $\overline{\mathfrak{M}}_{g}\left(\mathbb{C} P^{4}, d\right)$ is smooth
- $\left[\overline{\mathfrak{M}}_{g}\left(\mathbb{C} P^{4}, d\right)\right]^{\text {vir }}=\left[\overline{\mathfrak{M}}_{g}\left(\mathbb{C} P^{4}, d\right)\right]$
- $\mathcal{V}_{g, d} \longrightarrow \overline{\mathfrak{M}}_{g}\left(\mathbb{C} P^{4}, d\right)$ is vector bundle
- hyperplane prop. makes sense and holds
$g \geq 1$ none of these holds

Genus 1 Analogue

Thm. A (J. Li-Z.'04): HP holds for reduced genus 1 GWs

$$
\left|\overline{\mathfrak{M}}_{1}^{0}\left(Y_{5}, d\right)\right|^{v i r}=e\left(\mathcal{V}_{1, d}\right) \cap \overline{\mathfrak{M}}_{1}^{0}\left(\mathbb{C} P^{4}, d\right)
$$

This generalizes to complete intersections $Y \subset \mathbb{C} P^{n}$.

- $\overline{\mathfrak{M}}_{1}^{0}\left(\mathbb{C} P^{4}, d\right) \subset \overline{\mathfrak{M}}_{1}\left(\mathbb{C} P^{4}, d\right)$ main irred. component closure of $\left\{\left[f: \Sigma \longrightarrow \mathbb{C} P^{4}\right] \in \overline{\mathfrak{M}}_{1}\left(\mathbb{C} P^{4}, d\right): \Sigma\right.$ is smooth $\}$
- $\mathcal{V}_{1, d} \longrightarrow \overline{\mathfrak{M}}_{1}^{0}\left(\mathbb{C} P^{4}, d\right)$ not vector bundle, but $e\left(\mathcal{V}_{1, d}\right)$ well-defined (0 -set of generic section)

Standard vs. Reduced GWs

$$
\begin{aligned}
\text { Thm. A } & \Longrightarrow N_{1, d}^{0} \equiv\left|\overline{\mathfrak{M}}_{1}^{0}\left(Y_{5}, d\right)\right|^{\text {vir }}=\int_{\overline{\mathfrak{M}}_{1}^{0}\left(\mathbb{C} P^{4}, d\right)} e\left(\mathcal{V}_{1, d}\right) \\
& \overline{\mathfrak{M}}_{1}^{0}\left(Y_{5}, d\right) \equiv \overline{\mathfrak{M}}_{1}^{0}\left(\mathbb{C} P^{4}, d\right) \cap \overline{\mathfrak{M}}_{1}\left(Y_{5}, d\right)
\end{aligned}
$$

Thm. B (Z.'04;07): $N_{1, d}-N_{1, d}^{0}=\frac{1}{12} N_{0, d}$
This generalizes to all symplectic manifolds:
[standard] - [reduced genus 1 GW] $=F$ (genus 0 GW)
\therefore to check BCOV, enough to compute $\int_{\overline{M M}_{1}^{0}\left(C^{4}, d\right)} e\left(\mathcal{V}_{1, d}\right)$

Torus Actions

- $\left(\mathbb{C}^{*}\right)^{5}$ acts on $\mathbb{C} P^{4}$ (with 5 fixed pts)
- \Longrightarrow on $\overline{\mathfrak{M}}_{g}\left(\mathbb{C} P^{4}, d\right)$ (with simple fixed loci) and on $\mathcal{V}_{g, d} \longrightarrow \overline{\mathfrak{M}}_{g}\left(\mathbb{C} P^{4}, d\right)$
- $\int_{\overline{\mathfrak{M}}_{g}^{0}\left(\mathrm{C}^{4}, d\right)} e\left(\mathcal{V}_{g, d}\right)$ localizes to fixed loci
$g=0$: Atiyah-Bott Localization Thm reduces \int to $\sum_{\text {graphs }}$
$g=1: \overline{\mathfrak{M}}_{g}^{0}\left(\mathbb{C} P^{4}, d\right), \nu_{g, d}$ singular $\Longrightarrow \mathrm{AB}$ does not apply

Genus 1 Bypass

Thm. C (Vakil-Z.'05): $\mathcal{V}_{1, d} \longrightarrow \overline{\mathfrak{M}}_{1}^{0}\left(\mathbb{C} P^{4}, d\right)$ admit natural desingularizations:

$$
\begin{gathered}
\widetilde{\mathcal{V}}_{1, d} \longrightarrow \mathcal{V}_{1, d} \\
\downarrow \\
\widetilde{\mathfrak{M}}_{1}^{0}\left(\mathbb{C} P^{4}, d\right) \longrightarrow \overline{\mathfrak{M}}_{1}^{0}\left(\mathbb{C} P^{4}, d\right)
\end{gathered}
$$

$$
\Longrightarrow \quad \int_{\overline{\mathfrak{M}}_{1}^{0}\left(\mathbb{C} P^{4}, d\right)} e\left(\mathcal{V}_{1, d}\right)=\int_{\widetilde{\mathfrak{M}}_{1}^{0}\left(\mathbb{C} P^{4}, d\right)} e\left(\widetilde{\mathcal{V}}_{1, d}\right)
$$

Computation of Genus 1 GWs of Cls

Thm. C generalizes to all $\mathcal{V}_{1, d} \longrightarrow \overline{\mathfrak{M}}_{1, k}^{0}\left(\mathbb{C} P^{n}, d\right)$:

\therefore Thms A,B,C provide an algorithm for computing of complete intersections $X \subset \mathbb{C} P^{n}$

Computation of $N_{1, d}$ for all d

- split genus 1 graphs into many genus 0 graphs at special vertex
- make use of good properties of genus 0 numbers to eliminate infinite sums
- extract non-equivariant part of elements in $H_{\mathbb{T}}^{*}\left(\mathbb{P}^{4}\right)$

Key Geometric Foundation

A Sharp Gromov's Compactness Thm in Genus 1 (Z.'04)

- describes limits of sequences of pseudo-holomorphic maps
- describes limiting behavior for sequences of solutions of a $\bar{\partial}$-equation with limited perturbation
- allows use of topological techniques to study genus 1 GWs

Main Tool

Analysis of Local Obstructions

- study obstructions to smoothing pseudo-holomorphic maps from singular domains
- not just potential existence of obstructions

