Enumerative Geometry: from Classical to Modern

Aleksey Zinger

Stony Brook University

February 28, 2008

Stony Brook University

Aleksey Zinger

ヘロット (雪) (目) (

Summary

Classical enumerative geometry: examples

- Modern tools: Gromov-Witten invariants counts of holomorphic maps
- Insights from string theory:
 - quantum cohomology: refinement of usual cohomology
 - mirror symmetry formulas
 - duality between symplectic/holomorphic structures
 - integrality predictions for GW-invariants geometric explanation yet to be discovered

Aleksey Zinger

< D > < B > < E > <</p>

Summary

- Classical enumerative geometry: examples
- Modern tools: Gromov-Witten invariants counts of holomorphic maps
- Insights from string theory:
 - quantum cohomology: refinement of usual cohomology
 - mirror symmetry formulas
 - duality between symplectic/holomorphic structures
 - integrality predictions for GW-invariants geometric explanation yet to be discovered

Aleksey Zinger

- Classical enumerative geometry: examples
- Modern tools: Gromov-Witten invariants counts of holomorphic maps
- Insights from string theory:
 - quantum cohomology: refinement of usual cohomology
 - mirror symmetry formulas duality between symplectic/holomorphic structure
 - integrality predictions for GW-invariants geometric explanation yet to be discovered

Aleksey Zinger

- Classical enumerative geometry: examples
- Modern tools: Gromov-Witten invariants counts of holomorphic maps
- Insights from string theory:
 - quantum cohomology: refinement of usual cohomology

Aleksey Zinger

- Classical enumerative geometry: examples
- Modern tools: Gromov-Witten invariants counts of holomorphic maps
- Insights from string theory:
 - quantum cohomology: refinement of usual cohomology
 - mirror symmetry formulas duality between symplectic/holomorphic structures
 - integrality predictions for GW-invariants geometric explanation yet to be discovered

Image: A matrix

Aleksey Zinger

- Classical enumerative geometry: examples
- Modern tools: Gromov-Witten invariants counts of holomorphic maps
- Insights from string theory:
 - quantum cohomology: refinement of usual cohomology
 - mirror symmetry formulas duality between symplectic/holomorphic structures
 - integrality predictions for GW-invariants geometric explanation yet to be discovered

Aleksey Zinger

What is Classical EG about?

How many geometric objects satisfy given geometric conditions?

objects = curves, surfaces, ...

conditions = passing through given points, curves,... tangent to given curves, surfaces,... having given shape: genus, singularities, degree

Stony Brook University

Aleksey Zinger

What is Classical EG about?

How many geometric objects satisfy given geometric conditions?

objects = curves, surfaces, ...

conditions = passing through given points, curves,... tangent to given curves, surfaces,... having given shape: genus, singularities, degree

Stony Brook University

Aleksey Zinger

What is Classical EG about?

How many geometric objects satisfy given geometric conditions?

objects = curves, surfaces, ...

conditions = passing through given points, curves,... tangent to given curves, surfaces,... having given shape: genus, singularities, degree

Aleksey Zinger

Modern Approach

Example 0

Q: How many lines pass through 2 distinct points?

▲□▶▲@▶▲≣▶▲≣▶ ≣ のへの

Aleksey Zinger

Stony Brook University

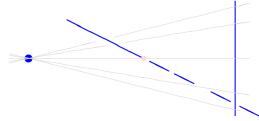
Q: How many lines pass through 2 distinct points? (1)

▲□▶▲@▶▲≣▶▲≣▶ ≣ のへの

Aleksey Zinger

Stony Brook University

Q: How many lines pass thr 1 point and 2 lines in 3-space?

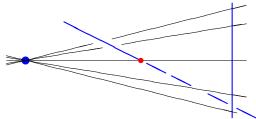


lines thr. the point and 1st line form a plane 2nd line intersects the plane in 1 point

Stony Brook University

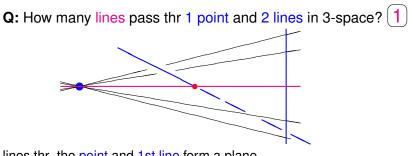
Aleksey Zinger

Q: How many lines pass thr 1 point and 2 lines in 3-space?



lines thr. the point and 1st line form a plane 2nd line intersects the plane in 1 point

Aleksey Zinger



lines thr. the point and 1st line form a plane 2nd line intersects the plane in 1 point

Aleksey Zinger

Q: How many lines pass thr 4 general lines in 3-space?

bring two of the lines together so that they intersect in a point and form a plane

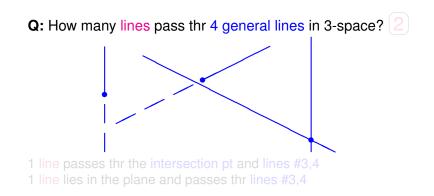
Stony Brook University

Aleksey Zinger

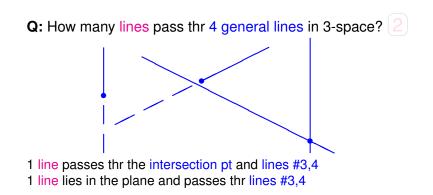
Q: How many lines pass thr 4 general lines in 3-space?

bring two of the lines together so that they intersect in a point and form a plane

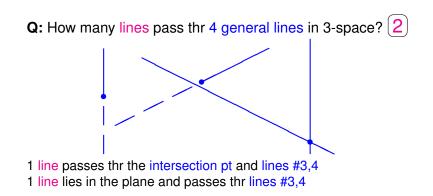
Enumerative Geometry



Enumerative Geometry



Enumerative Geometry



Enumerative Geometry

General Line Counting Problems

All/most line counting problems in vector space *V* reduce to computing intersections of cycles on

$$G(2, V) \equiv \{2 \text{ dim linear subspaces of } V\} \\
 \cong \{(affine) \text{ lines in } V\}$$

This is a special case of Schubert Calculus (very treatable)

Stony Brook University

Aleksey Zinger

General Line Counting Problems

All/most line counting problems in vector space *V* reduce to computing intersections of cycles on

$$G(2, V) \equiv \{2 \text{ dim linear subspaces of } V\} \\
 \cong \{(affine) \text{ lines in } V\}$$

This is a special case of Schubert Calculus (very treatable)

Stony Brook University

Aleksey Zinger

< D > < B > < E > <</p>

Example 0 (a semi-modern view)

Q: How many lines pass through 2 distinct points?

A line in the plane is described by $(A, B, C) \neq 0$:

Ax + By + C = 0.

(A, B, C) and (A', B', C') describe the same line iff

 $(A', B', C') = \lambda(A, B, C)$::. {lines in (x, y)-plane} = {1dim lin subs of (A, B, C)-space} = \mathbb{P}^2 .

Stony Brook University

Aleksey Zinger

ヘロット (雪) (目) (

Example 0 (a semi-modern view)

Q: How many lines pass through 2 distinct points?

A line in the plane is described by $(A, B, C) \neq 0$:

Ax + By + C = 0.

(A, B, C) and (A', B', C') describe the same line iff

 $(A', B', C') = \lambda(A, B, C)$ $\therefore \{ \text{lines in } (x, y) \text{-plane} \} = \{ 1 \text{dim lin subs of } (A, B, C) \text{-space} \}$ $\equiv \mathbb{P}^{2}.$

Stony Brook University

Aleksey Zinger

Example 0 (a semi-modern view)

Q: How many lines pass through 2 distinct points?

A line in the plane is described by $(A, B, C) \neq 0$:

Ax + By + C = 0.

(A, B, C) and (A', B', C') describe the same line iff

 $(A', B', C') = \lambda(A, B, C)$ {lines in (x, y)-plane} = {1dim lin subs of (A, B, C)-space} = \mathbb{P}^2 .

Stony Brook University

・ロト ・回 ト ・ヨト ・ヨ

Aleksey Zinger

Example 0 (a semi-modern view)

Q: How many lines pass through 2 distinct points?

A line in the plane is described by $(A, B, C) \neq 0$:

Ax + By + C = 0.

(A, B, C) and (A', B', C') describe the same line iff

 $(A', B', C') = \lambda(A, B, C)$ $\therefore \{ \text{lines in } (x, y) \text{-plane} \} = \{ \text{1dim lin subs of } (A, B, C) \text{-space} \}$ $\equiv \mathbb{P}^2.$

Stony Brook University

イロン イロン イヨン イヨ

Aleksey Zinger

Image: A matrix

Example 0 (a semi-modern view)

Q: How many lines pass through 2 distinct points?

 $\therefore = \# \text{ of lines } [A, B, C] \in \mathbb{P}^2 \text{ solving}$

$$\begin{cases} Ax_1 + By_1 + C = 0\\ Ax_2 + By_2 + C = 0 \end{cases}$$

 $(x_1, y_1), (x_2, y_2)$ =fixed points

The system has 1 1 dim lin space of solutions in (A, B, C)

Aleksey Zinger

Enumerative Geometry

Example 0 (a semi-modern view)

Q: How many lines pass through 2 distinct points?

 $\therefore = \# \text{ of lines } [A, B, C] \in \mathbb{P}^2 \text{ solving}$

$$\begin{cases} Ax_1 + By_1 + C = 0\\ Ax_2 + By_2 + C = 0 \end{cases}$$

 $(x_1, y_1), (x_2, y_2)$ =fixed points

The system has 1 1 dim lin space of solutions in (A, B, C)

Aleksey Zinger

Enumerative Geometry

Example 0 (a semi-modern view)

Q: How many lines pass through 2 distinct points? (1)

 $\therefore = \# \text{ of lines } [A, B, C] \in \mathbb{P}^2 \text{ solving}$

$$\begin{cases} Ax_1 + By_1 + C = 0\\ Ax_2 + By_2 + C = 0 \end{cases}$$

 $(x_1, y_1), (x_2, y_2)$ =fixed points

The system has 1 1 dim lin space of solutions in (A, B, C)

Aleksey Zinger

Enumerative Geometry

イロト イヨト イヨト イ

Example 0' (higher-degree plane curves)

degree *d* curve in (x, y)-plane \equiv 0-set of nonzero degree d polynomial in (x, y)polynomials *Q* and *Q'* determine same curve iff $Q' = \lambda Q$

coefficients of
$$Q$$
 is $\binom{d+2}{2} \implies$

 $\{ \text{deg d curves in } (x, y) \text{-plane} \} = \{ 1 \text{dim lin subs of } \binom{d+2}{2} \text{-dim v.s.} \}$ $\equiv \mathbb{P}^{N(d)} \qquad N(d) \equiv \binom{d+2}{2} - 1$

Stony Brook University

Aleksey Zinger

イロト イヨト イヨト イ

Example 0' (higher-degree plane curves)

degree *d* curve in (x, y)-plane \equiv 0-set of nonzero degree d polynomial in (x, y)polynomials *Q* and *Q'* determine same curve iff $Q' = \lambda Q$

coefficients of Q is $\binom{d+2}{2} \implies$

 $\{ \text{deg d curves in } (x, y) \text{-plane} \} = \{ 1 \text{dim lin subs of } \binom{d+2}{2} \text{-dim v.s.} \}$ $\equiv \mathbb{P}^{N(d)} \qquad N(d) \equiv \binom{d+2}{2} - 1$

Aleksey Zinger

イロト イヨト イヨト イ

Example 0' (higher-degree plane curves)

degree *d* curve in (x, y)-plane \equiv 0-set of nonzero degree d polynomial in (x, y)polynomials *Q* and *Q'* determine same curve iff $Q' = \lambda Q$

coefficients of Q is $\binom{d+2}{2} \implies$

 $\{ \text{deg d curves in } (x, y) \text{-plane} \} = \{ 1 \text{dim lin subs of } \binom{d+2}{2} \text{-dim v.s.} \}$ $\equiv \mathbb{P}^{N(d)} \qquad N(d) \equiv \binom{d+2}{2} - 1$

Aleksey Zinger

• • • • • • • • • • • •

Example 0' (higher-degree plane curves)

degree *d* curve in (x, y)-plane \equiv 0-set of nonzero degree d polynomial in (x, y)polynomials *Q* and *Q'* determine same curve iff $Q' = \lambda Q$

coefficients of Q is $\binom{d+2}{2} \implies$

 $\{ \text{deg d curves in } (x, y) \text{-plane} \} = \{ 1 \text{dim lin subs of } \binom{d+2}{2} \text{-dim v.s.} \}$ $\equiv \mathbb{P}^{N(d)} \qquad N(d) \equiv \binom{d+2}{2} - 1$

Aleksey Zinger

• • • • • • • • • • • • •

Example 0' (higher-degree plane curves)

 $\{ \text{deg d curves in } (x, y) \text{-plane} \} = \mathbb{P}^{N(d)}$

"Passing thr a point" = 1 linear eqn on coefficients of Q \implies get hyperplane in $\binom{d+2}{2}$ -dim v.s. of coefficients

 $\{ \text{deg d curves in } (x, y) \text{-plane thr. } (x_i, y_i) \} \approx \mathbb{P}^{N(d)-1} \subset \mathbb{P}^{N(d)}$

intersection of $\binom{d+2}{2} - 1$ HPs in $\binom{d+2}{2}$ -dim v.s. is 1 1dim lin subs intersection of N(d) HPs in $\mathbb{P}^{N(d)}$ is 1 point

Aleksey Zinger

Enumerative Geometry

Example 0' (higher-degree plane curves)

 $\{ \text{deg d curves in } (x, y) \text{-plane} \} = \mathbb{P}^{N(d)}$

"Passing thr a point" = 1 linear eqn on coefficients of $Q \implies$ get hyperplane in $\binom{d+2}{2}$ -dim v.s. of coefficients

 $\{ \text{deg d curves in } (x, y) \text{-plane thr. } (x_i, y_i) \} \approx \mathbb{P}^{N(d)-1} \subset \mathbb{P}^{N(d)}$

intersection of $\binom{d+2}{2} - 1$ HPs in $\binom{d+2}{2}$ -dim v.s. is 1 1dim lin subs intersection of N(d) HPs in $\mathbb{P}^{N(d)}$ is 1 point

Aleksey Zinger

Enumerative Geometry

Example 0' (higher-degree plane curves)

 $\{ \text{deg d curves in } (x, y) \text{-plane} \} = \mathbb{P}^{N(d)}$

"Passing thr a point" = 1 linear eqn on coefficients of $Q \implies$ get hyperplane in $\binom{d+2}{2}$ -dim v.s. of coefficients

 $\{ \text{deg d curves in } (x, y) \text{-plane thr. } (x_i, y_i) \} \approx \mathbb{P}^{N(d)-1} \subset \mathbb{P}^{N(d)}$

intersection of $\binom{d+2}{2} - 1$ HPs in $\binom{d+2}{2}$ -dim v.s. is 1 1dim lin subs intersection of N(d) HPs in $\mathbb{P}^{N(d)}$ is 1 point

Aleksey Zinger

Enumerative Geometry

Stony Brook University

Example 0' (higher-degree plane curves)

$\exists!$ degree d plane curve thr $N(d) \equiv \binom{d+2}{2} - 1$ general pts

d = 1 : \exists ! line thr 2 distinct pts in the plane d = 2 : \exists ! conic thr 5 general pts in the plane d = 3 : \exists ! cubic thr 9 general pts in the plane

Stony Brook University

Aleksey Zinger

Example 0' (higher-degree plane curves)

 $\exists!$ degree d plane curve thr $N(d) \equiv \binom{d+2}{2} - 1$ general pts

d = 1 : \exists ! line thr 2 distinct pts in the plane d = 2 : \exists ! conic thr 5 general pts in the plane d = 3 : \exists ! cubic thr 9 general pts in the plane

Stony Brook University

Aleksey Zinger

Typical Enumerative Problems

Count complex curves = (singular) Riemann surfaces Σ

of fixed genus g, fixed degree din \mathbb{C}^n , $\mathbb{C}P^n = \mathbb{C}^n \sqcup \mathbb{C}^{n-1} \sqcup \ldots \sqcup \mathbb{C}^0$ in a hypersurface $Y \subset \mathbb{C}^n$, $\mathbb{C}P^n$ (0-set of a polynomial)

 $g(\Sigma) \equiv$ genus of Σ - singular points $d(\Sigma) \equiv$ # intersections of Σ with a generic hyperplane

Aleksey Zinger

Stony Brook University

Outline of Proof

Typical Enumerative Problems

Count complex curves = (singular) Riemann surfaces Σ of fixed genus g, fixed degree din \mathbb{C}^n , $\mathbb{C}P^n = \mathbb{C}^n \sqcup \mathbb{C}^{n-1} \sqcup \ldots \sqcup \mathbb{C}^0$ in a hypersurface $Y \subset \mathbb{C}^n$, $\mathbb{C}P^n$ (0-set of a polynomia

 $g(\Sigma) \equiv$ genus of Σ - singular points $d(\Sigma) \equiv$ # intersections of Σ with a generic hyperplane

Aleksey Zinger

Stony Brook University

Typical Enumerative Problems

Count complex curves = (singular) Riemann surfaces Σ of fixed genus g, fixed degree din \mathbb{C}^n , $\mathbb{C}P^n = \mathbb{C}^n \sqcup \mathbb{C}^{n-1} \sqcup \ldots \sqcup \mathbb{C}^0$ in a hypersurface $Y \subset \mathbb{C}^n$, $\mathbb{C}P^n$ (0-set of a polynomial)

 $g(\Sigma) \equiv$ genus of Σ - singular points $d(\Sigma) \equiv$ # intersections of Σ with a generic hyperplane

Aleksey Zinger

Stony Brook University

Outline of Proof

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Typical Enumerative Problems

Count complex curves = (singular) Riemann surfaces Σ of fixed genus g, fixed degree din \mathbb{C}^n , $\mathbb{C}P^n = \mathbb{C}^n \sqcup \mathbb{C}^{n-1} \sqcup \ldots \sqcup \mathbb{C}^0$ in a hypersurface $Y \subset \mathbb{C}^n$, $\mathbb{C}P^n$ (0-set of a polynomial)

 $g(\Sigma) \equiv$ genus of Σ - singular points $d(\Sigma) \equiv$ # intersections of Σ with a generic hyperplane

Aleksey Zinger

Stony Brook University

Typical Enumerative Problems

Count complex curves = (singular) Riemann surfaces Σ of fixed genus g, fixed degree din \mathbb{C}^n , $\mathbb{C}P^n = \mathbb{C}^n \sqcup \mathbb{C}^{n-1} \sqcup \ldots \sqcup \mathbb{C}^0$ in a hypersurface $Y \subset \mathbb{C}^n$, $\mathbb{C}P^n$ (0-set of a polynomial)

 $g(\Sigma) \equiv$ genus of Σ - singular points $d(\Sigma) \equiv$ # intersections of Σ with a generic hyperplane

Stony Brook University

Aleksey Zinger

Adjunction Formula

If $\Sigma \subset \mathbb{C}P^2$ is smooth and of degree d,

$$g(\Sigma) = \begin{pmatrix} d-1 \\ 2 \end{pmatrix}$$

every line, conic is of genus 0 every smooth plane cubic is of genus 1 every smooth plane quartic is of genus 3

Stony Brook University

Aleksey Zinger Enumerative Geometry

Adjunction Formula

If $\Sigma \subset \mathbb{C}P^2$ is smooth and of degree d,

$$g(\Sigma) = \begin{pmatrix} d-1 \\ 2 \end{pmatrix}$$

every line, conic is of genus 0 every smooth plane cubic is of genus 1 every smooth plane quartic is of genus 3

Stony Brook University

Aleksey Zinger

$n_d \equiv \#$ genus 0 degree d plane curves thr. (3d-1) general pts

- $n_1 = 1$: # lines thr 2 pts
- $n_2 = 1$: # conics thr 5 pts
- $n_3 = 12$: # nodal cubics thr 8 pts

• • • • • • • • • • • • • •

 $n_3 = \#$ zeros of transverse bundle section over $\mathbb{C}P^1 \times \mathbb{C}P^2$ = euler class of rank 3 vector bundle over $\mathbb{C}P^1 \times \mathbb{C}P^2$ $\mathbb{C}P^1 = \text{cubics thr. 8 general pts: } \mathbb{C}P^2 = \text{possibilities for node}$

Aleksey Zinger

Enumerative Geometry

Stony Brook University

 $n_d \equiv \#$ genus 0 degree d plane curves thr. (3d-1) general pts

- $n_1 = 1$: # lines thr 2 pts
- $n_2 = 1$: # conics thr 5 pts

 $n_3 = 12$: # nodal cubics thr 8 pts \implies

 $\int_{\overline{\mathcal{M}}_{1,1}}\psi_1=rac{1}{24}$

 $n_3 = \#$ zeros of transverse bundle section over $\mathbb{C}P^1 \times \mathbb{C}P^2$ = euler class of rank 3 vector bundle over $\mathbb{C}P^1 \times \mathbb{C}P^2$ $\mathbb{C}P^1 =$ cubics thr. 8 general pts: $\mathbb{C}P^2 =$ possibilities for node

 $n_d \equiv \#$ genus 0 degree d plane curves thr. (3d-1) general pts

 $n_1 = 1$: # lines thr 2 pts $n_2 = 1$: # conics thr 5 pts $n_3 = 12$: # nodal cubics thr 8 pts

 $\implies \qquad \int_{\overline{\mathcal{M}}_{1,1}} \psi_1 = \frac{1}{24}$

 $n_3 = \#$ zeros of transverse bundle section over $\mathbb{C}P^1 \times \mathbb{C}P^2$ = euler class of rank 3 vector bundle over $\mathbb{C}P^1 \times \mathbb{C}P^2$ $\mathbb{C}P^1 = \text{cubics thr. 8 general pts; } \mathbb{C}P^2 = \text{possibilities for node}$

Aleksey Zinger

 $n_d \equiv \#$ genus 0 degree d plane curves thr. (3d-1) general pts

- $n_1 = 1$: # lines thr 2 pts $n_2 = 1$: # conics thr 5 pts
- $n_3 = 12$: # nodal cubics thr 8 pts

$$\implies \qquad \int_{\overline{\mathcal{M}}_{1,1}} \psi_1 = \frac{1}{24}$$

 $n_3 = \#$ zeros of transverse bundle section over $\mathbb{C}P^1 \times \mathbb{C}P^2$ = euler class of rank 3 vector bundle over $\mathbb{C}P^1 \times \mathbb{C}P^2$ $\mathbb{C}P^1 = \text{cubics thr. 8 general pts; } \mathbb{C}P^2 = \text{possibilities for node}$

Aleksey Zinger

Classical Problem

 $n_d \equiv \#$ genus 0 degree d plane curves thr. (3d-1) general pts

- $\begin{array}{l} n_1 = 1: \mbox{ # lines thr 2 pts} \\ n_2 = 1: \mbox{ # conics thr 5 pts} \\ n_3 = 12: \mbox{ # nodal cubics thr 8 pts} \qquad \Longrightarrow \qquad \int_{\overline{\mathcal{M}}_{1,1}} \psi_1 = \frac{1}{24} \end{array}$
- $n_3 = \#$ zeros of transverse bundle section over $\mathbb{C}P^1 \times \mathbb{C}P^2$ = euler class of rank 3 vector bundle over $\mathbb{C}P^1 \times \mathbb{C}P^2$
- $\mathbb{C}P^1$ = cubics thr. 8 general pts; $\mathbb{C}P^2$ = possibilities for node

Classical Problem

 $n_d \equiv \#$ genus 0 degree d plane curves thr. (3d-1) general pts

- $n_1 = 1: \# \text{ lines thr 2 pts}$ $n_2 = 1: \# \text{ conics thr 5 pts}$ $n_3 = 12: \# \text{ nodal cubics thr 8 pts} \implies \int_{\overline{\mathcal{M}}_{1,1}} \psi_1 = \frac{1}{24}$
- $n_3 = \#$ zeros of transverse bundle section over $\mathbb{C}P^1 \times \mathbb{C}P^2$ = euler class of rank 3 vector bundle over $\mathbb{C}P^1 \times \mathbb{C}P^2$ $\mathbb{C}P^1 = \text{cubics thr. 8 general pts; } \mathbb{C}P^2 = \text{possibilities for node}$

Stony Brook University

Aleksey Zinger

Genus 0 Plane Quartics thr 11 pts

 $n_4 = \#$ plane quartics thr 11 pts with 3 non-separating nodes Zeuthen'1870s: $n_4 = 620 = 675 = 55$

 $3! \cdot 675 =$ euler class of rank 9 vector bundle over $\mathbb{C}P^3 \times (\mathbb{C}P^2)^3$ minus excess contributions of a certain section $\mathbb{C}P^3 =$ quartics thr 11 pts; $\mathbb{C}P^2 =$ possibilities for *i*-th node

Details in *Counting Rational Plane Curves: Old and New Approaches*

Aleksey Zinger

Genus 0 Plane Quartics thr 11 pts

 $n_4 = \#$ plane quartics thr 11 pts with 3 non-separating nodes Zeuthen'1870s: $n_4 = 620 = 675 - 55$

 $3! \cdot 675 =$ euler class of rank 9 vector bundle over $\mathbb{C}P^3 \times (\mathbb{C}P^2)^3$ minus excess contributions of a certain section $\mathbb{C}P^3 =$ quartics thr 11 pts; $\mathbb{C}P^2 =$ possibilities for *i*-th node

Details in *Counting Rational Plane Curves: Old and New Approaches*

Aleksey Zinger

Genus 0 Plane Quartics thr 11 pts

 $n_4 = \#$ plane quartics thr 11 pts with 3 non-separating nodes Zeuthen'1870s: $n_4 = 620 = 675 - 55$

 $3! \cdot 675 =$ euler class of rank 9 vector bundle over $\mathbb{C}P^3 \times (\mathbb{C}P^2)^3$ minus excess contributions of a certain section $\mathbb{C}P^3 =$ quartics thr 11 pts; $\mathbb{C}P^2 =$ possibilities for *i*-th node

Details in *Counting Rational Plane Curves: Old and New Approaches*

Stony Brook University

Aleksey Zinger

Genus 0 Plane Quartics thr 11 pts

 $n_4 = \#$ plane quartics thr 11 pts with 3 non-separating nodes Zeuthen'1870s: $n_4 = 620 = 675 - 55$

3! · 675 = euler class of rank 9 vector bundle over $\mathbb{C}P^3 \times (\mathbb{C}P^2)^3$ minus excess contributions of a certain section $\mathbb{C}P^3$ = quartics thr 11 pts; $\mathbb{C}P^2$ = possibilities for *i*-th node

Details in *Counting Rational Plane Curves: Old and New Approaches*

Stony Brook University

Aleksey Zinger

Genus 0 Plane Quartics thr 11 pts

 $n_4 = \#$ plane quartics thr 11 pts with 3 non-separating nodes Zeuthen'1870s: $n_4 = 620 = 675 - 55$

 $3! \cdot 675 =$ euler class of rank 9 vector bundle over $\mathbb{C}P^3 \times (\mathbb{C}P^2)^3$ minus excess contributions of a certain section $\mathbb{C}P^3 =$ quartics thr 11 pts; $\mathbb{C}P^2 =$ possibilities for *i*-th node

Details in Counting Rational Plane Curves: Old and New Approaches

Aleksey Zinger

< □ > < □ > < □ > < □ > <

Genus 0 Plane Quartics thr 11 pts

 $n_4 = \#$ plane quartics thr 11 pts with 3 non-separating nodes Zeuthen'1870s: $n_4 = 620 = 675 - 55$

 $3! \cdot 675 =$ euler class of rank 9 vector bundle over $\mathbb{C}P^3 \times (\mathbb{C}P^2)^3$ minus excess contributions of a certain section $\mathbb{C}P^3 =$ quartics thr 11 pts; $\mathbb{C}P^2 =$ possibilities for *i*-th node

Details in *Counting Rational Plane Curves: Old and New Approaches*

Aleksey Zinger

Kontsevich's Formula (Ruan-Tian'1993)

 $n_d \equiv \#$ genus 0 degree d plane curves thr. (3d-1) general pts $n_1 = 1$

$$n_{d} = \frac{1}{6(d-1)} \sum_{d_{1}+d_{2}=d} \left(d_{1}d_{2} - 2\frac{(d_{1}-d_{2})^{2}}{3d-2} \right) \binom{3d-2}{3d_{1}-1} d_{1}d_{2}n_{d_{1}}n_{d_{2}}$$

 $n_2 = 1, n_3 = 12, n_4 = 620, n_5 = 87,304, n_6 = 26,312,976, ...$

Stony Brook University

Aleksey Zinger

Kontsevich's Formula (Ruan-Tian'1993)

 $n_d \equiv \#$ genus 0 degree d plane curves thr. (3d-1) general pts $n_1 = 1$

$$n_{d} = \frac{1}{6(d-1)} \sum_{d_{1}+d_{2}=d} \left(d_{1}d_{2} - 2\frac{(d_{1}-d_{2})^{2}}{3d-2} \right) \binom{3d-2}{3d_{1}-1} d_{1}d_{2}n_{d_{1}}n_{d_{2}}$$

 $n_2 = 1, n_3 = 12, n_4 = 620, n_5 = 87,304, n_6 = 26,312,976, ...$

Stony Brook University

イロン イロン イヨン イヨ

Aleksey Zinger

Gromov's 1985 paper

Consider equivalence classes of maps $f: (\Sigma, j) \longrightarrow \mathbb{C}P^n$ (Σ, j) =connected Riemann surface, possibly with nodes

 $f: (\Sigma, j) \longrightarrow \mathbb{C}P^n$ and $f': (\Sigma', j') \longrightarrow \mathbb{C}P^n$ are equivalent if $f = f' \circ \tau$ for some $\tau: (\Sigma, j) \longrightarrow (\Sigma', j')$

 $f: (\Sigma, j) \longrightarrow \mathbb{C}P^n$ is stable if

 $\operatorname{Aut}(f) \equiv \left\{ \tau : (\Sigma, j) \longrightarrow (\Sigma, j) | f \circ \tau = f \right\}$ is finite

non-constant holomorphic $f: (\Sigma, j) \longrightarrow \mathbb{C}P^n$ is stable iff the restr. of f to any $S^2 \subset \Sigma$ w. fewer than 3 nodes is not const

イロン イヨン イヨン イヨン

Aleksey Zinger Enumerative Geometry

Gromov's 1985 paper

Consider equivalence classes of maps $f: (\Sigma, j) \longrightarrow \mathbb{C}P^n$ (Σ, j) =connected Riemann surface, possibly with nodes

 $f: (\Sigma, j) \longrightarrow \mathbb{C}P^n$ and $f': (\Sigma', j') \longrightarrow \mathbb{C}P^n$ are equivalent if $f = f' \circ \tau$ for some $\tau: (\Sigma, j) \longrightarrow (\Sigma', j')$

 $f: (\Sigma, j) \longrightarrow \mathbb{C}P^n$ is stable if

 $\operatorname{Aut}(f) \equiv \left\{ \tau : (\Sigma, j) \longrightarrow (\Sigma, j) | f \circ \tau = f \right\}$ is finite

non-constant holomorphic $f: (\Sigma, j) \longrightarrow \mathbb{C}P^n$ is stable iff the restr. of f to any $S^2 \subset \Sigma$ w. fewer than 3 nodes is not const

イロン イヨン イヨン イヨン

Aleksey Zinger Enumerative Geometry

Gromov's 1985 paper

Consider equivalence classes of maps $f: (\Sigma, j) \longrightarrow \mathbb{C}P^n$ (Σ, j) =connected Riemann surface, possibly with nodes

$$f: (\Sigma, j) \longrightarrow \mathbb{C}P^n$$
 and $f': (\Sigma', j') \longrightarrow \mathbb{C}P^n$ are equivalent if $f = f' \circ \tau$ for some $\tau: (\Sigma, j) \longrightarrow (\Sigma', j')$

$$f: (\Sigma, j) \longrightarrow \mathbb{C}P^n$$
 is stable if

$$\operatorname{Aut}(f) \equiv \left\{ \tau : (\Sigma, j) \longrightarrow (\Sigma, j) | f \circ \tau = f \right\}$$
 is finite

non-constant holomorphic $f: (\Sigma, j) \longrightarrow \mathbb{C}P^n$ is stable iff the restr. of f to any $S^2 \subset \Sigma$ w. fewer than 3 nodes is not const

Stony Brook University

Aleksey Zinger

• • • • • • • • • • • • • •

Gromov's 1985 paper

Consider equivalence classes of maps $f: (\Sigma, j) \longrightarrow \mathbb{C}P^n$ (Σ, j) =connected Riemann surface, possibly with nodes

$$f: (\Sigma, j) \longrightarrow \mathbb{C}P^n$$
 and $f': (\Sigma', j') \longrightarrow \mathbb{C}P^n$ are equivalent if $f = f' \circ \tau$ for some $\tau: (\Sigma, j) \longrightarrow (\Sigma', j')$

 $f : (\Sigma, j) \longrightarrow \mathbb{C}P^n$ is stable if

$$\operatorname{Aut}(f) \equiv \left\{ \tau : (\Sigma, j) \longrightarrow (\Sigma, j) | f \circ \tau = f \right\}$$
 is finite

non-constant holomorphic $f: (\Sigma, j) \longrightarrow \mathbb{C}P^n$ is stable iff the restr. of f to any $S^2 \subset \Sigma$ w. fewer than 3 nodes is not const

Stony Brook University

Aleksey Zinger

genus of $f : (\Sigma, j) \longrightarrow \mathbb{C}P^n$ is # of holes in $\Sigma (\geq g(\Sigma))$

degree d of $f \equiv |f^{-1}(H)|$ for a generic hyperplane:

$$f_*[\Sigma] = d[\mathbb{C}P^1] \in H_2(\mathbb{C}P^n;\mathbb{Z}) = \mathbb{Z}[\mathbb{C}P^1]$$

heorem: With respect to a natur<u>al topology</u>

$$\overline{\mathfrak{M}}_{g}(\mathbb{C}P^{n},d) \equiv \left\{ [f:(\Sigma,j) \longrightarrow \mathbb{C}P^{n}]: g(f) = g, d(f) = d, f \text{ holomor} \right\}$$

Aleksey Zinger

Enumerative Geometry

Stony Brook University

イロト イヨト イヨト イヨト

genus of $f : (\Sigma, j) \longrightarrow \mathbb{C}P^n$ is # of holes in $\Sigma (\geq g(\Sigma))$

degree *d* of $f \equiv |f^{-1}(H)|$ for a generic hyperplane:

$$f_*[\Sigma] = d[\mathbb{C}P^1] \in H_2(\mathbb{C}P^n;\mathbb{Z}) = \mathbb{Z}[\mathbb{C}P^1]$$

$$\overline{\mathfrak{M}}_{g}(\mathbb{C}P^{n}, d) \equiv \{ [f: (\Sigma, j) \longrightarrow \mathbb{C}P^{n}] : g(f) = g, d(f) = d, f \text{ holomor} \}$$

is compact

Aleksey Zinger

Enumerative Geometry

Stony Brook University

genus of $f : (\Sigma, j) \longrightarrow \mathbb{C}P^n$ is # of holes in $\Sigma (\geq g(\Sigma))$

degree *d* of $f \equiv |f^{-1}(H)|$ for a generic hyperplane:

$$f_*[\Sigma] = d[\mathbb{C}P^1] \in H_2(\mathbb{C}P^n;\mathbb{Z}) = \mathbb{Z}[\mathbb{C}P^1]$$

Theorem: With respect to a natural topology,

 $\overline{\mathfrak{M}}_{g}(\mathbb{C}P^{n},d) \equiv \left\{ [f:(\Sigma,j) \longrightarrow \mathbb{C}P^{n}]: g(f) = g, d(f) = d, f \text{ holomor} \right\}$

is compact

Stony Brook University

Aleksey Zinger

genus of $f : (\Sigma, j) \longrightarrow \mathbb{C}P^n$ is # of holes in $\Sigma (\geq g(\Sigma))$

degree *d* of $f \equiv |f^{-1}(H)|$ for a generic hyperplane:

$$f_*[\Sigma] = d[\mathbb{C}P^1] \in H_2(\mathbb{C}P^n;\mathbb{Z}) = \mathbb{Z}[\mathbb{C}P^1]$$

Theorem: With respect to a natural topology,

 $\overline{\mathfrak{M}}_{g}(\mathbb{C}P^{n},d) \equiv \left\{ [f:(\Sigma,j) \longrightarrow \mathbb{C}P^{n}] : g(f) = g, d(f) = d, f \text{ holomor} \right\}$ is compact

Aleksey Zinger

Enumerative Geometry

Stony Brook University

∃ 990

イロト イヨト イヨト イヨト

Maps vs. Curves

Image of holomorphic $f: (\Sigma, j) \longrightarrow \mathbb{C}P^n$ is a curve genus of $f(\Sigma) \le g(f)$; degree of $f(\Sigma) \le d(f)$

 $\implies n_d \equiv \# \text{ genus 0 degree d curves thr. (3d-1) pts in } \mathbb{C}P^2 \\ = \# \text{ degree d } f: (S^2, j) \longrightarrow \mathbb{C}P^2 \text{ s.t. } p_i \in f(\mathbb{C}P^1) \\ i = 1, \dots, 3d-1 \\ = \# \{ [f: (\Sigma, j) \longrightarrow \mathbb{C}P^2] \in \overline{\mathfrak{M}}_0(\mathbb{C}P^2, d): p_i \in f(\Sigma) \}$

▲ロト ◆ 御 ト ▲ 直 ト ▲ 重 - - の Q () Stony Brook University

Aleksey Zinger

Maps vs. Curves

Image of holomorphic $f: (\Sigma, j) \longrightarrow \mathbb{C}P^n$ is a curve genus of $f(\Sigma) \le g(f)$; degree of $f(\Sigma) \le d(f)$

 $\implies n_d \equiv \# \text{ genus 0 degree d curves thr. (3d-1) pts in } \mathbb{C}P^2 \\ = \# \text{ degree d } f: (S^2, j) \longrightarrow \mathbb{C}P^2 \text{ s.t. } p_i \in f(\mathbb{C}P^1) \\ i = 1, \dots, 3d-1 \\ = \# \left\{ [f: (\Sigma, j) \longrightarrow \mathbb{C}P^2] \in \overline{\mathfrak{M}}_0(\mathbb{C}P^2, d): p_i \in f(\Sigma) \right\}$

Stony Brook University

• • • • • • • • • • • •

Aleksey Zinger

• • • • • • • • • • • • • •

Maps vs. Curves

Image of holomorphic $f: (\Sigma, j) \longrightarrow \mathbb{C}P^n$ is a curve genus of $f(\Sigma) \le g(f)$; degree of $f(\Sigma) \le d(f)$

 $\implies n_d \equiv \# \text{ genus 0 degree d curves thr. (3d-1) pts in } \mathbb{C}P^2 \\ = \# \text{ degree d } f: (S^2, j) \longrightarrow \mathbb{C}P^2 \text{ s.t. } p_i \in f(\mathbb{C}P^1) \\ i = 1, \dots, 3d-1 \\ = \# \left\{ [f: (\Sigma, j) \longrightarrow \mathbb{C}P^2] \in \overline{\mathfrak{M}}_0(\mathbb{C}P^2, d) : p_i \in f(\Sigma) \right\}$

Stony Brook University

Aleksey Zinger

Maps vs. Curves

Image of holomorphic $f: (\Sigma, j) \longrightarrow \mathbb{C}P^n$ is a curve genus of $f(\Sigma) \le g(f)$; degree of $f(\Sigma) \le d(f)$

$$\implies n_d \equiv \# \text{ genus 0 degree d curves thr. (3d-1) pts in } \mathbb{C}P^2 \\ = \# \text{ degree d } f: (S^2, j) \longrightarrow \mathbb{C}P^2 \text{ s.t. } p_i \in f(\mathbb{C}P^1) \\ i = 1, \dots, 3d-1 \\ = \# \left\{ [f: (\Sigma, j) \longrightarrow \mathbb{C}P^2] \in \overline{\mathfrak{M}}_0(\mathbb{C}P^2, d) : p_i \in f(\Sigma) \right\}$$

Stony Brook University

Aleksey Zinger

Physics Insight I: Quantum (Co)homology

Use counts of genus 0 maps to $\mathbb{C}P^n$ to deform \cup -product on H^* ,

$$H^*(\mathbb{C}P^n)=\mathbb{Z}[x]/x^{n+1},\qquad x^a\cup x^b=x^{a+b},$$

to *-product on $H^*(\mathbb{C}P^n)[q_0, ..., q_n]$ $x^a * x^b = x^{a+b} + q$ -corrections counting genus 0 maps thr. $\mathbb{C}P^{n-a}, \mathbb{C}P^{n-b}$

Theorem (McDuff-Salamon'93, Ruan-Tian'93, ...)

The product * is associative

* generalizes to all cmpt algebraic/symplectic manifolds

Stony Brook University

Aleksey Zinger

ヘロット (雪) (目) (

Physics Insight I: Quantum (Co)homology

Use counts of genus 0 maps to $\mathbb{C}P^n$ to deform \cup -product on H^* ,

$$H^*(\mathbb{C}P^n)=\mathbb{Z}[x]/x^{n+1},\qquad x^a\cup x^b=x^{a+b},$$

to *-product on $H^*(\mathbb{C}P^n)[q_0, \dots, q_n]$ $x^a * x^b = x^{a+b} + q$ -corrections counting genus 0 maps thr. $\mathbb{C}P^{n-a}, \mathbb{C}P^{n-b}$

Theorem (McDuff-Salamon'93, Ruan-Tian'93, ...'

The product * is associative

* generalizes to all cmpt algebraic/symplectic manifolds

Stony Brook University

Physics Insight I: Quantum (Co)homology

Use counts of genus 0 maps to $\mathbb{C}P^n$ to deform \cup -product on H^* ,

$$H^*(\mathbb{C}P^n)=\mathbb{Z}[x]/x^{n+1},\qquad x^a\cup x^b=x^{a+b},$$

to *-product on $H^*(\mathbb{C}P^n)[q_0, \dots, q_n]$ $x^a * x^b = x^{a+b} + q$ -corrections counting genus 0 maps thr. $\mathbb{C}P^{n-a}, \mathbb{C}P^{n-b}$

Theorem (McDuff-Salamon'93, Ruan-Tian'93, ...)

The product * is associative

* generalizes to all cmpt algebraic/symplectic manifolds

Stony Brook University

Aleksey Zinger

Physics Insight I: Quantum (Co)homology

Associativity of quantum multiplication is equivalent to

- Kontsevich's formula for $\mathbb{C}P^2$, extension to $\mathbb{C}P^n$
- gluing formula for counts of genus 0 maps

Remark: Classical proof of Kontsevich's formula for $\mathbb{C}P^2$ only: Z. Ran'95, elaborating on '89

Stony Brook University

Physics Insight I: Quantum (Co)homology

Associativity of quantum multiplication is equivalent to

- Kontsevich's formula for $\mathbb{C}P^2$, extension to $\mathbb{C}P^n$
- gluing formula for counts of genus 0 maps

Remark: Classical proof of Kontsevich's formula for $\mathbb{C}P^2$ only: Z. Ran'95, elaborating on '89

Stony Brook University

Physics Insight I: Quantum (Co)homology

Associativity of quantum multiplication is equivalent to

- Kontsevich's formula for $\mathbb{C}P^2$, extension to $\mathbb{C}P^n$
- gluing formula for counts of genus 0 maps

Remark: Classical proof of Kontsevich's formula for $\mathbb{C}P^2$ only: Z. Ran'95, elaborating on '89

Stony Brook University

Physics Insight I: Quantum (Co)homology

Associativity of quantum multiplication is equivalent to

- Kontsevich's formula for $\mathbb{C}P^2$, extension to $\mathbb{C}P^n$
- gluing formula for counts of genus 0 maps

Remark: Classical proof of Kontsevich's formula for $\mathbb{C}P^2$ only: Z. Ran'95, elaborating on '89

Stony Brook University

Aleksey Zinger

Other Enumerative Applications of Stable Maps

- Genus 0 with singularities: Pandharipande, Vakil, Z.-
- Genus 1: R. Pandharipande, Ionel, Z.-
- Genus 2,3: Z.-

Stony Brook University

Aleksey Zinger

 $Y = \mathbb{C}P^n$, = hypersurface in $\mathbb{C}P^n$ (0-set of a polynomial),... $\mu_1, \ldots, \mu_k \subset Y$ cycles

 $\mathsf{GW}_{g,d}^{Y}(\mu) \equiv "\#" \{ [f: (\Sigma, j) \longrightarrow Y] \in \overline{\mathfrak{M}}_{g}(Y, d) : f(\Sigma) \cap \mu_{i} \neq \emptyset \}$

 $g = 0, Y = \mathbb{C}P^n$: $\overline{\mathfrak{M}}_g(Y, d)$ is smooth, of expected dim, "#"=#

Typically, $\overline{\mathfrak{M}}_g(Y, d)$ is highly singular, of wrong dim

Aleksey Zinger Enumerative Geometry Stony Brook University

イロト イヨト イヨト イヨト

 $Y = \mathbb{C}P^n$, = hypersurface in $\mathbb{C}P^n$ (0-set of a polynomial),... $\mu_1, \ldots, \mu_k \subset Y$ cycles

 $\mathsf{GW}_{g,d}^{\mathsf{Y}}(\mu) \equiv "\#" \{ [f \colon (\Sigma, j) \longrightarrow \mathsf{Y}] \in \overline{\mathfrak{M}}_{g}(\mathsf{Y}, d) \colon f(\Sigma) \cap \mu_{i} \neq \emptyset \}$

 $g = 0, Y = \mathbb{C}P^n$: $\overline{\mathfrak{M}}_g(Y, d)$ is smooth, of expected dim, "#"=#

Typically, $\overline{\mathfrak{M}}_g(Y, d)$ is highly singular, of wrong dim

Stony Brook University

イロト イヨト イヨト イヨト

 $Y = \mathbb{C}P^n$, = hypersurface in $\mathbb{C}P^n$ (0-set of a polynomial),... $\mu_1, \ldots, \mu_k \subset Y$ cycles

$$\mathsf{GW}_{g,d}^{Y}(\mu) \equiv " \#" \left\{ [f \colon (\Sigma, j) \longrightarrow Y] \in \overline{\mathfrak{M}}_{g}(Y, d) \colon f(\Sigma) \cap \mu_{i} \neq \emptyset \right\}$$

 $g = 0, Y = \mathbb{C}P^n$: $\overline{\mathfrak{M}}_g(Y, d)$ is smooth, of expected dim, "#"=#

Typically, $\overline{\mathfrak{M}}_g(Y, d)$ is highly singular, of wrong dim

Aleksey Zinger

Stony Brook University

イロト イヨト イヨト イヨト

 $Y = \mathbb{C}P^n$, = hypersurface in $\mathbb{C}P^n$ (0-set of a polynomial),... $\mu_1, \ldots, \mu_k \subset Y$ cycles

$$\mathsf{GW}_{g,d}^{Y}(\mu) \equiv " \#" \left\{ [f \colon (\Sigma, j) \longrightarrow Y] \in \overline{\mathfrak{M}}_{g}(Y, d) \colon f(\Sigma) \cap \mu_{i} \neq \emptyset \right\}$$

 $g = 0, Y = \mathbb{C}P^n$: $\overline{\mathfrak{M}}_g(Y, d)$ is smooth, of expected dim, "#"=#

Typically, $\overline{\mathfrak{M}}_{g}(Y, d)$ is highly singular, of wrong dim

Stony Brook University

イロト イヨト イヨト イヨト

Aleksey Zinger

Example: Quintic Threefold

$Y_5 \subset \mathbb{C}P^4$ 0-set of a degree 5 polynomial Q

Schubert Calculus: Y_5 contains 2,875 (isolated) lines S. Katz'86 (via Schubert): Y_5 contains 609,250 conics

For each line $L \subset Y_5$ and conic $C \subset Y_5$,

 $\left\{ [f: (\Sigma, j) \longrightarrow Y_5] \in \overline{\mathfrak{M}}_0(Y_5, 2) : f(\Sigma) \subset L \right\} \approx \overline{\mathfrak{M}}_0(\mathbb{C}P^1, 2) \\ \left\{ [f: (\Sigma, j) \longrightarrow Y_5] \in \overline{\mathfrak{M}}_0(Y_5, 2) : f(\Sigma) \subset C \right\} \approx \overline{\mathfrak{M}}_0(\mathbb{C}P^1, 1)$

are connected components of $\overline{\mathfrak{M}}_0(Y_5,2)$ of dimensions 2 and 0

Stony Brook University

イロン イロン イヨン イヨ

Aleksey Zinger

Example: Quintic Threefold

 $Y_5 \subset \mathbb{C}P^4$ 0-set of a degree 5 polynomial QSchubert Calculus: Y_5 contains 2,875 (isolated) lines S. Katz'86 (via Schubert): Y_5 contains 609,250 conics

For each line $L \subset Y_5$ and conic $C \subset Y_5$,

 $\left\{ [f: (\Sigma, j) \longrightarrow Y_5] \in \overline{\mathfrak{M}}_0(Y_5, 2) : f(\Sigma) \subset L \right\} \approx \overline{\mathfrak{M}}_0(\mathbb{C}P^1, 2) \\ \left\{ [f: (\Sigma, j) \longrightarrow Y_5] \in \overline{\mathfrak{M}}_0(Y_5, 2) : f(\Sigma) \subset C \right\} \approx \overline{\mathfrak{M}}_0(\mathbb{C}P^1, 1)$

are connected components of $\mathfrak{M}_0(Y_5,2)$ of dimensions 2 and 0

Stony Brook University

イロン イロン イヨン イヨ

Aleksey Zinger

Example: Quintic Threefold

 $Y_5 \subset \mathbb{C}P^4$ 0-set of a degree 5 polynomial QSchubert Calculus: Y_5 contains 2,875 (isolated) lines S. Katz'86 (via Schubert): Y_5 contains 609,250 conics

For each line $L \subset Y_5$ and conic $C \subset Y_5$,

$$\{ [f: (\Sigma, j) \longrightarrow Y_5] \in \overline{\mathfrak{M}}_0(Y_5, 2) : f(\Sigma) \subset L \} \approx \overline{\mathfrak{M}}_0(\mathbb{C}P^1, 2) \\ \{ [f: (\Sigma, j) \longrightarrow Y_5] \in \overline{\mathfrak{M}}_0(Y_5, 2) : f(\Sigma) \subset C \} \approx \overline{\mathfrak{M}}_0(\mathbb{C}P^1, 1)$$

are connected components of $\overline{\mathfrak{M}}_0(Y_5, 2)$ of dimensions 2 and 0

Stony Brook University

Aleksey Zinger

Example: Quintic Threefold

 $Y_5 \subset \mathbb{C}P^4$ 0-set of a degree 5 polynomial QSchubert Calculus: Y_5 contains 2,875 (isolated) lines S. Katz'86 (via Schubert): Y_5 contains 609,250 conics

For each line $L \subset Y_5$ and conic $C \subset Y_5$,

$$\{ [f: (\Sigma, j) \longrightarrow Y_5] \in \overline{\mathfrak{M}}_0(Y_5, 2) : f(\Sigma) \subset L \} \approx \overline{\mathfrak{M}}_0(\mathbb{C}P^1, 2) \\ \{ [f: (\Sigma, j) \longrightarrow Y_5] \in \overline{\mathfrak{M}}_0(Y_5, 2) : f(\Sigma) \subset C \} \approx \overline{\mathfrak{M}}_0(\mathbb{C}P^1, 1)$$

are connected components of $\overline{\mathfrak{M}}_0(Y_5,2)$ of dimensions 2 and 0

Stony Brook University

Aleksey Zinger

Expected dimension of $\overline{\mathfrak{M}}_0(Y_5, d)$

$$Y_5 = Q^{-1}(0) \subset \mathbb{C}P^4$$
 for a degree 5 polynomial Q

$$\implies \overline{\mathfrak{M}}_0(Y_5, d) = \left\{ [f : (\Sigma, j) \longrightarrow \mathbb{C}P^4] \in \overline{\mathfrak{M}}_0(\mathbb{C}P^4, d) : Q \circ f = 0 \right\}$$

holomorphic degree $d f: \mathbb{C}P^1 \longrightarrow \mathbb{C}P^4$ has the form

$$f([u,v]) = [R_1(u,v),\ldots,R_5(u,v)]$$

 R_1, \ldots, R_5 = homogeneous polynomials of degree d

 $\Rightarrow \qquad \dim \overline{\mathfrak{M}}_0(\mathbb{C}P^4, d) = 5 \cdot (d+1) - 1 - 3$

 $Q \circ f$ is homogen of degree 5*d* $\implies Q \circ f = 0$ is 5*d*+1 conditions on R_1, \ldots, R_5

Aleksey Zinger

Stony Brook University

Expected dimension of $\overline{\mathfrak{M}}_0(Y_5, d)$

$$Y_5 = Q^{-1}(0) \subset \mathbb{C}P^4$$
 for a degree 5 polynomial Q

$$\implies \overline{\mathfrak{M}}_{0}(Y_{5}, d) = \left\{ [f: (\Sigma, j) \longrightarrow \mathbb{C}P^{4}] \in \overline{\mathfrak{M}}_{0}(\mathbb{C}P^{4}, d) : Q \circ f = 0 \right\}$$

holomorphic degree $d f : \mathbb{C}P^1 \longrightarrow \mathbb{C}P^4$ has the form

$$f([u,v]) = [R_1(u,v),\ldots,R_5(u,v)]$$

 R_1, \ldots, R_5 = homogeneous polynomials of degree d

$$\implies \qquad \dim \overline{\mathfrak{M}}_0(\mathbb{C}P^4, d) = 5 \cdot (d+1) - 1 - 3$$

 $Q \circ f$ is homogen of degree 5*d* $\implies Q \circ f = 0$ is 5*d*+1 conditions on R_1, \ldots, R_5

Aleksey Zinger

Enumerative Geometry

Stony Brook University

Expected dimension of $\overline{\mathfrak{M}}_0(Y_5, d)$

$$Y_5 = Q^{-1}(0) \subset \mathbb{C}P^4$$
 for a degree 5 polynomial Q

$$\implies \overline{\mathfrak{M}}_{0}(Y_{5}, d) = \left\{ [f : (\Sigma, j) \longrightarrow \mathbb{C}P^{4}] \in \overline{\mathfrak{M}}_{0}(\mathbb{C}P^{4}, d) : Q \circ f = 0 \right\}$$

holomorphic degree $d f: \mathbb{C}P^1 \longrightarrow \mathbb{C}P^4$ has the form

$$f([u,v]) = [R_1(u,v),\ldots,R_5(u,v)]$$

 R_1, \ldots, R_5 = homogeneous polynomials of degree d

$$\implies \qquad \dim \overline{\mathfrak{M}}_0(\mathbb{C}P^4,d) = 5 \cdot (d+1) - 1 - 3$$

 $Q \circ f \text{ is homogen of degree } 5d$ $\implies Q \circ f = 0 \text{ is } 5d+1 \text{ conditions on } R_1, \dots, R_5$

Aleksey Zinger

Enumerative Geometry

< D > < A >

Expected dimension of $\overline{\mathfrak{M}}_0(Y_5, d)$

$$Y_5 = Q^{-1}(0) \subset \mathbb{C}P^4$$
 for a degree 5 polynomial Q

$$\implies \overline{\mathfrak{M}}_{0}(Y_{5}, d) = \left\{ [f : (\Sigma, j) \longrightarrow \mathbb{C}P^{4}] \in \overline{\mathfrak{M}}_{0}(\mathbb{C}P^{4}, d) : Q \circ f = 0 \right\}$$

holomorphic degree $d f: \mathbb{C}P^1 \longrightarrow \mathbb{C}P^4$ has the form

$$f([u,v]) = [R_1(u,v),\ldots,R_5(u,v)]$$

 R_1, \ldots, R_5 = homogeneous polynomials of degree d

$$\implies \qquad \dim \overline{\mathfrak{M}}_0(\mathbb{C}P^4,d) = 5 \cdot (d+1) - 1 - 3$$

 $\begin{array}{l} Q \circ f \text{ is homogen of degree } 5d \\ \Longrightarrow \quad Q \circ f = 0 \text{ is } 5d+1 \text{ conditions on } R_1, \dots, R_5 \end{array}$

Aleksey Zinger

Enumerative Geometry

ヘロト ヘヨト ヘヨト

Expected dimension of $\overline{\mathfrak{M}}_0(Y_5, d)$

$\implies \dim^{vir}\overline{\mathfrak{M}}_0(Y_5,d) = \dim\overline{\mathfrak{M}}_0(\mathbb{C}P^4,d) - (5d+1) = 0$

A more elaborate computation gives

$$\dim^{vir}\overline{\mathfrak{M}}_g(Y_5,d)=0 \qquad \forall \ g$$

 \Longrightarrow want to define

$$N_{g,d} \equiv \mathsf{GW}_{g,d}^{Y_5}() \equiv ig| \overline{\mathfrak{M}}_g(Y_5,d) ig|^{\operatorname{vir}}$$

Stony Brook University

Aleksey Zinger

Expected dimension of $\overline{\mathfrak{M}}_0(Y_5, d)$

$$\implies \dim^{\operatorname{vir}}\overline{\mathfrak{M}}_0(Y_5,d) = \dim \overline{\mathfrak{M}}_0(\mathbb{C}P^4,d) - (5d+1) = 0$$

A more elaborate computation gives

$$\dim^{\textit{vir}}\overline{\mathfrak{M}}_g(Y_5,d)=0 \qquad \forall \ g$$

 \Longrightarrow want to define

$$N_{g,d} \equiv \mathsf{GW}_{g,d}^{Y_5}() \equiv \left|\overline{\mathfrak{M}}_g(Y_5,d)
ight|^{virt}$$

Stony Brook University

Aleksey Zinger

< 口 > < 🗗

Expected dimension of $\overline{\mathfrak{M}}_0(Y_5, d)$

$$\implies \dim^{\operatorname{vir}}\overline{\mathfrak{M}}_0(Y_5,d) = \dim \overline{\mathfrak{M}}_0(\mathbb{C}P^4,d) - (5d+1) = 0$$

A more elaborate computation gives

$$\dim^{vir}\overline{\mathfrak{M}}_g(Y_5,d)=0 \qquad \forall \ g$$

\implies want to define

$$\mathsf{N}_{g,d} \equiv \mathsf{GW}_{g,d}^{Y_5}() \equiv \left| \overline{\mathfrak{M}}_g(Y_5,d)
ight|^{\mathit{vir}}$$

Stony Brook University

Aleksey Zinger

< ロ > < 同 > < 三 > .

GW-Invariants of $Y_5 \subset \mathbb{C}P^4$

$$\overline{\mathfrak{M}}_{g}(Y_{5},d) = \left\{ [f:(\Sigma,j) \longrightarrow Y_{5}] | g(f) = g, d(f) = d, \, \overline{\partial}_{j}f = 0 \right\}$$
$$\overline{\partial}_{j}f \equiv df + J_{Y_{5}} \circ df \circ j$$

 $N_{g,d} \equiv |\mathfrak{M}_g(Y_5, d)|^{*n}$ $\equiv \#\{[f: (\Sigma, j) \longrightarrow Y_5] | g(f) = g, d(f) = d, \, \bar{\partial}_j f = \nu(f)\}$

 ν = small generic deformation of $\bar{\partial}$ -equation

u multi-valued \Longrightarrow $N_{g,d} \in \mathbb{Q}$

Aleksey Zinger

Enumerative Geometry

Stony Brook University

GW-Invariants of $Y_5 \subset \mathbb{C}P^4$

$$\overline{\mathfrak{M}}_{g}(Y_{5}, d) = \left\{ [f: (\Sigma, j) \longrightarrow Y_{5}] | g(f) = g, d(f) = d, \overline{\partial}_{j} f = 0 \right\}$$
$$\overline{\partial}_{j} f \equiv df + J_{Y_{5}} \circ df \circ j$$
$$N_{g,d} \equiv \left| \overline{\mathfrak{M}}_{g}(Y_{5}, d) \right|^{vir}$$
$$\equiv \# \left\{ [f: (\Sigma, j) \longrightarrow Y_{5}] | g(f) = g, d(f) = d, \overline{\partial}_{j} f = \nu(f) \right\}$$

 ν = small generic deformation of $\bar{\partial}$ -equation

u multi-valued \Longrightarrow $N_{g,d} \in \mathbb{Q}$

Aleksey Zinger

GW-Invariants of $Y_5 \subset \mathbb{C}P^4$

$$\begin{split} \overline{\mathfrak{M}}_{g}(Y_{5},d) &= \left\{ [f \colon (\Sigma,j) \longrightarrow Y_{5}] | g(f) = g, d(f) = d, \, \overline{\partial}_{j} f = 0 \right\} \\ \overline{\partial}_{j} f &\equiv df + J_{Y_{5}} \circ df \circ j \\ N_{g,d} &\equiv \left| \overline{\mathfrak{M}}_{g}(Y_{5},d) \right|^{vir} \\ &\equiv \# \left\{ [f \colon (\Sigma,j) \longrightarrow Y_{5}] | g(f) = g, d(f) = d, \, \overline{\partial}_{j} f = \nu(f) \right\} \end{split}$$

 ν = small generic deformation of $\bar{\partial}$ -equation

u multi-valued \Longrightarrow $N_{g,d} \in \mathbb{Q}$

Aleksey Zinger

Enumerative Geometry

Stony Brook University

GW-Invariants of $Y_5 \subset \mathbb{C}P^4$

$$\begin{split} \overline{\mathfrak{M}}_{g}(Y_{5},d) &= \left\{ [f \colon (\Sigma,j) \longrightarrow Y_{5}] | g(f) = g, d(f) = d, \, \overline{\partial}_{j} f = 0 \right\} \\ \overline{\partial}_{j} f &\equiv df + J_{Y_{5}} \circ df \circ j \\ N_{g,d} &\equiv \left| \overline{\mathfrak{M}}_{g}(Y_{5},d) \right|^{vir} \\ &\equiv \# \left\{ [f \colon (\Sigma,j) \longrightarrow Y_{5}] | g(f) = g, d(f) = d, \, \overline{\partial}_{j} f = \nu(f) \right\} \end{split}$$

 ν = small generic deformation of $\bar{\partial}$ -equation

$$u$$
 multi-valued \Longrightarrow $N_{g,d} \in \mathbb{Q}$

Aleksey Zinger

What is special about Y_5 ?

Y₅ is Calabi-Yau 3-fold:

- $c_1(TY_5) = 0$
- Y₅ is "flat on average": Ric_{Y5}=0

CY 3-folds are central to string theory

Stony Brook University

What is special about Y_5 ?

*Y*₅ is Calabi-Yau 3-fold:

- $c_1(TY_5) = 0$
- Y₅ is "flat on average": Ric_{Y5}=0

CY 3-folds are central to string theory

Stony Brook University

Aleksey Zinger

What is special about Y_5 ?

*Y*₅ is Calabi-Yau 3-fold:

- $c_1(TY_5) = 0$
- Y₅ is "flat on average": Ric_{Y5}=0

CY 3-folds are central to string theory

Enumerative Geometry

Aleksey Zinger

Physics Insight II: Mirror Symmetry

A-Model partition function for Calabi-Yau 3-fold Y MIRROR principle B-Model partition function for mirror (family) of Y

generating function for GWs of Y: $F_g^A(q) = \sum_{d=1}^{\infty} N_{g,d} q^d$

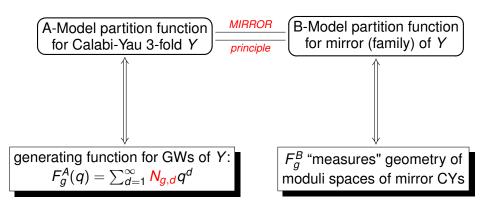
 F_g^B "measures" geometry of moduli spaces of mirror CYs

Image: A matrix

Aleksey Zinger

Enumerative Geometry

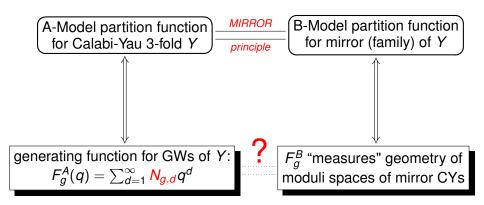
Physics Insight II: Mirror Symmetry



Aleksey Zinger

Enumerative Geometry

Physics Insight II: Mirror Symmetry



Aleksey Zinger

Stony Brook University

Image: A matrix

B-Side Computations for $Y = Y_5$

Candelas-de la Ossa-Green-Parkes'91 construct mirror family, compute F^B₀

 Bershadsky-Cecotti-Ooguri-Vafa'93 (BCOV) compute F₁^B using physics arguments

• Fang-Z. Lu-Yoshikawa'03 compute F^B₁ mathematically

• Huang-Klemm-Quackenbush'06 compute F_g^B , $g \le 51$ using physics

Stony Brook University

Aleksey Zinger

B-Side Computations for $Y = Y_5$

- Candelas-de la Ossa-Green-Parkes'91 construct mirror family, compute F^B₀
- Bershadsky-Cecotti-Ooguri-Vafa'93 (BCOV) compute F₁^B using physics arguments
- Fang-Z. Lu-Yoshikawa'03 compute F₁^B mathematically
- Huang-Klemm-Quackenbush'06 compute F_g^B , $g \le 51$ using physics

Stony Brook University

Aleksey Zinger

B-Side Computations for $Y = Y_5$

- Candelas-de la Ossa-Green-Parkes'91 construct mirror family, compute F^B₀
- Bershadsky-Cecotti-Ooguri-Vafa'93 (BCOV) compute F^B₁ using physics arguments

Fang-Z. Lu-Yoshikawa'03 compute F^B₁ mathematically

• Huang-Klemm-Quackenbush'06 compute F_g^B , $g \le 51$ using physics

Stony Brook University

Aleksey Zinger

B-Side Computations for $Y = Y_5$

- Candelas-de la Ossa-Green-Parkes'91 construct mirror family, compute F^B₀
- Bershadsky-Cecotti-Ooguri-Vafa'93 (BCOV) compute F₁^B using physics arguments
- Fang-Z. Lu-Yoshikawa'03 compute F^B₁ mathematically
- Huang-Klemm-Quackenbush'06 compute F_g^B , $g \le 51$ using physics

Aleksey Zinger

Mirror Symmetry Predictions and Verifications

Predictions

$$F_g^A(q) \equiv \sum_{d=1}^{\infty} N_{g,d} q^d \stackrel{?}{=} F_g^B(q).$$

Theorem (Givental'96, Lian-Liu-Yau'97,.....~'00)

g = 0 predict. of Candelas-de la Ossa-Green-Parkes'91 holds

Theorem (Z.'07)

g = 1 predict. of Bershadsky-Cecotti-Ooguri-Vafa'93 holds

Aleksey Zinger

Stony Brook University

Mirror Symmetry Predictions and Verifications

Predictions

$$F_g^A(q) \equiv \sum_{d=1}^{\infty} N_{g,d} q^d \stackrel{?}{=} F_g^B(q).$$

Theorem (Givental'96, Lian-Liu-Yau'97,.....~'00)

g = 0 predict. of Candelas-de la Ossa-Green-Parkes'91 holds

Theorem (Z.'07)

g = 1 predict. of Bershadsky-Cecotti-Ooguri-Vafa'93 holds

Aleksey Zinger

Stony Brook University

イロン イヨン イヨン イヨン

Mirror Symmetry Predictions and Verifications

Predictions

$$F_g^A(q) \equiv \sum_{d=1}^{\infty} N_{g,d} q^d \stackrel{?}{=} F_g^B(q).$$

Theorem (Givental'96, Lian-Liu-Yau'97,.....~'00)

g = 0 predict. of Candelas-de la Ossa-Green-Parkes'91 holds

Theorem (Z.'07)

g = 1 predict. of Bershadsky-Cecotti-Ooguri-Vafa'93 holds

Aleksey Zinger

Enumerative Geometry

Stony Brook University

(ロ) (四) (日) (日) (日)

• • • • • • • • • • • • •

General Approach to Verifying $F_g^A = F_g^B$ (works for g = 0, 1)

Need to compute each $N_{g,d}$ and all of them (for fixed g):

Step 1: relate $N_{g,d}$ to GWs of $\mathbb{C}P^4 \supset Y_5$

Step 2: use $(\mathbb{C}^*)^5$ -action on $\mathbb{C}P^4$ to compute each $N_{g,d}$ by localization

Step 3: find some recursive feature(s) to compute $N_{g,d} \quad \forall d \iff F_g^A$

Aleksey Zinger

• • • • • • • • • • • •

General Approach to Verifying $F_g^A = F_g^B$ (works for g = 0, 1)

Need to compute each $N_{g,d}$ and all of them (for fixed g):

Step 1: relate $N_{g,d}$ to GWs of $\mathbb{C}P^4 \supset Y_5$

Step 2: use $(\mathbb{C}^*)^5$ -action on $\mathbb{C}P^4$ to compute each $N_{g,d}$ by localization

Step 3: find some recursive feature(s) to compute $N_{g,d} \quad \forall d \iff F_g^A$

Stony Brook University

Aleksey Zinger

• • • • • • • • • • • •

General Approach to Verifying $F_g^A = F_g^B$ (works for g = 0, 1)

Need to compute each $N_{q,d}$ and all of them (for fixed g):

Step 1: relate $N_{g,d}$ to GWs of $\mathbb{C}P^4 \supset Y_5$

Step 2: use $(\mathbb{C}^*)^5$ -action on $\mathbb{C}P^4$ to compute each $N_{g,d}$ by localization

Step 3: find some recursive feature(s) to compute $N_{g,d} \forall d \iff F_g^A$

Stony Brook University

Aleksey Zinger

General Approach to Verifying $F_g^A = F_g^B$ (works for g = 0, 1)

Need to compute each $N_{g,d}$ and all of them (for fixed g):

Step 1: relate $N_{g,d}$ to GWs of $\mathbb{C}P^4 \supset Y_5$

Step 2: use $(\mathbb{C}^*)^5$ -action on $\mathbb{C}P^4$ to compute each $N_{g,d}$ by localization

Step 3: find some recursive feature(s) to compute $N_{g,d} \forall d \iff F_g^A$

Stony Brook University

Aleksey Zinger

Outline of Proof

On Thms A,B,C

From $Y_5 \subset \mathbb{C}P^4$ to $\mathbb{C}P^4$

$Y_5\equiv Q^{-1}(0)\subset \mathbb{C}P^4$

 $\overline{\mathfrak{M}}_g(\mathbb{C}P^4,d)$

Stony Brook University

Aleksey Zinger

Outline of Proof

From $Y_5 \subset \mathbb{C}P^4$ to $\mathbb{C}P^4$

$$\mathcal{L} \equiv \mathcal{O}(5)$$
 $Q \left(\bigvee_{\pi}^{\pi} Y_{5} \equiv Q^{-1}(0) \subset \mathbb{C}P^{4} \right)$

$$\overline{\mathfrak{M}}_g(\mathcal{L}, d)$$

$\overline{\mathfrak{M}}_g(\mathbb{C}P^4,d)$

・ロ・・ 日・・ 田・・ 日・ うらぐ

Stony Brook University

Aleksey Zinger

ヘロン ヘロン ヘビン・

From $Y_5 \subset \mathbb{C}P^4$ to $\mathbb{C}P^4$

$$\mathcal{L} \equiv \mathcal{O}(5)$$
 $Q \left(\bigvee_{\pi}^{\pi} Y_{5} \equiv Q^{-1}(0) \subset \mathbb{C}P^{4} \right)$

$$egin{aligned} \mathcal{V}_{g,d} \equiv \overline{\mathfrak{M}}_g(\mathcal{L},d) \ & ilde{Q} iggl(iggraphi^{\pi} \ & \overline{\mathfrak{M}}_g(\mathbb{C}P^4,d) \end{aligned}$$

Stony Brook University

æ

Aleksey Zinger

From $Y_5 \subset \mathbb{C}P^4$ to $\mathbb{C}P^4$

$$\begin{array}{cc} \mathcal{L} \equiv \mathcal{O}(5) & \mathcal{V}_{g,d} \equiv \overline{\mathfrak{M}}_g(\mathcal{L},d) \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\$$

$$\begin{split} \tilde{\pi}\big([\xi\colon \Sigma\longrightarrow\mathcal{L}]\big) &= [\pi\circ\xi\colon \Sigma\longrightarrow\mathbb{C}P^4]\\ \tilde{Q}\big([f\colon \Sigma\longrightarrow\mathbb{C}P^4]\big) &= [Q\circ f\colon \Sigma\longrightarrow\mathcal{L}] \end{split}$$

Stony Brook University

æ

・ロ・・ 日本・ ・ 田 ・ ・ 日

Aleksey Zinger

From $Y_5 \subset \mathbb{C}P^4$ to $\mathbb{C}P^4$

$$\begin{array}{ccc} \mathcal{L} \equiv \mathcal{O}(5) & \mathcal{V}_{g,d} \equiv \overline{\mathfrak{M}}_g(\mathcal{L},d) \\ & & & & \\ & & & & \\ & & & & \\ \mathcal{Y}_5 \equiv Q^{-1}(0) \subset \mathbb{C}P^4 & & & \overline{\mathfrak{M}}_g(Y_5,d) \equiv \tilde{Q}^{-1}(0) \subset \overline{\mathfrak{M}}_g(\mathbb{C}P^4,d) \end{array}$$

$$\tilde{\pi} \left([\xi \colon \Sigma \longrightarrow \mathcal{L}] \right) = [\pi \circ \xi \colon \Sigma \longrightarrow \mathbb{C} P^4]$$
$$\tilde{Q} \left([f \colon \Sigma \longrightarrow \mathbb{C} P^4] \right) = [Q \circ f \colon \Sigma \longrightarrow \mathcal{L}]$$

Stony Brook University

æ

・ロ・・ 日本・ ・ 田 ・ ・ 日

Aleksey Zinger

- < E →

From $Y_5 \subset \mathbb{C}P^4$ to $\mathbb{C}P^4$

$$\begin{array}{ccc} \mathcal{L} \equiv \mathcal{O}(5) & \mathcal{V}_{g,d} \equiv \overline{\mathfrak{M}}_g(\mathcal{L},d) \\ & & & & & \\ & &$$

This suggests: *Hyperplane Property*

$$N_{g,d} \equiv \left| \overline{\mathfrak{M}}_g(Y_5, d) \right|^{vir} \equiv \left| \tilde{Q}^{-1}(0) \right|^{vir}$$

Stony Brook University

Aleksey Zinger

From $Y_5 \subset \mathbb{C}P^4$ to $\mathbb{C}P^4$

$$\begin{array}{ccc} \mathcal{L} \equiv \mathcal{O}(5) & \mathcal{V}_{g,d} \equiv \overline{\mathfrak{M}}_g(\mathcal{L},d) \\ & & & & \\ & & & & \\ & & & & \\ \mathcal{Y}_5 \equiv Q^{-1}(0) \subset \mathbb{C}P^4 & & & & \\ & & & & & \\ \end{array}$$

This suggests: Hyperplane Property

$$egin{aligned} & N_{g,d} \equiv \left| \overline{\mathfrak{M}}_g(Y_5,d)
ight|^{\textit{vir}} \equiv \left| ilde{Q}^{-1}(0)
ight|^{\textit{vir}} \ & \stackrel{?}{=} \left\langle e(\mathcal{V}_{g,d}), [\overline{\mathfrak{M}}_g(\mathbb{C}P^4,d)]^{\textit{vir}}
ight
angle \end{aligned}$$

Aleksey Zinger

Enumerative Geometry

Stony Brook University

Image: A matrix

Genus 0 vs. Positive Genus

g = 0 everything is as expected:

- $\overline{\mathfrak{M}}_{g}(\mathbb{C}P^{4}, d)$ is smooth
- $[\overline{\mathfrak{M}}_g(\mathbb{C}P^4, d)]^{vir} = [\overline{\mathfrak{M}}_g(\mathbb{C}P^4, d)]$
- $\mathcal{V}_{g,d} \longrightarrow \overline{\mathfrak{M}}_g(\mathbb{C}P^4, d)$ is vector bundle
- hyperplane prop. makes sense and holds

 $g \ge 1$ none of these holds

Stony Brook University

Aleksey Zinger

Genus 0 vs. Positive Genus

g = 0 everything is as expected:

- $\overline{\mathfrak{M}}_{g}(\mathbb{C}P^{4}, d)$ is smooth
- $[\overline{\mathfrak{M}}_{g}(\mathbb{C}P^{4},d)]^{vir} = [\overline{\mathfrak{M}}_{g}(\mathbb{C}P^{4},d)]$
- $\mathcal{V}_{g,d} \longrightarrow \overline{\mathfrak{M}}_g(\mathbb{C}P^4, d)$ is vector bundle

hyperplane prop. makes sense and holds

 $g \ge 1$ none of these holds

Stony Brook University

Aleksey Zinger

Genus 0 vs. Positive Genus

g = 0 everything is as expected:

- $\overline{\mathfrak{M}}_{g}(\mathbb{C}P^{4}, d)$ is smooth
- $[\overline{\mathfrak{M}}_{g}(\mathbb{C}P^{4},d)]^{vir} = [\overline{\mathfrak{M}}_{g}(\mathbb{C}P^{4},d)]$
- $\mathcal{V}_{g,d} \longrightarrow \overline{\mathfrak{M}}_g(\mathbb{C}P^4, d)$ is vector bundle
- hyperplane prop. makes sense and holds

 $g \ge 1$ none of these holds

Stony Brook University

Aleksey Zinger

Genus 0 vs. Positive Genus

g = 0 everything is as expected:

- $\overline{\mathfrak{M}}_{g}(\mathbb{C}P^{4}, d)$ is smooth
- $[\overline{\mathfrak{M}}_{g}(\mathbb{C}P^{4},d)]^{vir} = [\overline{\mathfrak{M}}_{g}(\mathbb{C}P^{4},d)]$
- $\mathcal{V}_{g,d} \longrightarrow \overline{\mathfrak{M}}_g(\mathbb{C}P^4, d)$ is vector bundle
- hyperplane prop. makes sense and holds

 $g \ge 1$ none of these holds

Stony Brook University

Aleksey Zinger

Genus 1 Analogue

Thm. A (J. Li-Z.'04): HP holds for reduced genus 1 GWs

$$\left|\overline{\mathfrak{M}}_{1}^{0}(Y_{5},d)\right|^{\operatorname{vir}}=e(\mathcal{V}_{1,d})\cap\overline{\mathfrak{M}}_{1}^{0}(\mathbb{C}P^{4},d).$$

This generalizes to complete intersections $Y \subset \mathbb{C}P^n$.

- ⁰/₁(ℂP⁴, d) ⊂ m₁(ℂP⁴, d) main irred. component closure of {[f: Σ → ℂP⁴]∈m₁(ℂP⁴, d): Σ is smooth}
- *V*_{1,d} → *m*⁰₁(ℂ*P*⁴, *d*) not vector bundle, but
 e(*V*_{1,d}) well-defined (0-set of generic section)

Stony Brook University

Aleksey Zinger

Genus 1 Analogue

Thm. A (J. Li-Z.'04): HP holds for reduced genus 1 GWs

$$\left|\overline{\mathfrak{M}}_{1}^{0}(Y_{5},d)\right|^{\operatorname{vir}}=e(\mathcal{V}_{1,d})\cap\overline{\mathfrak{M}}_{1}^{0}(\mathbb{C}P^{4},d).$$

This generalizes to complete intersections $Y \subset \mathbb{C}P^n$.

 ⁰/₁(ℂP⁴, d) ⊂ m₁(ℂP⁴, d) main irred. component closure of {[f: Σ→ℂP⁴]∈m₁(ℂP⁴, d): Σ is smooth}

*V*_{1,d} → *m*⁰₁(ℂ*P*⁴, *d*) not vector bundle, but *e*(*V*_{1,d}) well-defined (0-set of generic section)

Stony Brook University

イロン イヨン イヨン イヨン

Aleksey Zinger

Genus 1 Analogue

Thm. A (J. Li-Z.'04): HP holds for reduced genus 1 GWs

$$\left|\overline{\mathfrak{M}}_{1}^{0}(Y_{5},d)\right|^{\operatorname{vir}}=e(\mathcal{V}_{1,d})\cap\overline{\mathfrak{M}}_{1}^{0}(\mathbb{C}P^{4},d).$$

This generalizes to complete intersections $Y \subset \mathbb{C}P^n$.

- $\mathcal{V}_{1,d} \longrightarrow \overline{\mathfrak{M}}_1^0(\mathbb{C}P^4, d)$ not vector bundle, but $e(\mathcal{V}_{1,d})$ well-defined (0-set of generic section)

Aleksey Zinger

Enumerative Geometry

Stony Brook University

・ロト ・回 ト ・ヨト ・ヨ

Thm. A
$$\implies N_{1,d}^0 \equiv \left|\overline{\mathfrak{M}}_1^0(Y_5,d)\right|^{\operatorname{vir}} = \int_{\overline{\mathfrak{M}}_1^0(\mathbb{C}P^4,d)} e(\mathcal{V}_{1,d})$$

$$\overline{\mathfrak{M}}_1^0(Y_5,d) \equiv \overline{\mathfrak{M}}_1^0(\mathbb{C}P^4,d) \cap \overline{\mathfrak{M}}_1(Y_5,d)$$

Thm. B (Z.'04,'07): $N_{1,d} - N_{1,d}^0 = \frac{1}{12}N_{0,d}$

This generalizes to all symplectic manifolds:

[standard] - [reduced genus 1 GW] = F(genus 0 GW)

: to check BCOV, enough to compute $\int_{\overline{\mathfrak{M}}_1^0(\mathbb{C}P^4,d)} e(\mathcal{V}_{1,d})$

Stony Brook University

イロン イロン イヨン イヨ

Aleksey Zinger

ヘロット (雪) (目) (

Standard vs. Reduced GWs

Thm. A
$$\implies N_{1,d}^0 \equiv \left|\overline{\mathfrak{M}}_1^0(Y_5,d)\right|^{vir} = \int_{\overline{\mathfrak{M}}_1^0(\mathbb{C}P^4,d)} e(\mathcal{V}_{1,d})$$

 $\overline{\mathfrak{M}}_1^0(Y_5,d) \equiv \overline{\mathfrak{M}}_1^0(\mathbb{C}P^4,d) \cap \overline{\mathfrak{M}}_1(Y_5,d)$

Thm. B (Z.'04,'07): $N_{1,d} - N_{1,d}^0 = \frac{1}{12}N_{0,d}$

This generalizes to all symplectic manifolds:

[standard] - [reduced genus 1 GW] = F(genus 0 GW)

: to check BCOV, enough to compute $\int_{\overline{\mathfrak{M}}_1^0(\mathbb{C}P^4,d)} e(\mathcal{V}_{1,d})$

Stony Brook University

Aleksey Zinger

Thm. A
$$\implies N_{1,d}^0 \equiv \left|\overline{\mathfrak{M}}_1^0(Y_5,d)\right|^{vir} = \int_{\overline{\mathfrak{M}}_1^0(\mathbb{C}P^4,d)} e(\mathcal{V}_{1,d})$$

 $\overline{\mathfrak{M}}_1^0(Y_5,d) \equiv \overline{\mathfrak{M}}_1^0(\mathbb{C}P^4,d) \cap \overline{\mathfrak{M}}_1(Y_5,d)$

Thm. B (Z.'04,'07):
$$N_{1,d} - N_{1,d}^0 = \frac{1}{12}N_{0,d}$$

This generalizes to all symplectic manifolds:

[standard] – [reduced genus 1 GW] = *F*(genus 0 GW)

: to check BCOV, enough to compute $\int_{\overline{\mathfrak{M}}_1^0(\mathbb{C}P^4,d)} e(\mathcal{V}_{1,d})$

Stony Brook University

Aleksey Zinger

Thm. A
$$\implies N_{1,d}^0 \equiv \left|\overline{\mathfrak{M}}_1^0(Y_5,d)\right|^{vir} = \int_{\overline{\mathfrak{M}}_1^0(\mathbb{C}P^4,d)} e(\mathcal{V}_{1,d})$$

$$\overline{\mathfrak{M}}_1^0(Y_5,d) \equiv \overline{\mathfrak{M}}_1^0(\mathbb{C}P^4,d) \cap \overline{\mathfrak{M}}_1(Y_5,d)$$

Thm. B (Z.'04,'07): $N_{1,d} - N_{1,d}^0 = \frac{1}{12}N_{0,d}$

This generalizes to all symplectic manifolds:

[standard] – [reduced genus 1 GW] = F(genus 0 GW)

∴ to check BCOV, enough to compute $\int_{\overline{\mathfrak{M}}_{1}^{0}(\mathbb{C}P^{4},d)} e(\mathcal{V}_{1,d})$

Stony Brook University

イロン イヨン イヨン イヨン

Aleksey Zinger

Thm. A
$$\implies N_{1,d}^0 \equiv \left|\overline{\mathfrak{M}}_1^0(Y_5,d)\right|^{vir} = \int_{\overline{\mathfrak{M}}_1^0(\mathbb{C}P^4,d)} e(\mathcal{V}_{1,d})$$

 $\overline{\mathfrak{M}}_1^0(Y_5,d) \equiv \overline{\mathfrak{M}}_1^0(\mathbb{C}P^4,d) \cap \overline{\mathfrak{M}}_1(Y_5,d)$

Thm. B (Z.'04,'07): $N_{1,d} - N_{1,d}^0 = \frac{1}{12}N_{0,d}$

This generalizes to all symplectic manifolds:

[standard] – [reduced genus 1 GW] = F(genus 0 GW)

 \therefore to check BCOV, enough to compute $\int_{\widehat{\mathfrak{M}}_{1}^{0}(\mathbb{C}P^{4},d)} e(\mathcal{V}_{1,d})$

Stony Brook University

Aleksey Zinger

イロト イヨト イヨト イ

Torus Actions

• $(\mathbb{C}^*)^5$ acts on $\mathbb{C}P^4$ (with 5 fixed pts)

- \Longrightarrow on $\overline{\mathfrak{M}}_g(\mathbb{C}P^4, d)$ (with simple fixed loci) and on $\mathcal{V}_{g,d} \longrightarrow \overline{\mathfrak{M}}_g(\mathbb{C}P^4, d)$
- $\int_{\overline{\mathfrak{M}}^0_d(\mathbb{C}P^4,d)} e(\mathcal{V}_{g,d})$ localizes to fixed loci

g = 0: Atiyah-Bott Localization Thm reduces \int to $\sum_{graphs} g = 1$: $\overline{\mathfrak{M}}_{a}^{0}(\mathbb{C}P^{4}, d), \mathcal{V}_{g,d}$ singular \Longrightarrow AB does not apply

Aleksey Zinger

Torus Actions

- $(\mathbb{C}^*)^5$ acts on $\mathbb{C}P^4$ (with 5 fixed pts)
- \implies on $\overline{\mathfrak{M}}_q(\mathbb{C}P^4, d)$ (with simple fixed loci) and on $\mathcal{V}_{a,d} \longrightarrow \overline{\mathfrak{M}}_{a}(\mathbb{C}P^{4}, d)$

• $\int_{\overline{\mathfrak{M}}_{a}^{0}(\mathbb{C}P^{4},d)} e(\mathcal{V}_{g,d})$ localizes to fixed loci

• • • • • • • • • • • • •

Aleksev Zinger

Iorus Actions

- $(\mathbb{C}^*)^5$ acts on $\mathbb{C}P^4$ (with 5 fixed pts)
- \Longrightarrow on $\overline{\mathfrak{M}}_g(\mathbb{C}P^4, d)$ (with simple fixed loci) and on $\mathcal{V}_{g,d} \longrightarrow \overline{\mathfrak{M}}_g(\mathbb{C}P^4, d)$
- $\int_{\overline{\mathfrak{M}}^0_d(\mathbb{C}P^4,d)} e(\mathcal{V}_{g,d})$ localizes to fixed loci

g = 0: Atiyah-Bott Localization Thm reduces \int to $\sum_{graphs} g = 1$: $\overline{\mathfrak{M}}_{g}^{0}(\mathbb{C}P^{4}, d), \mathcal{V}_{g,d}$ singular \Longrightarrow AB does not apply

• • • • • • • • • • • •

Aleksey Zinger

- - $(\mathbb{C}^*)^5$ acts on $\mathbb{C}P^4$ (with 5 fixed pts)
 - \Longrightarrow on $\overline{\mathfrak{M}}_g(\mathbb{C}P^4, d)$ (with simple fixed loci) and on $\mathcal{V}_{g,d} \longrightarrow \overline{\mathfrak{M}}_g(\mathbb{C}P^4, d)$
 - $\int_{\overline{\mathfrak{M}}_{g}^{0}(\mathbb{C}P^{4},d)} e(\mathcal{V}_{g,d})$ localizes to fixed loci

g = 0: Atiyah-Bott Localization Thm reduces \int to \sum_{graphs}

 $g = 1: \overline{\mathfrak{M}}_{g}^{0}(\mathbb{C}P^{4}, d), \mathcal{V}_{g,d}$ singular \Longrightarrow AB does not apply

Aleksey Zinger

Enumerative Geometry

Stony Brook University

< ロ > < 同 > < 臣 > < 臣

- $(\mathbb{C}^*)^5$ acts on $\mathbb{C}P^4$ (with 5 fixed pts)
- \implies on $\overline{\mathfrak{M}}_{a}(\mathbb{C}P^{4}, d)$ (with simple fixed loci) and on $\mathcal{V}_{a,d} \longrightarrow \overline{\mathfrak{M}}_{a}(\mathbb{C}P^{4}, d)$

•
$$\int_{\overline{\mathfrak{M}}_{g}^{0}(\mathbb{C}P^{4},d)} e(\mathcal{V}_{g,d})$$
 localizes to fixed loci

g = 0: Atiyah-Bott Localization Thm reduces \int to \sum_{graphs}

g = 1: $\overline{\mathfrak{M}}_{q}^{0}(\mathbb{C}P^{4}, d), \mathcal{V}_{q,d}$ singular \Longrightarrow AB does not apply

Aleksev Zinger

< E > <

Genus 1 Bypass

Thm. C (Vakil–Z.'05): $\mathcal{V}_{1,d} \longrightarrow \overline{\mathfrak{M}}_1^0(\mathbb{C}P^4, d)$ admit natural desingularizations:

$$\int_{\overline{\mathfrak{M}}_{1}^{0}(\mathbb{C}P^{4},d)}e(\mathcal{V}_{1,d})=\int_{\widetilde{\mathfrak{M}}_{1}^{0}(\mathbb{C}P^{4},d)}e(\widetilde{\mathcal{V}}_{1,d})$$

Stony Brook University

Aleksey Zinger

< E > <

Genus 1 Bypass

Thm. C (Vakil–Z.'05): $\mathcal{V}_{1,d} \longrightarrow \overline{\mathfrak{M}}_1^0(\mathbb{C}P^4, d)$ admit natural desingularizations:

$$\int_{\overline{\mathfrak{M}}_1^0(\mathbb{C}P^4,d)} e(\mathcal{V}_{1,d}) = \int_{\widetilde{\mathfrak{M}}_1^0(\mathbb{C}P^4,d)} e(\widetilde{\mathcal{V}}_{1,d})$$

Stony Brook University

Aleksey Zinger

Genus 1 Bypass

Thm. C (Vakil–Z.'05):
$$\mathcal{V}_{1,d} \longrightarrow \overline{\mathfrak{M}}_1^0(\mathbb{C}P^4, d)$$
 admit natural desingularizations:

$$\implies \qquad \int_{\widetilde{\mathfrak{M}}_1^0(\mathbb{C}P^4,d)} \boldsymbol{e}(\mathcal{V}_{1,d}) = \int_{\widetilde{\mathfrak{M}}_1^0(\mathbb{C}P^4,d)} \boldsymbol{e}(\widetilde{\mathcal{V}}_{1,d})$$

Stony Brook University

(ロ) (四) (日) (日) (日)

Aleksey Zinger

Computation of Genus 1 GWs of CIs

Thm. C generalizes to all $\mathcal{V}_{1,d} \longrightarrow \overline{\mathfrak{M}}_{1,k}^{0}(\mathbb{C}P^{n},d)$:

: Thms A,B,C provide an algorithm for computing genus 1 GWs of complete intersections $X \subset \mathbb{C}P^n$

Aleksey Zinger

Stony Brook University

Computation of Genus 1 GWs of CIs

Thm. C generalizes to all $\mathcal{V}_{1,d} \longrightarrow \overline{\mathfrak{M}}_{1,k}^{0}(\mathbb{C}P^{n},d)$:

: Thms A,B,C provide an algorithm for computing genus 1 GWs of complete intersections $X \subset \mathbb{C}P^n$

Aleksey Zinger

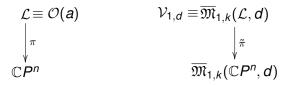
Stony Brook University

イロン イロン イヨン イヨ

< D > < B > < E > <</p>

Computation of Genus 1 GWs of CIs

Thm. C generalizes to all $\mathcal{V}_{1,d} \longrightarrow \overline{\mathfrak{M}}_{1,k}^{0}(\mathbb{C}P^{n},d)$:



Thms A,B,C provide an algorithm for computing genus 1 GWs of complete intersections $X \subset \mathbb{C}P^n$

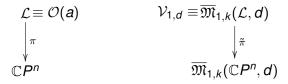
Aleksey Zinger

Stony Brook University

< □ > < □ > < □ > < □ > <

Computation of Genus 1 GWs of CIs

Thm. C generalizes to all $\mathcal{V}_{1,d} \longrightarrow \overline{\mathfrak{M}}_{1,k}^{0}(\mathbb{C}P^{n},d)$:



:. Thms A,B,C provide an algorithm for computing genus 1 GWs of complete intersections $X \subset \mathbb{C}P^n$

Stony Brook University

Aleksey Zinger

Computation of $N_{1,d}$ for all d

split genus 1 graphs into many genus 0 graphs at special vertex

- make use of good properties of genus 0 numbers to eliminate infinite sums
- extract non-equivariant part of elements in $H^*_{\mathbb{T}}(\mathbb{P}^4)$

Stony Brook University

Aleksey Zinger Enumerative Geometry

Computation of $N_{1,d}$ for all d

- split genus 1 graphs into many genus 0 graphs at special vertex
- make use of good properties of genus 0 numbers to eliminate infinite sums
- extract non-equivariant part of elements in $H^*_{\mathbb{T}}(\mathbb{P}^4)$

Stony Brook University

Aleksey Zinger

Computation of $N_{1,d}$ for all d

- split genus 1 graphs into many genus 0 graphs at special vertex
- make use of good properties of genus 0 numbers to eliminate infinite sums
- extract non-equivariant part of elements in $H^*_{\mathbb{T}}(\mathbb{P}^4)$

Stony Brook University

Enumerative Geometry

Aleksey Zinger

Key Geometric Foundation

A Sharp Gromov's Compactness Thm in Genus 1 (Z.'04)

- describes limits of sequences of pseudo-holomorphic maps
- describes limiting behavior for sequences of solutions of a $\bar\partial\text{-}\text{equation}$ with limited perturbation
- allows use of topological techniques to study genus 1 GWs

Aleksey Zinger

ヘロト ヘヨト ヘヨト

Key Geometric Foundation

A Sharp Gromov's Compactness Thm in Genus 1 (Z.'04)

- describes limits of sequences of pseudo-holomorphic maps
- describes limiting behavior for sequences of solutions of a $\bar{\partial}\text{-}\text{equation}$ with limited perturbation
- allows use of topological techniques to study genus 1 GWs

Stony Brook University

Aleksey Zinger

Key Geometric Foundation

A Sharp Gromov's Compactness Thm in Genus 1 (Z.'04)

- describes limits of sequences of pseudo-holomorphic maps
- describes limiting behavior for sequences of solutions of a $\bar\partial$ -equation with limited perturbation
- allows use of topological techniques to study genus 1 GWs

Stony Brook University

Aleksey Zinger

Key Geometric Foundation

A Sharp Gromov's Compactness Thm in Genus 1 (Z.'04)

- describes limits of sequences of pseudo-holomorphic maps
- describes limiting behavior for sequences of solutions of a $\bar\partial$ -equation with limited perturbation
- allows use of topological techniques to study genus 1 GWs

Aleksey Zinger

Main Tool

Analysis of Local Obstructions

- study obstructions to smoothing pseudo-holomorphic maps from singular domains
- not just potential existence of obstructions

Stony Brook University

ヘロット (雪) (目) (

Aleksey Zinger

Main Tool

Analysis of Local Obstructions

- study obstructions to smoothing pseudo-holomorphic maps from singular domains
- not just potential existence of obstructions

・ロト・「伊ト・ヨト・ヨト」をつく Stony Brook University

Aleksey Zinger

Main Tool

Analysis of Local Obstructions

- study obstructions to smoothing pseudo-holomorphic maps from singular domains
- not just potential existence of obstructions

Stony Brook University

Aleksey Zinger