Counting Rational Curves

of Arbitrary Shape

in **Projective Spaces**

Enumerative Geometry

Subject Matter

determine # of *geometric* objects that satisfy given *geometric* conditions

Example

of lines thr. 2 pts in \mathbb{R}^n is 1

Typical Setting

Objects:	(complex) curves
	in algebraic manifolds (e.g. \mathbb{P}^n)

Conditions: genus/complex structure homology class singularities pass thr. submanifolds (e.g. pts)

simple node $x^2 = y^2$

simple cusp $x^2 = y^3$

Enumerative Geometry

Classical Example

 $n_d = \#$ of rat. deg.-d curves thr. 3d-1 pts. in \mathbb{P}^2 What is n_d ?

> rational geom. genus=zero (S^2) degree-d $[\mathcal{C}] = d[\ell] \in H_2(\mathbb{P}^2; \mathbb{Z})$

Classical Results (by 1870s) $n_1 = 1, n_2 = 1, n_3 = 12, n_4 = 620$

Recent Results (1993) (Kontsevich-Manin, Ruan-Tian)

$$n_{d} = \frac{1}{6(d-1)} \sum_{d_{1}+d_{2}=d} \left(d_{1}d_{2} - 2 \frac{(d_{1}-d_{2})^{2}}{3d-2} \right) \left(\begin{matrix} 3d-2\\ 3d_{1}-1 \end{matrix} \right) d_{1}d_{2}n_{d_{1}}n_{d_{2}} d_{1}d_{2}n_{d_{1}}n_{d_{2}}d_{2}n_{d_{1}}n_{d_{2}}d_{2}n_{d_{1}}n_{d_{2}}d_{2}n_{d_{1}}n_{d_{2}}d_{2}n_{d_{1}}n_{d_{2}}d_{2}n_{d_{1}}n_{d_{2}}d_{2}n_{d_{1}}n_{d_{2}}n_{d_{1}}n_{d_{2$$

d	1	2	3	4	5	6
n_d	1	1	12	620	87,304	$26,\!312,\!976$

also recursion for $n_d(\mu)$, μ =submanifolds in \mathbb{P}^n

Modern Approach

Summary

Count stable maps into \mathbb{P}^n , not curves in \mathbb{P}^n

Pseudoholomorphic Maps (Gromov'85) (V, ω) =sympl. manifold, $A \in H_2(V; \mathbb{Z})$ J=compatible (almost) complex str. $\mathfrak{M}_{0,0}(V, A) = \left\{ u \in C^{\infty}(S^2, V) : u_*[S^2] = A, \\ \bar{\partial}_J u = 0 \right\} / PSL_2$

Fact:
$$\exists \overline{\mathfrak{M}}_{0,0}(V,A)$$

Example

$$(\mathbb{P}^{2}, \omega, J) = \text{Fubini-Study str.}$$
$$\mathfrak{M}_{0,0}(\mathbb{P}^{2}, d) = \left\{ u \in C^{\infty}(S^{2}, \mathbb{P}^{2}) : u_{*}[S^{2}] = d[\ell], \\ \bar{\partial}_{J}u = 0 \right\} / PSL_{2}$$
$$p_{1}, \dots, p_{3d-1} = \text{points in } \mathbb{P}^{2}$$
$$\# \left\{ [u] \in \mathfrak{M}_{0,0}(\mathbb{P}^{2}, d) : p_{l} \in \text{Im } u \right\} = n_{d}$$

More Generally

 $\mathfrak{M}_{0,N}(\mathbb{P}^n, d) = \left\{ (u; y_1, \dots, y_N) : y_l \in S^2 \right\} / PSL_2$ Fact: $\overline{\mathfrak{M}}_{0,N}(\mathbb{P}^n, d)$ is "nice" AG: Kontsevich'93, Fulton-Pandharipande'97 ST: McDuff-Salamon'93, Ruan-Tian'93

Counting Curves vs. Stable Maps

type	via curves	via stable maps
tacnode in \mathbb{P}^2	Ran'02	DH'88+Vakil'98
3-point in \mathbb{P}^2	Ran'02	KQR'96, Vakil'98
node	\mathbb{P}^3 : Ran'02	\mathbb{P}^n : Z.'02

Subject of the Talk

Method for solving a large class of enum. problems involving rational curves in \mathbb{P}^n

Highlights

- uses only topology of $\overline{\mathfrak{M}}_{0,N}(\mathbb{P}^n,d)$
- appl. in each specific case is mechanical

Applications

- determine # of rational curves in \mathbb{P}^n with one singular point of given type not involving tacnode-like conditions
- describe stable-map closure of the space of normalizations of such curves

Example

Determine # of rational curves in \mathbb{P}^n that have a point with four branches, one of which is a cusp and another is a 2-cusp

d	4	4	4	4	4	5	5	6
(p,ℓ)	(6, 1)	(5,3)	(4, 5)	(3,7)	(2,9)	(8, 1)	(7,3)	(10, 1)
$\frac{1}{6} \mathcal{V}_1^{(2)}(\mu) $	0	0	0	60	1,280	8	264	4,680

One-Component 3-Pointed Rational Curves in \mathbb{P}^3

One-Component Tacnodal Rational Curves in \mathbb{P}^3

d	4	4	4	4	4	5	5
(p,ℓ)	(6, 1)	(5, 3)	(4, 5)	(3,7)	(2,9)	(8,1)	(7,3)
$\frac{1}{2} \mathcal{S}_1^{(1)}(\mu) $	0	0	0	1,296	27,648	960	9,792

Ingredients

(1) topology:

boundary contributions to euler class boundary contributions to pseudocycles zeros of affine maps between vector bundles

(2) analysis:

construction of "good" bundle sections behavior of these near the boundary

Step 0 (trivial) Relate the desired set of curves to a subset \mathcal{Z} of $\mathfrak{M}_{0,N}(\mathbb{P}^n, d)$ (or related space)

Eventual Goal

Express $|\mathcal{Z}|$ in terms of "Level 0" numbers: (1) tautological classes in $\overline{\mathfrak{M}}_{0,*}(\mathbb{P}^n,*)$ (2) equivalently, the numbers $n_*(*)$ (Pand.'95)

Example

 $\mathcal{Z}^* = \text{rat. degree-}d \text{ curves thr. } 3d-1 \text{ pts,}$ counted with a choice of a node

Question: What is $|\mathcal{Z}^*|$?

$$\mathcal{S} = \left\{ [u, y_0, y_1] \in \mathfrak{M}_{0,2}(\mathbb{P}^2, d) : p_i \in \operatorname{Im} u \right\}$$
$$\mathcal{Z} = \left\{ b \in \mathcal{S} : \operatorname{ev}_0(b) = \operatorname{ev}_1(b) \right\}$$
$$= \left\{ b \in \mathcal{S} : \left\{ \operatorname{ev}_0 \times \operatorname{ev}_1 \right\}(b) \in \Delta_{\mathbb{P}^2 \times \mathbb{P}^2} \right\}$$

Step 1 (easy) Describe subset S of $\mathfrak{M}_{0,N}(\mathbb{P}^n, d)$ s.t. (1a) $\mathcal{Z} = s^{-1}(0)$ for a "good" $s \in \Gamma(S; V)$ (1b) or "pseudocycle equivalent" of (1a) (2) Level of S < Level of \mathcal{Z}

Goal

Express $|\mathcal{Z}|$ in terms of *lower-level numbers*

Topology, Part I

Motivation

Formally $\begin{aligned} &\mathcal{C}_{\partial \bar{\mathcal{S}}}(s) \equiv^{\pm} \left| \{ s + \varepsilon \}^{-1}(0) \cap W \right| & \text{if} \\ & \varepsilon \in \Gamma(\bar{\mathcal{S}}; V) \text{ small & generic} \\ & W = \text{small neighborhood of } \partial \bar{\mathcal{S}} \end{aligned}$

Computation of $C_{\partial \bar{S}}(s)$

Assumptions on s

 $\partial \bar{S} = \bigsqcup \mathcal{Z}_i$ $\exists W_i, \text{ small nhbd of } \mathcal{Z}_i, \text{ s.t. } s|_{W_i} \approx \alpha_i \circ \rho_i$

$$\mathcal{C}_{\mathcal{Z}_i}(s) = \deg \rho_i \cdot N(\alpha_i)$$

$$N(\alpha_i) = \left| \{ (x; w) \in F_i : \alpha_i(x; w) + \nu(x) = 0 \} \right|$$
$$\nu \in \Gamma(\bar{\mathcal{Z}}_i; V)$$

$$\operatorname{deg} \rho_{i} = \begin{cases} 0, & \text{if } \operatorname{rk} F_{i} < \operatorname{rk} \mathcal{NZ}_{i} \\ \operatorname{sgn} \rho_{i} \cdot |\operatorname{det} \rho_{i}|, & \text{if } \operatorname{rk} F_{i} = \operatorname{rk} \mathcal{NZ}_{i} \end{cases}$$

$$\rho_i \longleftrightarrow \mathcal{A} = \begin{pmatrix} a_{11} & \dots & a_{1k} \\ \vdots & \vdots & \vdots \\ a_{k1} & \dots & a_{kk} \end{pmatrix} \qquad \frac{\det \rho_i = \det \mathcal{A}}{\det \rho_i}$$

$$\left(\begin{array}{c} c_1\\ \vdots\\ c_k \end{array}\right) \equiv \mathcal{A}^{-1} \left(\begin{array}{c} 1\\ \vdots\\ 1 \end{array}\right)$$

$$\operatorname{sgn} \rho_i = \begin{cases} 1, & c_i > 0 \ \forall i \\ -1, & c_i < 0 \ \forall i \\ 0, & \text{otherwise} \end{cases}$$

Summary

Setup

$$\partial \mathcal{S} = \bigsqcup \mathcal{Z}_i, \quad s|_{W_i} \approx \alpha_i \circ \rho_i$$

Topology, Part II

Counting Zeros of Affine Maps

Facts

(1) $N(\alpha) \equiv \pm |\psi_{\alpha,\nu}^{-1}(0)|$ depends on α , but not ν

(2) if $\alpha | F_x$ is injective $\forall x \in \bar{\mathcal{S}}$, $^{\pm} | \psi_{\alpha,\nu}^{-1}(0) | = \langle e(\mathcal{O}/\alpha(F)), \bar{\mathcal{S}} \rangle = \langle c(\mathcal{O})c(F)^{-1}, \bar{\mathcal{S}} \rangle$

Example

$$\begin{split} \bar{\mathcal{S}} &= \mathbb{P}^1 = \left\{ \ell \!=\! [u, v] \colon (u, v) \!\in\! \mathbb{C}^2 \!-\! \{0\} \right\} \\ F &= \mathbb{C}, \qquad \mathcal{O} = \mathbb{C} \oplus \gamma^* \end{split}$$

(1) if
$$\alpha(\ell; c) = (\ell; c, 0), \qquad N(\alpha) = 1$$

(2) if
$$\alpha(\ell;c) = (\ell;0,c \cdot u), \quad N(\alpha) = 0$$

Computation of $N(\alpha)$

Summary of Topology

Conclusion

$$\frac{\pm |s|_{\mathcal{S}}^{-1}(0)| = \langle e(V), \bar{\mathcal{S}} \rangle - \sum \deg \rho_i \cdot N(\alpha_i) }{N(\alpha) = \frac{\pm |\alpha^{\perp}|_{\mathcal{S}}^{-1}}{\alpha^{-1}(0)}(0)|}$$

Important Generalizations

- (i) $\mathcal{S} \subset \overline{\mathfrak{M}}, \ \overline{\mathfrak{M}} =$ strat. top.orbi., dim $\partial \overline{\mathcal{S}} <$ dim \mathcal{S}
- (ii) $\partial \bar{\mathcal{S}} \subset \sqcup \mathcal{Z}_i$
- (1) $s \in \Gamma(\mathcal{S}, V), \ \alpha \in \Gamma(\mathcal{S}, \operatorname{Hom}(F, \mathcal{O}))$
- (2) extension to pseudocycles

Example

 $\mathcal{Z}^* = \text{rat. degree-}d \text{ curves thr. } 3d-1 \text{ pts,}$ counted with a choice of a node

Question: What is $|\mathcal{Z}^*|$?

$$\mathcal{S} = \left\{ [u, y_0, y_1] \in \mathfrak{M}_{0,2}(\mathbb{P}^2, d) \colon p_i \in \operatorname{Im} u \right\}$$
$$\mathcal{Z} = \left\{ \left\{ \operatorname{ev}_0 \times \operatorname{ev}_1 \right\} |_{\mathcal{S}} \right\}^{-1} (\Delta_{\mathbb{P}^2 \times \mathbb{P}^2}).$$

 $ev_0 \times ev_1 : \mathcal{S} \longrightarrow \mathbb{P}^2 \times \mathbb{P}^2$ is a pseudocycle

Reasons:

- (1) $\dim \partial \bar{\mathcal{S}} < \dim \mathcal{S}$
- (2) $\operatorname{ev}_0 \times \operatorname{ev}_1 : \overline{\mathcal{S}} \longrightarrow \mathbb{P}^2 \times \mathbb{P}^2$ is continuous
- (3) $ev_0 \times ev_1$ is smooth on all strata of \bar{S}

Consequences

(1) get
$$[ev_0 \times ev_1] \in H_4(\mathbb{P}^2 \times \mathbb{P}^2; \mathbb{Z})$$

(2) $\langle \langle \{ev_0 \times ev_1\}^{-1}(\Delta_{\mathbb{P}^2 \times \mathbb{P}^2}), \bar{S} \rangle \rangle$
 $\equiv [ev_0 \times ev_1] \cdot [\Delta_{\mathbb{P}^2 \times \mathbb{P}^2}] \in \mathbb{Z}$

$$\begin{aligned} |\mathcal{Z}| &= \left\langle \left\langle \{ \mathrm{ev}_0 \times \mathrm{ev}_1 \}^{-1} (\Delta_{\mathbb{P}^2 \times \mathbb{P}^2}), \bar{\mathcal{S}} \right\rangle \right\rangle \\ &- \mathcal{C}_{\partial \bar{\mathcal{S}}} \left(\mathrm{ev}_0 \times \mathrm{ev}_1; \Delta_{\mathbb{P}^2 \times \mathbb{P}^2} \right) \end{aligned}$$

$$\left[\Delta_{\mathbb{P}^2 \times \mathbb{P}^2}\right] = \left[p \times \mathbb{P}^2\right] + \left[\ell \times \ell\right] + \left[\mathbb{P}^2 \times p\right]$$

 $\begin{aligned} \mathbf{Conclusion} \\ \left\langle \left\langle \{ \mathrm{ev}_0 \times \mathrm{ev}_1 \}^{-1} (\Delta_{\mathbb{P}^2 \times \mathbb{P}^2}), \bar{\mathcal{S}} \right\rangle \right\rangle &= 0 + d^2 \cdot n_d + 0 \end{aligned}$

Ingredients of the Method

(1) topology:

boundary contributions to euler class boundary contributions to pseudocycles zeros of affine maps between vector bundles

(2) analysis:

construction of "good" bundle sections behavior of these near the boundary

Analysis, Part I

Construction of "Good Bundles"

$$\mathfrak{M}_{0,*}(\mathbb{P}^n, d) = \left\{ (u; y_0, \ldots) : u \in \mathcal{H}(S^2; \mathbb{P}^n) \right\} / PSL_2$$
$$= \mathcal{B}/S^1$$
$$\overline{\mathfrak{M}}_{0,*}(\mathbb{P}^n, d) = \overline{\mathcal{B}}/S^1$$

Key Property

$$\mathcal{B} \subset \left\{ (u; y_0, \ldots) \colon u \in \mathcal{H}(S^2; \mathbb{P}^n) \right\}$$

 $L_0 \equiv \bar{\mathcal{B}} \times_{S^1} \mathbb{C}$ is the "universal tangent bundle at y_0 "

Construction of "Good" Bundle Sections

$$\mathcal{D}_0^{(m)} \in \Gamma(\overline{\mathfrak{M}}_{0,*}(\mathbb{P}^n, d), \operatorname{Hom}(L_0^{\otimes m}, \operatorname{ev}_0^* T \mathbb{P}^n))$$
$$\mathcal{D}_0^{(1)}[(u, y_0, \ldots), c] = c \cdot du|_{y_0 = \infty} e_{\infty}$$
$$\mathcal{D}_0^{(2)}[(u, y_0, \ldots), c] = \frac{1}{2!}c^2 \cdot \frac{D}{ds}du|_{\infty} e_{\infty}$$
$$e_{\infty} = (1, 0, 0) \in T_{\infty}S^2$$

$$\mathcal{D}_{l}^{(m)} \in \Gamma(\mathfrak{M}_{0,*}(\mathbb{P}^{n},d), \operatorname{Hom}(L_{0}^{*\otimes m},\operatorname{ev}_{l}^{*}T\mathbb{P}^{n}))$$
$$\mathcal{D}_{l}^{(1)}[(u,y_{0},\ldots),c] = c \cdot du|_{y_{l}}e_{l}$$
$$\mathcal{D}_{l}^{(2)}[(u,y_{0},\ldots),c] = \frac{1}{2!}c^{2} \cdot \frac{D}{ds}du|_{y_{l}}e_{l}$$
$$e_{l} = \frac{\partial}{\partial x} \in T_{y_{l}}\mathbb{C} \approx T_{y_{l}}S^{2}$$

Analysis, Part II

Theorem

Near each boundary stratum of $\overline{\mathfrak{M}}_{0,*}(\mathbb{P}^n, d)$, each section $\mathcal{D}_l^{(m)}$ admits a power-series type of expansion involving the "derivatives" at the marked and singular points.

•

Example

 $\mathcal{Z}^* = \text{rat. degree-}d \text{ curves thr. } 3d-1 \text{ pts,}$ counted with a choice of a node

Question: What is $|\mathcal{Z}^*|$?

$$\mathcal{S} = \left\{ [u, y_0, y_1] \in \mathfrak{M}_{0,2}(\mathbb{P}^2, d) \colon p_i \in \operatorname{Im} u \right\}$$
$$\mathcal{Z} = \left\{ \{ \operatorname{ev}_0 \times \operatorname{ev}_1 \} |_{\mathcal{S}} \right\}^{-1} (\Delta_{\mathbb{P}^2 \times \mathbb{P}^2}).$$

 $|\mathcal{Z}| = d^2 \cdot n_d - \mathcal{C}_{\partial \bar{\mathcal{S}}} (\operatorname{ev}_0 \times \operatorname{ev}_1; \Delta_{\mathbb{P}^2 \times \mathbb{P}^2})$

$$ev_{1}(\phi(v)) - ev_{0}(\phi(v)) = \sum_{k=1}^{\infty} y_{1}^{-k} \mathcal{D}_{0}^{(k)} \phi(v)$$
$$= \sum_{k=1}^{\infty} (y_{1} - x_{2})^{-k} \{ \mathcal{D}_{2}^{(k)} + \varepsilon_{k}(v) \} v^{\otimes k}$$
$$= (y_{1} - x_{2})^{-1} \{ \mathcal{D}_{k}^{(1)} + \varepsilon(v) \} v$$

Consequences

 α does not vanish:

$$N(\alpha) = \left\langle c(\mathrm{ev}_0^* T \mathbb{P}^n) c(L_0)^{-1}, \bar{\mathcal{V}}_1(\mu) \right\rangle$$
$$= \left\langle 3\mathrm{ev}_0^* c_1(\gamma^*) + c_1(L_0^*), \bar{\mathcal{V}}_1(\mu) \right\rangle$$
$$= 3d \cdot n_d - 2 \cdot n_d$$

Conclusion
$$|\mathcal{Z}| = d^2 \cdot n_d - (3d-2)n_d = 2\binom{d-1}{2}n_d$$

$$|\mathcal{Z}^*| = \binom{d-1}{2} n_d$$

Rational Tacnodal Curves in \mathbb{P}^n

Question

What is the number $|\mathcal{Z}^*|$ of rat. tacnodal curves that pass thr. constraints μ_1, \ldots, μ_N in \mathbb{P}^n ?

Constraints

3d-2 points in \mathbb{P}^2 p pts and q lines in \mathbb{P}^3 , 2p+q=4d-3:

Setup

$$\mathcal{S}_0 = \left\{ [u, y_0, y_1] \in \mathfrak{M}_{0,2}(\mathbb{P}^n, d) \colon \mu_l \cap \operatorname{Im} u \neq \emptyset \right\}$$
$$\mathcal{S}_1 = \left\{ b \in \mathcal{S}_0 \colon \operatorname{ev}_0(b) = \operatorname{ev}_1(b) \right\}$$
$$\mathcal{S}_1' = \mathbb{P}(L_0 \oplus L_0^*) \big|_{\mathcal{S}_1}$$

$$\mathcal{Z} = \left\{ (b, \ell) \in \mathcal{S}'_1 : \mathcal{D}_{0,1}(b, \ell) = 0 \right\}$$
$$\mathcal{D}_{0,1}(b, \ell) \in \Gamma(\mathcal{S}'_1; \gamma^* \otimes \operatorname{ev}_0^* T \mathbb{P}^n)$$
$$\mathcal{D}_{0,1}(b; v_0, v_1) = \mathcal{D}_0^{(1)} v_0 + \mathcal{D}_1^{(1)} v_1$$

Remark

 $\mathcal{D}_{0,1}$ does *not* extend over $\partial \bar{\mathcal{S}}'_1$

$|\mathcal{Z}| = \left\langle e(\gamma^* \otimes \operatorname{ev}_0^* T \mathbb{P}^n), \bar{\mathcal{S}}_1' \right\rangle - \mathcal{C}_{\partial \bar{\mathcal{S}}_1'}(\mathcal{D}_{0,1})$

Step 1

- Check that $\dim \partial \bar{\mathcal{S}}_1 < \dim \mathcal{S}_1$
- Describe the strata of $\partial \bar{S}_1$

Step 2 Figure out the boundary contributions

Infinite-Dimensional Analogue

Fact $\operatorname{RT}_{g,d}$ for \mathbb{P}^n is easily computable

Applications

$$n_{g,d} = \left| \left\{ f \colon (\Sigma, j) \longrightarrow \mathbb{P}^n \text{ passes thr.} \right. \\ \text{appropriate } \# \text{ of pts, lines, etc.} \right\} \right| \\ = \left| \left\{ \bar{\partial} |_{C^{\infty}_d(\Sigma; \mathbb{P}^n)} \right\}^{-1}(0) \right| \\ \simeq \left| \left\{ \text{genus-}g \text{ fixed complex str. curves} \right. \\ \text{thr. appropriate constraints in } \mathbb{P}^n \right\}$$

$$n_{g,d} = \left\langle e(\Gamma^{0,1}; \text{ind } \bar{\partial}), \bar{C}_d^{\infty}(\Sigma; \mathbb{P}^n) \right\rangle - \mathcal{C}_{\partial \bar{C}_d^{\infty}(\Sigma; \mathbb{P}^n)}(\bar{\partial})$$
$$= \operatorname{RT}_{g,d} - \mathcal{C}_{\partial \bar{C}_d^{\infty}(\Sigma; \mathbb{P}^n)}(\bar{\partial})$$

"Near Fact" $\exists \text{ partition } \bar{\partial}^{-1}(0) \cap \partial \bar{C}^{\infty}_{d}(\Sigma; \mathbb{P}^{n}) = \bigsqcup_{i \in I} \mathcal{Z}_{i} \text{ s.t.}$

•
$$\mathcal{C}_{\partial \bar{C}^{\infty}_{d}(\Sigma; \mathbb{P}^{n})}(\bar{\partial}) = \sum_{i \in I} m_{i} \cdot N(\alpha_{i})$$

- I depends only on n and g (or j if $g \ge 3$)
- m_i depends only on i
- $\alpha_i \in \Gamma(\mathcal{Z}_i; \operatorname{Hom}(F_i; \mathcal{O}_i))$ is good and "minimally" dependent on d and constraints

g=0	$m_i = 0$	easy
g=1	$m_1 = 1; m_i = 0 \text{ if } i \neq 1$	\sim Ionel'96
g=2, n=2,3	$m_i \! \in \! \{0, 1, 2, 3\}$	Z.'02
g = 3, n = 3	$m_i \in \{0, 1, 2, 3, 4\}$ or	7 200
j non-hyperell.	$m_i \in \{0, 1, 2, 3, 4, 10\}$	Z. 02

True if

Also g=2, n=4; g=3, n=3; g=4, 5, 6, 7, n=2.

Final Remark

$$n_{g,d}^{j} = \left| \left\{ f : (\Sigma, j) \longrightarrow \mathbb{P}^{n} \text{ passes thr.} \right. \\ \text{appropriate } \# \text{ of pts, lines, etc.} \right\} \right|$$

g=0	$n_{g,d}^j = \operatorname{RT}_{g,d}$
~ _ 1	$n_{g,d}^j \neq \operatorname{RT}_{g,d}$
g=1	$n_{g,d}^j$ is independent of $j \in \overline{\mathfrak{M}}_{1,1}$
	$n_{g,d}^j \neq \operatorname{RT}_{g,d}$
g=2	$n_{g,d}^j$ is independent of $j \in \mathfrak{M}_2$
	$n_{g,d}^j$ is dependent on $j \in \overline{\mathfrak{M}}_2$
	$n_{g,d}^j \neq \operatorname{RT}_{g,d}$
g=3	If j is not hyperelliptic,
	$n_{g,d}^j$ depends on # of hyperflexes