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ABSTRACT. The space of smooth genus 0 curves in projective space has a natural smooth compact-
ification: the moduli space of stable maps, which may be seen as the generalization of the classical
space of complete conics. In arbitrary genus, no such natural smooth model is expected, as the space
satisfies “Murphy’s Law”. In genus 1, however, the situation remains beautiful. We give a natural
smooth compactification of the space of elliptic curves in projective space, and describe some of its
properties. This space is a blow up of the space of stable maps. It can be interpreted as blowing up
the most singular locus first, then the next most singular, and so on, but with a twist — these loci are
often entire components of the moduli space. We give a number of applications in enumerative ge-
ometry and Gromov-Witten theory. The proof that this construction indeed gives a desingularization
will appear in [VZ].

1. DESINGULARIZATION OF THE MODULI SPACE OF GENUS-ONE MAPS

The moduli space of stable maps Mg,k(X,β) to a complex projective manifold X (where g is
the genus, k is the number of marked points, and β ∈ H2(X,Z) is the image homology class)
is the central tool and object of study in Gromov-Witten theory. We consider this space as a
Deligne-Mumford stack. The open subset corresponding to maps from smooth curves is denoted
Mg,k(X,β).

The paradigmatic example is M0,k(P
n, d). This space is wonderful in essentially all ways: it is

irreducible, smooth, and contains M0,k(P
n, d) as a dense open subset. The boundary

∆ := M0,k(P
n, d) \M0,k(P

n, d)

is normal crossings. The divisor theory is fully understood, and combinatorially tractable, [P].
In some sense, this should be seen as the natural generalization of the space of complete conics
compactifying the space of smooth conics.

It is natural to wonder if such a beautiful structure exists in higher genus. In arbitrary genus,
however, there is no reasonable hope: even the interior Mg(P

n, d) is badly behaved in general.
More precisely, Mg(P

n, d) (as g, n, and d vary) is arbitrary singular in a well-defined sense — it
can have essentially any singularity, and can have components of various dimension meeting in
various ways with various nonreduced structures [V2]. There is no reasonable hope of describing
a desingularization, as this would involve describing a resolution of singularities.

In genus one, however, the situation remains remarkably beautiful. Although M1,k(P
n, d) in

general has many components, it is straightforward to show that M1,k(P
n, d) is irreducible and
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smooth. Let M0
1,k(P

n, d) be the closure of this open subset (the “main component” of the moduli
space).

In the paper [VZ], we will show that there is a natural desingularization of this main component

M̃1,k(P
n, d) → M

0
1,k(P

n, d).

This desingularization has several desirable properties.

• It leaves the interior M1,k(P
n, d) unchanged.

• The boundary M̃1,k(P
n, d) \M1,k(P

n, d) is simple normal crossings, with an explicitly de-
scribed normal bundle.

• The points of the boundary have an explicit geometric interpretation.
• The desingularization can be interpreted as blowing up “the most singular locus”, then

“the next most singular locus”, and so on, but with an unusual twist.
• The divisor theory is explicitly describable, and the intersection theory is tractable. (For

example, one can compute the top intersection of any combination of divisors using [Z2].)
• The compactification is natural in the following senses.

(i) The desingularization is equivariant — it behaves well with respect to the symmetries
of Pn. Hence we can apply Atiyah-Bott localization to this space — not just in theory,
but in practice.

(ii) It behaves well with respect to the inclusion Pm ↪→ Pn.
(iii) It behaves well with respect to the marked points (forgetful maps; ψ-classes; etc.).
(iv) Consider the universal map

C
π

//

ρ

��

Pn

Mg,k(P
n, d)

.

An important sheaf in Gromov-Witten theory is ρ∗π∗OPn(a). When g > 0, this is not a
vector bundle, which causes difficulty in computation and theory. However, in genus
1, “resolving M

0
1,k(P

n, d) also resolves this sheaf”: when the sheaf is pulled back to the
desingularization, it “becomes” a vector bundle. More precisely: it contains a natural
vector bundle, and is isomorphic to it on the interior. This vector bundle is explicitly
describable.

We think it is interesting that such a natural naive approach as we describe below actually
works, and yields a desingularization with these nice properties. For example, if n > 2, this
desingularization can be interpreted as a natural compactification of the Hilbert scheme of smooth
degree d curves in projective space, and thus could be seen as the genus 1 version of the complete
conics.

This construction also has a number of applications:

• enumerative geometry of genus 1 curves via localization (extending results of [V1], for
example adding tangencies).

• Gromov-Witten invariants in terms of enumerative invariants [Z1].
• the Lefschetz hyperplane property: effective computation of Gromov-Witten invariants of

complete intersections [LZ2] (see also [LZ1] for the special case of the quintic threefold).
• an algebraic version of “reduced” Gromov-Witten invariants in symplectic geometry [Z1].
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genus 1

FIGURE 1. Irreducible components and other interesting loci in M1(P
2, 3); the little

squiggle in each panel represents a contracted genus-curve

• an approach to the physicists’ prediction [BCOV] of genus 1 Gromov-Witten invariants
[Z3].

Before giving the construction, we motivate it by describing the geography of M1,k(P
n, d) It is

straightforward to show that M1,k(P
n, d) is nonsingular on the locus where there is no contracted

genus 1 (possibly nodal) curve (for example, the proof of [V1, Prop. 4.21] applies).

2. EXAMPLE: PLANE CUBICS

We first consider the case of M1(P
2, 3), see Figure 1. The main component generically corre-

sponds to smooth plane cubics, which has dimension 9. This is depicted in the upper-central
panel of the figure. The remaining components must all contain a contracted genus 1 curve, and
we enumerate the possibilities.

The contracted genus 1 curve could meet one other curve, necessarily genus 0 and mapping
with degree 3 (see the upper-left panel of Fig. 1). The general such genus 0 map will have as image
a nodal cubic. This component of the moduli space has dimension 10: there is an 8-dimensional
family of nodal cubics, plus a 1-dimensional choice of where to “glue” the elliptic curve, plus a
1-dimensional choice of j-invariant. Thus this locus cannot lie in the closure of the 9-dimensional
main component.

Another possibility is that the contracted genus 1 curve could meet two other curves, one map-
ping with degree 2 and one mapping with degree 1 (see the upper-right panel of Fig. 1). This
forms a 9-dimensional family: a 2-dimensional choice for the 2-pointed elliptic curve (dimM1,2 =
2), plus a 2-dimensional choice for the image of the contracted curve in the plane, plus a 4-
dimensional choice of conic through that point, plus a 1-dimensional choice of a line through
that point. Again, for dimensional reasons, all such maps can’t lie in the 9-dimensional main
component.
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The final possibility involving a contracted elliptic component is if the contracted curve meets
three other curves, each mapping with degree 1 (as lines). (See the lower-middle panel of Fig-
ure 1.) This family has dimension 8 (3 dimensions for the choice of a point in M1,3, plus a 2-
dimensional choice of the image of this component in the plane, plus a 3-dimensional choice of
the three lines through that point). Thus there is no dimensional obstruction for all such maps to
lie in the (boundary of the) main component, and indeed they do.

One can extend this analysis to see where the components meet. The “one-tail component”
meets the main component along the locus of maps where the genus 0 degree 3 map has a cusp
precisely where it meets the contracted elliptic curve (see the lower-left panel of Fig. 1). The “two-
tail component” meets the main component along the locus of maps where the conic and the line
are tangent (see the lower-right panel of Fig. 1). More generally, one can explicitly describe which
genus one stable maps are “smoothable” (i.e. lie in the main component):

Proposition. A genus 1 stable map π : C → Pn is smoothable if and only if it is one of two forms:

(i) π contracts no genus 1 curve, or
(ii) if E is the maximal connected genus-one curve contracted by π, and E meets the rest of C

(i.e.C ′ = C −E) at the points p1, . . . , pm, then π(TC′,p1
), . . . , π(TC′,pm

) must be a dependent
set of vectors in π(TPn,π(E)).

This follows readily from the same proof as [V1, Lemma 5.9]. (More generally, one of the impli-
cations holds if Pn is replaced by a smooth target: if C → X is smoothable, then one of these two
hold.)

Notice that this proposition “explains” the bottom row of Figure 1: if E has “one tail” (m = 1),
then π(C ′) must have a cusp at that point for the map to be smoothable. If E has “two tails” (m =
2), then the two branches of π(C ′) must be tangent at that point for the map to be smoothable. If E
has “three tails”, then the three branches of π(C ′) must be coplanar for the map to be smoothable
— but this is automatic in P2.

3. THE DESINGULARIZATION PROCEDURE

We finally describe the desingularization. We assume d > 0, as if d = 0, then

M1,k(P
n, d) ≡ M1,k × Pn,

which is already smooth.

Define the m-tail locus of M1,k(P
n, d) to be the closure of the subspace of M1,k(P

n, d) consisting
of the stable maps π : C → Pn such that

(i) C is a union of a smooth genus-one curve E with a number of smooth genus-zero curves
attached directly to E;

(ii) E is contracted by π and carries a total of m marked and singular points;
(iii) none of the rational curves is contracted by π.

For example, in the 2-tail locus, the contracted elliptic curve could contain no marked points, and
meet the rest of the curve in two points; or it could contain one marked point, and meet the rest of
the curve in one point.
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genus 1

FIGURE 2. A map in two branches of the three-tail locus; the genus one curve is
indicated, the solid components are the contracted ones, and the dots represent a
choice of three nodes separating a genus one contracted curve from the rest of the
curve

Them-tail locus is the union of a number of components, which we now describe. For eachm ′ ∈
{1, . . . , d}, each partition µ of d intom′ parts, and each subsetS of {1, . . . , k} of sizem−m′, we have
a subvariety (substack, really) corresponding to maps with a contracted elliptic curveE containing
the marked points S, and meeting m′ genus 0 curves mapping with degrees corresponding to the
partition µ. These may be components of M1,k(P

n, d), but may not be (as we saw in the example
of the cubics). Note that E ⊂ C is not necessarily unique for a stable map π : C → Pn in the m-tail
locus; an example can be extracted from Figure 2.

Then the desingularization may be described as follows: blow up the one-tail locus, then the proper
transform of the two-tail locus, etc. At each stage, we are blowing up along a smooth center.

We need to blow up in this particular order for the following reason. Figure 2 shows a map
contained in the two-tail, three-tail, and four-tail locus. In fact, it is in “two branches” of the three-
tail locus in the moduli space, corresponding to the two ways we can select three nodes separating
a genus one contracted curve from the rest of the curve. Thus the three-tail locus is not smooth at
this point. Blowing up the two-tail locus will separate these two branches of the three-tail locus,
and the proper transform of the three-tail locus is then smooth (at the points corresponding to this
map).

We make a few observations.

First, this suggests that we should think of the one-tail locus as the “most singular locus”, the
two-tail locus as the “next-most singular locus”, and so on. This is perhaps opposite to the order
one would expect.

Second, note that blowing up a space (such as M1,k(P
n, d)) may be interpreted as removing the

component (“blowing it out of existence”), and blowing up that component’s scheme-theoretic
intersection with the remainder of the space. More formally, if X ∪ Y is a scheme, with closed
subschemesX and Y , BlX(X ∪Y ) is canonically isomorphic to BlX∩Y Y by the universal property
of blowing up. Hence we could equally well describe this construction as blowing up M

0
1,k(P

n, d)
along the “one-tail locus” of this space, then the “two-tail locus”, etc. (In this case, the first blow-
up, along the one-tail locus, does nothing, as this is already a Cartier divisor.) With this interpre-
tation, at each stage we are still blowing up a space along a smooth center.

For example in the example of cubics, we remove the two non-main components (the upper-left
and upper-right panels of Figure 1), blow up the locus corresponding to maps corresponding to
the panel in the lower-right of Figure 1 (which is a Weil divisor, but not Cartier), then blow up (the
proper transform of) the locus corresponding to the panel in the lower-middle of Figure 1.
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Third, this construction involves only the underlying curve and the information of which com-
ponents are contracted. By making this precise, we are led to a candidate definition for more
general target spaces. Let M1,k be the moduli space (Artin stack) of projective connected, nodal,
genus 1, k-pointed nodal curves (over C). Construct β : M

′

1,k → M1,k where points of M
′

1,k

are defined as projective connected nodal genus one curves with the additional information of
a connected union of components of arithmetic genus 1 (possibly empty) that is declared to be
contracted. Then β is locally (on the source) an isomorphism, but is not separated. The forgetful
morphism M1,k(P

n, d) → M1,k naturally factors through M
′

1,k. If M̃′
1,k is the blow-up of M

′

1,k

along the one-tail locus, then the proper transform of the two-tail locus, etc., then
M1,k(P

n, d) ×M′

1,k
M̃′

1,k

contains M̃1,k(P
n, d) as an irreducible component. If X is a complex projective manifold, one can

similarly define M̃1,k(X,β) as the union of components of

(1) M1,k(X,β) ×M′

1,k
M̃′

1,k

generically mapping to M1,k (i.e. corresponding to maps with smooth source). (We have no
reasonable modular interpretation of M̃1,k(X,β) in general; taking the closure is an awkward
construction moduli-theoretically.) Via the exact sequence for the tangent-obstruction theory of
M1,k(X,β) in terms of that of M1,k and H i(C, π∗TX), one can endow (1) with a natural virtual
fundamental class. We expect this to lead to an algebraic theory of “reduced genus 1 Gromov-
Witten invariants”, cf. [Z1].

REFERENCES

[BCOV] M. Bershadsky, S. Cecotti, H. Ooguri, and C. Vafa, Holomorphic anomalies in topological field theories, Nucl.
Phys. B 405 (1993), 279–304.

[LZ1] J. Li and A. Zinger, On the genus-one Gromov-Witten invariants of a quintic threefold, preprint 2004,
math.AG/0406105.

[LZ2] J. Li and A. Zinger, On the genus-one Gromov-Witten invariants of complete intersections, preprint 2005,
math.AG/0507104.

[P] R. Pandharipande, Intersections of Q-divisors on Kontsevich’s moduli space M 0,n(Pr, d) and enumerative geometry,
Trans. Amer. Math. Soc. 351 (1999), no. 4, 1481–1505.

[V1] R. Vakil, The enumerative geometry of rational and elliptic curves in projective space, J. Reine Angew. Math. (Crelle’s
Journal) 529 (2000), 101–153.

[V2] R. Vakil, Murphy’s Law in algebraic geometry: Badly-behaved moduli deformation spaces, Invent. Math. 164 (2006),
569–590.

[VZ] R. Vakil and A. Zinger, A desingularization of the main component of the moduli space of genus-one stable maps to
projective space, in preparation (preliminary version math.AG/0603353v1).

[Z1] A. Zinger, Reduced genus-one Gromov-Witten invariants, preprint 2005, math.SG/0507103.
[Z2] A. Zinger, Intersections of tautological classes on blowups of moduli spaces of genus-one curves, preprint 2006,

math.AG/0603357.
[Z3] A. Zinger, work in progress.

DEPARTMENT OF MATHEMATICS, STANFORD UNIVERSITY, STANFORD, CA 94305-2125
E-mail address: vakil@math.stanford.edu

DEPARTMENT OF MATHEMATICS, SUNY STONY BROOK, STONY BROOK, NY 11794-3651
E-mail address: azinger@math.sunysb.edu

6


