A Desingularization of
 (the Main Component of)
 the Moduli Space of
 Genus-One Stable Maps into \mathbb{P}^{n}

(joint w. Ravi Vakil)
slides to appear at http://math.sunysb.edu/~azinger

Overview

- $\overline{\mathfrak{M}}_{1, k}\left(\mathbb{P}^{n}, d\right)=\left\{\right.$ genus- 1 stable maps into \mathbb{P}^{n} $\cup \quad$ with k marked pts $\}$
- $\overline{\mathfrak{M}}_{1, k}^{0}\left(\mathbb{P}^{n}, d\right)=$ main irred. component of

$$
\overline{\mathfrak{M}}_{1, k}\left(\mathbb{P}^{n}, d\right)
$$

Goal: construct desingularization

$$
\pi: \widetilde{\mathfrak{M}}_{1, k}^{0}\left(\mathbb{P}^{n}, d\right) \longrightarrow \overline{\mathfrak{M}}_{1, k}^{0}\left(\mathbb{P}^{n}, d\right)
$$

Approach:

Blow up other components of $\overline{\mathfrak{M}}_{1, k}\left(\mathbb{P}^{n}, d\right)$ and similar subvarieties

Good Properties of $\widetilde{\mathfrak{M}_{1, k}^{0}}\left(\mathbb{P}^{n}, d\right)$

$$
\begin{aligned}
& \tilde{\mathcal{V}}(a)=\tilde{p}_{*} \tilde{\pi}^{*} \operatorname{ev}^{*} \mathcal{L} \quad \mathcal{V}(a)=p_{*} \operatorname{ev}^{*} \mathcal{L} \\
& \widetilde{\mathfrak{M}}_{1, k}^{0}\left(\mathbb{P}^{n}, d\right) \xrightarrow{\pi} \overline{\mathfrak{M}}_{1, k}^{0}\left(\mathbb{P}^{n}, d\right)
\end{aligned}
$$

Thm: $\tilde{\mathcal{V}}(a)$ is locally free

$$
\begin{aligned}
& \tilde{\mathcal{V}}(a) \sim \widetilde{\mathfrak{M}}_{1, k}^{0}(\mathcal{L}, d) \xrightarrow{\tilde{\pi}} \mathcal{V}(a) \sim \overline{\mathfrak{M}}_{1, k}(\mathcal{L}, d)
\end{aligned}
$$

$$
\begin{aligned}
& \widetilde{\mathfrak{M}}_{1, k}^{0}\left(\mathbb{P}^{n}, d\right) \longrightarrow \overline{\mathfrak{M}}_{1, k}\left(\mathbb{P}^{n}, d\right)
\end{aligned}
$$

Applications

Enumerative Geometry

counts of genus- 1 curves in \mathbb{P}^{n}

$$
=\int_{\overline{\mathfrak{M}}_{1, k}^{0}\left(\mathbb{P}^{n}, d\right)} e(V) \quad=\underbrace{\int_{\widetilde{\mathfrak{M}}_{1, k}^{0}\left(\mathbb{P}^{n}, d\right)} \pi^{*} e(V)}_{\text {v.b. }}
$$

Gromov-Witten Theory

$Y_{a} \subset \mathbb{P}^{n}$ hypersurface of degree a
Thm (J. Li, Z.-):

$$
\begin{aligned}
\mathrm{GW}_{1, k}\left(Y_{a}\right) & =\int_{\overline{\mathfrak{M}}_{1, k}^{0}\left(\mathbb{P}^{n}, d\right)} e(\mathcal{V}(a))+\mathrm{GW}_{0, *}\left(Y_{a}\right) \\
& =\underbrace{\int_{\widetilde{\mathfrak{M}}_{1, k}^{0}\left(\mathbb{P}^{n}, d\right)} e(\tilde{\mathcal{V}}(a))}_{\text {compute by localization }}+\mathrm{GW}_{0, *}\left(Y_{a}\right)
\end{aligned}
$$

Approach to Proof:

- Describe structure of $\overline{\mathfrak{M}}_{1}$
- Describe changes after each step of blowup
- Do idealized blowup at each step:
- blow up along variety $\operatorname{Pr} \overline{\mathfrak{M}}_{1}^{l}$
- attach $\mathbb{P} \mathcal{N}_{l}^{\text {ide }}$
$\mathcal{N}_{l}^{\text {ide }}=$ idealized normal bundle for $\operatorname{Pr} \iota_{l}$
helps describing $\operatorname{Pr} \overline{\mathfrak{M}}_{1}^{0}$

Notation: Genus-1 Curves

- $\overline{\mathcal{M}}_{1, l}=\{$ genus- 1 curves with l marked pts $\}$
- $L_{k}, \mathbb{E} \longrightarrow \overline{\mathcal{M}}_{1, l}$ natural line bundles; $k=1, \ldots, l$
- $\mathbb{E}=$ Hodge l.b.: $\left.\mathbb{E}\right|_{\left[\Sigma, y_{1}, \ldots, y_{l}\right]}=H^{0}\left(\Sigma ; T^{*} \Sigma\right)$
- $L_{k}=$ universal tangent l.b. for y_{k} :

$$
\left.L_{k}\right|_{\left[\Sigma, y_{1}, \ldots, y_{l}\right]}=T_{y_{k}} \Sigma
$$

- $s_{k}: L_{k} \longrightarrow \mathbb{E}^{*}$ natural homomorphism:

$$
\left\{s_{k}(v)\right\}(\psi)=\left.\psi\right|_{y_{k}}(v) \in \mathbb{C}
$$

Notation: Genus-0 Maps

- $\overline{\mathfrak{M}}_{0,1}\left(\mathbb{P}^{n}, d\right)=\{$ genus-0 maps w. 1 marked pt $\}$
- $\mathrm{ev}_{1}: \overline{\mathfrak{M}}_{0,1}\left(\mathbb{P}^{n}, d\right) \longrightarrow \mathbb{P}^{n}$ evaluation at marked pt

$$
\left[\Sigma, y_{1}, u\right] \longrightarrow u\left(y_{1}\right)
$$

- $L_{1} \longrightarrow \overline{\mathfrak{M}}_{0,1}\left(\mathbb{P}^{n}, d\right)$ universal tangent l.b. at y_{1}
- $\mathcal{D}_{1}: L_{1} \longrightarrow \mathrm{ev}_{1}^{*} T \mathbb{P}^{n}$ differential map:

$$
\left.\mathcal{D}_{1}\right|_{\left[\Sigma, y_{1}, u\right]}(v)=\left.d u\right|_{y_{1}} v \in T_{u\left(y_{1}\right)} \mathbb{P}^{n}
$$

- $\overline{\mathfrak{M}}_{0,(l)} \subset \bigcup \overline{\mathfrak{M}}_{0,1}\left(\mathbb{P}^{n}, d_{1}\right) \times \ldots \times \overline{\mathfrak{M}}_{0,1}\left(\mathbb{P}^{n}, d_{l}\right)$

$$
\begin{gathered}
d_{1}+\ldots+d_{l}=d \\
d_{1}, \ldots, d_{l}>0
\end{gathered}
$$

ev_{1} agree on $\overline{\mathfrak{M}}_{0,(l)}$

- $\pi_{k}: \overline{\mathfrak{M}}_{0,(l)} \longrightarrow \bigcup_{d_{k}=1}^{d_{k}=d} \overline{\mathfrak{M}}_{0,1}\left(\mathbb{P}^{n}, d_{k}\right) \quad$ projection

Structure of $\overline{\mathfrak{M}}_{1}$

- $\overline{\mathfrak{M}}_{1}=\overline{\mathfrak{M}}_{1}^{0} \cup \bigcup_{l \geq 1} \overline{\mathfrak{M}}_{1}^{l} ; \overline{\mathfrak{M}}_{1}^{0}-\bigcup_{l \geq 1} \overline{\mathfrak{M}}_{1}^{l}$ is smooth
- $\iota_{l}:\left(\overline{\mathcal{M}}_{1, l} \times \overline{\mathfrak{M}}_{0,(l)}\right) / S_{l} \longrightarrow \overline{\mathfrak{M}}_{1}^{l} \subset \overline{\mathfrak{M}}_{1}$
node-identifying immersion embedding outside of $\bigcup_{l^{\prime}<1} \overline{\mathfrak{M}}_{1}^{l^{\prime}}$
- idealized normal bundle for ι_{l} :

$$
\mathcal{N}_{l}^{\text {ide }}=\bigoplus_{k=1}^{k=l} \pi_{P}^{*} L_{k} \otimes \pi_{B}^{*} \pi_{k}^{*} L_{1} \longrightarrow \overline{\mathcal{M}}_{1, l} \times \overline{\mathfrak{M}}_{0,(l)}
$$

Describe structure of $\overline{\mathfrak{M}}_{1}^{0} \cap \overline{\mathfrak{M}}_{1}^{l}$:

$\overline{\mathcal{Z}}_{l}=\iota_{l}^{-1}\left(\overline{\mathfrak{M}}_{1}^{0}\right), \mathcal{Z}_{l}=\overline{\mathcal{Z}}_{l} \cap\left(\mathcal{M}_{1, l} \times \mathfrak{M}_{0,(l)}\right)$, normal cone $\mathcal{N} \overline{\mathcal{Z}}_{l} \subset \mathcal{N}_{l}^{\text {ide }}$ for immersion $\iota_{l}: \overline{\mathcal{Z}}_{l} \longrightarrow \overline{\mathfrak{M}}_{1}^{0}$

Define bundle homomorphism

$$
\begin{gathered}
\mathcal{D}_{(l)}: \mathcal{N}_{l}^{\text {ide }}=\bigoplus_{k=1}^{k=l} \pi_{P}^{*} L_{k} \otimes \pi_{B}^{*} \pi_{k}^{*} L_{1} \longrightarrow \pi_{P}^{*} \mathbb{E}^{*} \otimes \mathrm{ev}_{1}^{*} T \mathbb{P}^{n} \\
\mathcal{D}_{(l)} \mid \pi_{P}^{*} L_{k} \oplus \pi_{B}^{*} \pi_{l}^{*} L_{1}=\pi_{P}^{*} s_{k} \otimes \pi_{B}^{*} \pi_{k}^{*} \mathcal{D}_{1}
\end{gathered}
$$

Proposition

- $\mathcal{Z}_{l}=\left\{u \in \mathcal{M}_{1, l} \times \mathfrak{M}_{0,(l)}:\left.\operatorname{ker} \mathcal{D}_{(l)}\right|_{u} \neq 0\right\}$
- $\left.\mathcal{N} \overline{\mathcal{Z}}_{l}\right|_{\mathcal{Z}_{l}}=\operatorname{ker} \mathcal{D}_{(l)}$
- $\overline{\mathcal{Z}}_{l}=$ closure of \mathcal{Z}_{l} in $\overline{\mathcal{M}}_{1, l} \times \overline{\mathfrak{M}}_{0,(l)}$
- $\mathcal{N} \overline{\mathcal{Z}}_{l}=$ closure of $\left.\mathcal{N} \overline{\mathcal{Z}}_{l}\right|_{\mathcal{Z}_{l}}$ in $\mathcal{N}_{l}^{\text {ide }}$

The l th step of the blowup construction:

- blow up along proper transform of $\overline{\mathfrak{M}}_{1}^{l}$ a smooth subvariety
- attach idealized exceptional divisor $\mathbb{P} \tilde{\mathcal{N}}_{l}^{\text {ide }}$ along exceptional divisor \mathcal{E}_{l} $\tilde{\mathcal{N}}_{l}^{\text {ide }}=$ idealized normal bundle for $\operatorname{Pr} \iota_{l}$
- describe changes in $\iota_{l^{\prime}}, \mathcal{Z}_{l^{\prime}}, \mathcal{N} \mathcal{Z}_{l^{\prime}} \quad \forall l^{\prime}$

End Result:

- Proper Transform of $\widetilde{\mathcal{Z}}_{l}$ is the zero set of transverse section of a vector bundle over a blowup of $\mathbb{P} \tilde{\mathcal{N}}_{l}^{\text {ide }}$
- $\widetilde{\mathfrak{M}}_{1, k}^{0}=\mathfrak{M}_{1}^{\text {eff }} \cup \bigcup_{l=1}^{l=d} \widetilde{\mathcal{Z}}_{l}$
- $\mathfrak{M}_{1, k}^{\text {eff }}=\overline{\mathfrak{M}}_{1}^{0}-\bigcup_{l=1}^{l=d} \overline{\mathfrak{M}}_{1}^{l}$ is smooth
- $\widetilde{\mathcal{Z}}_{l}$ is smooth
- Normal sheaf of \mathcal{Z}_{l} in $\widetilde{\mathfrak{M}}_{1}^{0}$ is l.b.
$\Longrightarrow \quad \widetilde{\mathfrak{M}}_{1}^{0}$ is smooth

