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Abstract

This survey article, in honor of G. Tian’s 60th birthday, is inspired by R. Pandharipande’s 2002
note highlighting research directions central to Gromov-Witten theory in algebraic geometry
and by G. Tian’s complex-geometric perspective on pseudoholomorphic curves that lies behind
many important developments in symplectic topology since the early 1990s.

Symplectic topology is an area of geometry originating in and closely associated with classical
mechanics. While long established, it has been flourishing especially since the introduction of
pseudoholomorphic curves techniques in [39]. These techniques have led to an immense wealth of
remarkable applications, mutually enriching interplay with algebraic geometry, and striking connec-
tions with string theory. They have in particular given rise to counts of such curves in symplectic
manifolds, now known as the Gromov-Witten invariants. While many long-standing problems have
been spectacularly resolved, new profound questions that could have been hardly imagined in the
past have arisen in their place. This article, greatly influenced by G. Tian’s perspective on the
field, highlights a number of questions concerning pseudoholomorphic curves and their applications
in symplectic topology, algebraic geometry, and string theory.

R. Pandharipande’s ICM note [73] assembled three conjectures concerning structures in Gromov-
Witten theory:

(P1) a Poincare Duality for the tautological cohomology ring of the Deligne-Mumford moduli
space Mg,n of stable nodal n-marked genus g curves, known as the Gorenstein property of
R∗(Mg,n);

(P2) integral counts of holomorphic curves in smooth complex projective threefolds, known as the
BPS states;

(P3) algebraic restrictions on Gromov-Witten invariants, known as the Virasoro constraints.

Each of these conjectures presented a deep quandary requiring fundamentally new ideas to address.

The Gorenstein property is a triviality for g = 0, since M0,n is a smooth projective variety and
R∗(M0,n)=H

∗(M0,n). It is established for g=1 in [80] and shown to fail for g=2 whenever n≥20
in [82, 81]. The Virasoro constraints had been established for the Gromov-Witten invariants of
manifolds with only even-dimensional cohomology in genus 0, of a point, of a curve, and of the
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complex projective space Pn before [73] in [60, 70, 69, 35], respectively, with the last case extended
to arbitrary symplectic manifolds with semi-simple quantum cohomology in [90]. However, no ge-
ometric rationale behind this conjecture that might confirm it in general has emerged so far, and
its testing outside of fairly standard cases in algebraic geometry has been limited by the available
computational techniques. Just as (P1), the Virasoro Conjecture of (P3) may yet turn out to fail,
at least for non-projective symplectic manifolds.

Unlike (P1) and perhaps (P3), (P2) is most naturally viewed from the symplectic topology perspec-
tive in which it splits into three parts. The extensive work on (P2) in algebraic geometry since [73]
has not succeeded in confirming this conjecture even in special cases. On the other hand, funda-
mentally new approaches to the three different parts of (P2) have emerged in symplectic topology
which should fully resolve its original formulation in a stronger formulation; see Section 2.

The questions collected in this article fall under four distinct, but related, topics:

(1) the topology of moduli spaces of pseudoholomorphic maps and applications to the mirror
symmetry predictions of string theory and to the enumerative geometry of algebraic curves;

(2) integral counts of pseudoholomorphic curves in arbitrary compact symplectic manifolds;

(3) decomposition formulas for counts of pseudoholomorphic curves under “flat” degenerations of
symplectic manifolds;

(4) applications of pseudoholomorphic curves techniques in symplectic topology and algebraic ge-
ometry.

Each of these topics involves fundamental issues concerning pseudoholomorphic curves and a deep
contribution from G. Tian.

G. Tian’s perspectives on Gromov-Witten theory had a tremendous influence on the content of
the present article in particular and the work of the author in general, and he is very grateful to
G. Tian for generously sharing his insights on Gromov-Witten theory over the past two decades.
The author would also like to thank J. Li, R. Pandharipande, and R. Vakil for introducing him
to the richness of the algebro-geometric side of Gromov-Witten theory indicated by many of the
questions in this article and P. Georgieva for acquainting him with the many related mysteries
of the real sector of Gromov-Witten theory, as well as E. Brugallé, A. Doan, and C. Wendl for
comments on parts of this article.
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1 Topology of moduli spaces

A symplectic form on a 2n-dimensional manifold X is a closed 2-form on X such that ωn is a
volume form on X. A tame almost complex structure on a symplectic manifold (X,ω) is a bundle
endomorphism

J : TX −→ TX s.t. J2 = −Id, ω(v, Jv) > 0 ∀ v∈TxX, x∈X, v 6=0.

If Σ is a (possibly nodal) Riemann surface with complex structure j, a smooth map u : Σ−→X is
called J-holomorphic if it solves the Cauchy-Riemann equation corresponding to (J, j):

∂̄Ju ≡
1

2

(
du+ J ◦ du ◦ j

)
= 0.

The image of such a map in X is called a J-holomorphic curve. GW-invariants are rational counts
of such curves that depend only on (X,ω).

The most fundamental object in GW-theory is the moduli space Mg,k(A; J) of stable k-marked
(geometric) genus g J-holomorphic maps in the homology class A∈H2(X). This compact space
is generally highly singular. However, as shown in [57], Mg,k(A; J) still determines a rational
homology class, called virtual fundamental class (VFC) and denoted by [Mg,k(A; J)]

vir. This class
lives in an arbitrarily small neighborhood of Mg,k(A; J) in the naturally stratified configuration
space Xg,k(A) of smooth stable maps introduced in [57] and is independent of J . Integration of
cohomology classes against [Mg,k(A; J)]

vir gives rise to GW-invariants; see (2.1). The construc-
tion of [57] adapts the deformation-obstruction analysis from the algebro-geometric setting of [56]
to symplectic topology via local versions of the inhomogeneous deformations the ∂̄J -equation in-
troduced in [86, 87] and presents [Mg,k(A; J)]

vir as the homology class of a space stratified by
even-codimensional orbifolds. This approach is ideally suited for a range of concrete applications,
some of which are indicated below, and can be readily extended via [102] beyond the so-called
perfect deformation-obstruction settings.

While Mg,k(A; J) is often called a “compactification” of its subspace

Mg,k(A; J) ⊂ Mg,k(A; J)

of maps from smooth domains, Mg,k(A; J) usually is not a dense subset ofMg,k(A; J). For example,

M1(P
n, d) ≡ M1,0

(
dL; JPn

)
,

where L∈H2(P
n) is the standard generator and JPn is the standard complex structure on Pn, is

a quasi-projective variety over C containing M1(P
n, d) as a Zariski open subspace; see [25]. For

m∈ Z+ with m≤n, the dimension of the Zariski open subspace Mm
1 (Pn, d) of M1(P

n, d) consisting
of maps u from a smooth genus 1 curve ΣP with m copies of P1 attached directly to ΣP so that
u(ΣP )⊂Pn is a point is

dimCMm
1 (Pn, d) = (n+1)d+n−m ≥ (n+1)d = dimCM1(P

n, d);

see Figure 1. For example,
M1

1(P
n, d) ≈ M1,1×M0,1(P

n, d) .

Thus, M1(P
n, d) is not dense in M1(P

n, d). This motivates the following deep question concerning
the convergence of J-holomorphic maps in the sense of [39].
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Figure 1: The domain of an element of M3
1(P, d) from the points of view of symplectic topology

and algebraic geometry, with the first number in each pair in the second diagram denoting the
genus of the associated smooth irreducible component and the second number denoting the degree
of the restriction of the map to this component.

Question 1 ([86, p276]) Is there a natural Hausdorff space M
0
g,k(A; J) of k marked J-holomorphic

maps to X with images of arithmetic genus at least g containing Mg,k(A; J) as an open subspace

so that M
0
g,k(A; J) is compact whenever X is?

The “natural” requirement in particular includes that

⊔

B∈H2(Y )
ι∗B=A

M
0
g,k

(
B; J |Y

)
=
{
u∈M

0
g,k(A; J) : Im u⊂Y

}

for every inclusion ι : Y −→X of an almost complex submanifold and relatedly that M
0
g,k(A; J)

determines a fundamental class [M
0
g,k(A; J)]

vir. For g = 0, the usual moduli spaces already have
the desired properties and so

M
0
0,k(A; J) = M0,k(A; J) .

We also note thatM0,k(P
n, d) is a smooth irreducible quasi-projective variety containingM0,k(P

n, d)
as a Zariski dense open subspace and that

M0,k(P
n, d)−M0,k(P

n, d) ⊂ M0,k(P
n, d)

is a normal crossings divisor.

For g=1, Question 1 is answered affirmatively in [104, 105] by defining

M
0
1,k(A; J) ⊂ M1,k(A; J)

and showing that M
0
1,k(A; J) determines a fundamental class. In particular, this subspace contains

an element u ofMm
1,k(A; J) if and only if the differentials of the restrictions of u to them copies of P1

at the nodes attached to ΣP span a subspace of Tu(ΣP )X of complex dimension less than m. This
imposes no condition if 2m>dimRX. If m≤n, this imposes a condition of complex codimension
n+1−m on Mm

1 (Pn, d) and ensures that

dimC

(
M

0
1(P

n, d)∩Mm
1 (Pn, d)

)
= dimCM1(P

n, d)− 1 .
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We also note thatM
0
1,k(P

n, d) is a singular irreducible quasi-projective variety containingM1,k(P
n, d)

as a Zariski dense open subspace and that

M
0
1,k(P

n, d)−M1,k(P
n, d) ⊂ M

0
1,k(P

n, d)

is a divisor. An explicit desingularization M̃0
1,k(P

n, d) of this space is constructed in [95] so that

M̃0
1,k(P

n, d)−M1,k(P
n, d) ⊂ M̃0

1,k(P
n, d)

is a normal crossings divisor. The numerical curve-counting invariants obtained by integrating

cohomology classes against [M
0
1,k(A; J)]

vir as in (2.1) are called reduced genus 1 GW-invariants

in [105]. An algebro-geometric approach to these invariants is suggested in [94].

For sufficiently positive symplectic manifolds (X,ω), the standard genus 0 and reduced genus 1
GW-invariants with insertions pulled back from X only are integer counts of J-holomorphic counts
of J-holomorphic curves in X for a generic ω-compatible almost complex structure J . The stan-
dard complex structure JPn on Pn works for these purposes. As demonstrated in [86, 71], the good
properties of M0,k(P

n, d) indicated above are key to the enumeration of genus 0 curves in Pn and
in particular establish Kontsevich’s recursion for counts of such curves. The explicit constructions

of M
0
1,k(A; J) and M̃0

1,k(P
n, d) in [104, 95] have opened the door for similar applications to the

enumerative geometry of genus 1 curves.

For example, the Eguchi-Hori-Xiong recursion for counts of genus 1 curves in P2 is established in [72]
by lifting Getzler’s relation [33] from M1,4 to M1,k(P

2, d) and obtaining a recursion for the genus 1
GW-invariants of P2; the latter are the same as the corresponding enumerative invariants in this

particular case. Getzler’s relation can also be lifted to M1,k(A; J), M
0
1,k(A; J), and M̃0

1,k(P
n, d) to

yield relations between the genus 0 GW and standard (resp. reduced) genus 1 GW-invariants from
the first (resp. second/third) lift. The reduced genus 1 GW-invariants of Pn are the same as the
corresponding enumerative invariants. As shown in [103], the difference between the standard and
reduced genus 1 GW-invariants is a combination of the genus 0 GW-invariants; this combination
takes a very simple form in complex dimension 3. This leads to the following, very concrete
question.

Question 2 Can any of the above three lifts be used to obtain a recursion for the genus 1 stan-
dard or reduced GW-invariants of Pn for n≥ 3 and thus a Pn analogue of the Eguchi-Hori-Xiong
recursion enumerating genus 1 curves?

For g=2, [67] provides the affirmative answer to the main part of Question 1 by defining

M
0
2,k(A; J) ⊂ M2,k(A; J)

and leaves no fundamental difficulty in constructing a fundamental class for this space. The de-
scription of this subspace is significantly more complicated than of its g=1 analogue. In addition
to the simple “level 1” condition appearing in the g = 1 case, this description involves a more
elaborate “level 2” condition which depends on precisely how the “level 1” condition is satisfied
relative to the involution and the Weierstrass points on the principal component ΣP of the domain.

While M
0
2,k(P

n, d) is still a quasi-projective variety, it is no longer irreducible and M2,k(P
n, d) is
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not dense in M
0
2,k(P

n, d). However, this is not material for some applications.

While Question 1 concerns a foundational issue in GW-theory (and thus is of interest in itself),
a satisfactory answer to this problem is key to relating GW-invariants of a compact symplectic
submanifold Y of a compact symplectic manifold (X,ω) given as the zero set of a transverse
bundle section to the GW-invariants of the ambient symplectic manifold X. If πL : L−→X is a
holomorphic vector bundle and ιL : X−→L is the inclusion as the zero section, there is a natural
projection map

π̃L : V
A
g,k(L) ≡ Mg,k(ιL∗A; J) −→ Mg,k(A; J),

[
ũ : Σ−→L

]
−→

[
πL◦ ũ : Σ−→X

]
. (1.1)

The fiber of π̃L over an element [u : Σ−→X] is H0(Σ;u∗L), the space of holomorphic sections of
the holomorphic bundle u∗L−→Σ. If X and L are sufficiently positive (such as Pn and sum of
positive line bundles) and g=0, π̃L is in fact a vector orbi-bundle and

∑

B∈H2(Y )
ι∗B=A

ι∗
[
M0,k(B; J)

]vir
= e
(
VA0,k(L)

)
∩ [M0,k(A; J)]

vir. (1.2)

This observation in [49], now known as the Quantum Lefschetz Hyperplane Theorem for genus 0
GW-invariants, was the starting point for the proofs of the genus 0 mirror symmetry prediction
of [7] for the quintic threefold X5⊂P4 in [34, 59].

Question 3 Is there an analogue of the g=0 Quantum Lefschetz Hyperplane Theorem (1.2) for
g≥1?

While π̃L is not even a vector bundle for g≥1 (even for sufficiently positive X and L), it is shown
in [101, 58] that the restriction

π̃L : V
A
1,k(L)

∣∣
M

0

1,k(A;J)
−→ M

0
1,k(A; J) (1.3)

carries a well-defined Euler class, which in turn relates the reduced genus 1 GW-invariants of the
submanifold Y and the ambient manifold X:

∑

B∈H2(Y )
ι∗B=A

ι∗[M
0
1,k(B; J)]vir = PD

[M
0

1,k(A;J)]
e
(
VA1,k(L)

)
. (1.4)

This Quantum Lefschetz Hyperplane Theorem for the reduced genus 1 GW-invariants introduced
in [105] and the comparison of the standard and reduced genus 1 GW-invariants established in [103]
provide a Quantum Lefschetz Hyperplane Theorem for the standard genus 1 GW-invariants. The
latter is combined in [106] with the desingularization of the relevant special cases of (1.3) con-
structed in [95] to confirm the genus 1 mirror symmetry prediction of [2] for X5 and to obtain
similar mirror symmetry formulas for Calabi-Yau hypersurfaces in all projective spaces.

The concrete topological construction of virtual fundamental class in [57] is particularly convenient

for the purposes of [104, 105, 101]. It readily handles the moduli spaces M
0
1,k(A; J), which are

not virtually smooth, but are virtually stratified by smooth orbifolds of even codimensions. The
representation of VFC by a geometric object in [57] also fits well with the comparisons carried out
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in [101, 58]. However, later variations on [57] of topological flavor, such as [24, 75], should also fit
with [104, 105, 103, 101, 58].

A satisfactory affirmative answer to Question 1 for each g≥ 2, combined with the geometric vir-
tual fundamental class perspective of [57], should readily lead to a Quantum Lefschetz Hyperplane
Theorem and to computations of GW-invariants of projective complete intersections in the same
genus g. In light of [67], there are no fundamental difficulties left to confirm the genus 2 mirror
symmetry predictions of [2] for X5 and other projective complete intersections by paralleling the
genus 1 approach initiated in [104] and completed in [106]. The same approach should also yield
confirmations of the mirror symmetry predictions of [97] for the real GW-invariants constructed
in [30], after the additional topological subtleties typically arising in the real setting are addressed.

The methods of [104, 67] provide “level 1” and “level 2” obstructions to smoothing J-holomorphic
maps from nodal domains and can be used to define natural closed subspaces

M
0
g,k(A; J) ⊂ Mg,k(A; J)

for g≥3, which refine Gromov’s Compactness Theorem and determine fundamental classes giving
rise to curve-counting invariants of compact symplectic manifolds. However, these sharper com-
pactifications would still not be sufficiently small to exclude all J-holomorphic maps to X with
images of arithmetic genus below g, but above 1. The associated reduced GW-invariants would
then include lower-genus contributions, even for very positive almost complex structures J . Fur-
thermore, there are indications in [67] that the answer to Question 1 may in fact be negative for an
arbitrary almost complex structure J on X if g>2 (or perhaps slightly larger) and the dimension
of X is sufficiently large.

On the other hand, an affirmative answer to Question 1 in full generality is not needed for specific
applications, including to the enumerative geometry of positive-genus curves in the spirit of [71] and
to the mirror symmetry predictions in the spirit of [103, 106]. While the complexity of a complete

description of M
0
g,k(A; J), whenever it can be defined, would increase rapidly with the genus g,

it is likely not to be needed for specific applications either. In particular, it appears feasible to
set up a scheme paralleling the genus 1 approach initiated in [104] and completed in [106] that
would compute all GW-invariants of X5 modulo finitely many inputs in each genus g. This could
potentially show that the generating functions Fg for these invariants satisfy the holomorphic
anomaly equations as predicted in [2], without determining each specific Fg explicitly.

2 BPS states for arbitrary symplectic manifolds

GW-invariants of a symplectic manifold (X,ω) are in general rational numbers arising from fam-
ilies of J-holomorphic curves in X of possibly lower genus and/or “lower” degree (relative to the
symplectic deformation equivalence class of ω). The primary genus 0 GW-invariants of positive
symplectic manifolds (such as smooth Fano varieties) and of symplectic fourfolds arise only from
J-holomorphic curves of the same genus and degree, for a generic ω-compatible almost complex
structure J on X, and are integer counts of such curves. One might hope that the GW-invariants
of (X,ω) in general are expressible in terms of some integer invariants of (X,ω) arising from J-
holomorphic curves on X, for J generic at least in some non-empty open subset of such J ’s. The
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explicit prediction of [38] relating GW-invariants of Calabi-Yau (or CY) sixfolds (X,ω) to certain
conjecturally integer counts could be interpreted in such a way; this prediction has since been
extended to a number of other special cases.

For a compact symplectic manifold (X,ω), we denote by Jω the space of ω-compatible almost
complex structures on X. For g, k∈Z≥0, A∈H2(X), J ∈Jω, and i=1, . . . , k, let

evi : Mg,k(A; J) −→ X, evi
(
[u, z1, . . . , zk]

)
= u(zi),

be the evaluation map at the i-th marked point. We denote by

GWX
g,A : H

∗(X)≡
∞⊔

k=1

H∗(X)⊕k −→ Q,

GWX
g,A

(
µ1, . . . , µk

)
=

〈 k∏

i=1

ev∗iµi,
[
Mg,k(A; J)

]vir
〉
,

(2.1)

the primary genus g degree A GW-invariants of (X,ω); these multilinear functionals are graded
symmetric. The number above vanishes unless

k∑

i=1

dimR µi = dim
[
Mg,k(A; J)

]vir
= 2
(
〈c1(X,ω), A〉+k

)
+ dimRX − 6. (2.2)

In general, this number arises from the families of genus g′ degree A′ J-holomorphic curves in X
that pass through generic pseudocycle representatives for the Poincare duals of µ1, . . . , µk in the
sense of [102].

We denote the symplectic deformation equivalence class of a symplectic form ω on a manifold X
by [ω] and let

A
(
[ω]
)
=
{
(g,A)∈Z≥0×(H2(X)−{0}) : Mg(A; J) 6=∅ ∀ J ∈Jω′ , ω′∈ [ω]

}
.

The genus g degree A GW-invariants of a compact symplectic manifold (X,ω) depend only on [ω]
and vanish unless (g,A)∈A([ω]) or A = 0. In general, they arise from families of connected J-
holomorphic curves in X described by decorated graphs, i.e. tuples of the form

Γ =
(
V,Edg, g : V−→Z≥0, d : V−→H2(X)−{0}

)
. (2.3)

In such a tuple, V(Γ)≡V and Edg(Γ)≡Edg are finite collections of vertices and edges, respectively;
the latter are pairs of vertices, but of not necessarily distinct ones, and some pairs may appear
multiple times in the collection Edg. The vertices and the edges index the irreducible components Cv
of the curves and the nodes between them, respectively. The values of the maps g and d at v∈V
specify the geometric genus of Cv and its degree, respectively. For a tuple as in (2.3), we define

g(Γ) = 1+|Edg|−|V|+
∑

v∈V

g(v), gv(Γ) = g(v), dv(Γ) = d(v) ∀ v∈V .

We denote by P([ω]) the collection of connected decorated graphs Γ as in (2.3) such that (g(v), d(v))
is an element of A([ω]) for every v∈V.
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For (g,A)∈A([ω]), let Γ0(g,A) be the unique connected edgeless graph with

gv
(
Γ0(g,A)

)
= g and dv

(
Γ0(g,A)

)
= A

for the unique vertex v. Define

P̃g,A
(
[ω]
)
=
{
(Γ,m) : Γ∈P([ω]), g(Γ)≤g, |Edg(Γ)|≤(n−3)(g−g(Γ)),

m∈(Z+)V(Γ),
∑

v∈V

mvdv(Γ) = A
}
,

where 2n ≡ dimRX. By Gromov’s Compactness Theorem [39], this collection is finite for every
(g,A)∈A(ω). Let

P̃⋆
g,A

(
[ω]
)
⊂ P̃g,A([ω])

be the complement of the pair (Γ0(g,A), 1).

For a graded symmetric multilinear functional

E: H∗(X) −→ Q

and µ∈H∗(X)⊕k0 , we denote by E(µ, ·) the graded symmetric multilinear functional obtained by
inserting additional k inputs after the k0 inputs µ. For m∈Z+, define

〈E〉m : H∗(X) −→ Q, 〈E〉m(µ) = mkE(µ) ∀µ∈Hk(X), k∈Z≥0 .

For graded symmetric multilinear functionals E1, . . . ,Er as above, let
∏

(E1, . . . ,Er) : H
∗(X) −→ Q

be the graded symmetric multilinear functional obtained by distributing the k inputs between the
r functionals E1, . . . ,Er, multiplying their outputs, and summing over all possible distributions
with the appropriate signs depending on the degrees of the inputs.

For a symplectic form ω on X and A,A∗ ∈H2(X), we define A≤ωA
∗ if ω′(A)≤ ω′(A∗) for some

ω′∈ [ω]. For the purposes of the question below, we identify the vertices V of each graph as in (2.3)
with the set {1, . . . , |V|}.

Question 4 Let (X,ω) be a compact symplectic manifold. Are there a collection

C
(g)
g,m ∈ Q g∈Z≥0, (g,m)∈(Z≥0)r×(Z+)r, r∈Z+,

of rational numbers and collections

EXΓ,m : H∗(X) −→ Z, Γ∈P
(
[ω]
)
, m∈(Z+)V(Γ), EXg,A : H

∗(X) −→ Z, (g,A)∈A([ω]),

of graded symmetric multilinear functionals that depend only on [ω] and satisfy the following prop-
erties?

(E1) for every (g,A)∈A([ω]),

GWX
g,A = EXg,A +

∑

(Γ,m)∈P̃⋆
g,A

([ω])

EXΓ,m ; (2.4)
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(E2) for every Γ∈P([ω]) as in (2.3), there exist N(Γ)∈Z≥0 and µr;v∈H∗(X) with r=1, . . . , N(Γ)
and v∈V such that

EXΓ,m = C
(g)
g(Γ),m

N(Γ)∑

r=1

∏((〈
EXg(v),d(v)

〉
mv
(µr;v, ·)

)
v∈V

)
∀m∈(Z+)V(Γ); (2.5)

(E3) for every A∈H2(X) with ω′(A)>0 for all ω′∈ [ω],

sup
{
g∈Z≥0 : EXg,A 6=0

}
<∞; (2.6)

(E4) for all g∗ ∈ Z≥0 and A∗ ∈ H2(X) there exists a subset J reg
ω ⊂ Jω of second category in a

nonempty open subset of Jω so that for all (g,A)∈A([ω]) with g≤g∗ and A≤ωA
∗, J ∈J reg

ω ,
and µ1, . . . , µk ∈ H∗(X) satisfying (2.2), there exist pseudocycle representatives fi for the
Poincare duals of µi such that

• the set of genus g degree A J-holomorphic curves meeting the pseudocycles f1, . . . , fk is cut
out transversely and thus is finite,

• the number of such curves counted with the associated signs is EXg,A(µ1, . . . , µk).

For all n∈Z≥0 and A∈H2(P
n), there exists gA∈Z+ so that every degree A JPn-holomorphic map

u : Σ−→Pn from a smooth closed connected genus g≥ gA Riemann surface is a branched cover of
a line P1⊂Pn; this is a special of the classical Castelnuovo bound [36, p252]. In light of (E4), (E3)
is an analogue of this bound for J-holomorphic curves in arbitrary symplectic manifolds.

For symplectic fourfolds, i.e. n = 2 in the definition of the collection P̃g,A([ω]), (2.4) and (2.5)
reduce to GWX

g,A=EXg,A; (E4) is well-known to hold in this case. For symplectic sixfolds, i.e. n=3,
(g,A) 6∈A([ω]) unless 〈

c1(X,ω), A
〉
= 0 or

〈
c1(X,ω), A

〉
> 0 . (2.7)

In both cases, only edgeless connected graphs appear in (2.4). Precise predictions for the structure
of (2.4) and (2.5) for symplectic sixfolds involve the coefficients Ch,A(g)∈Q specified by

∞∑

g=0

Ch,A(g)t
2g =

(
sin(t/2)

t/2

)2h−2+〈c1(X,ω),A〉

. (2.8)

In the second, Fano, case of (2.7), (2.4) and (2.5) were predicted in [73] to reduce to

GWX
g,A(µ) =

g∑

h=0

Ch,A(g−h)E
X
h,A(µ) ∀µ∈H∗(X). (2.9)

In the g=0, 1 cases, this becomes

GWX
0,A(µ) = EX0,A(µ), GWX

1,A(µ) = EX1,A(µ) +
2−〈c1(X,ω), A〉

24
EX0,A(µ), (2.10)

respectively.

10



The first equation in (2.10) with EX0,A(µ) described by (E4) is the original definition of GWX
0,A(µ) for

Fano classes A in the basic case of the semi-positive symplectic manifolds (which include all sym-
plectic sixfolds). The second equation in (2.10) holds with EX1,A(µ) replaced by the reduced genus 1

GW-invariants GWX;0
1,A (µ) constructed in [105], which satisfy the first bullet in (E4) whenever (X,ω)

is semi-positive; see [105, Theorem 1.1] and [104, Section 1.3], respectively. The existence of a sub-
space J reg

ω ⊂Jω of second category satisfying (E4) for the Fano classes A on symplectic sixfolds is
established in [107]. Since the system of equations (2.9) with all such classes A is invertible and
the GW-invariants depend only on [ω], this implies that the resulting counts EXh,A(µ) depend only
on [ω] and thus affirmatively answers Question 4 with the exception of (E3) in the Fano case of (2.7).

The first, CY, case of (2.7) is much harder because degree m≥ 2 covers of genus h degree A/m
J-holomorphic curves C ⊂ X contribute to the genus g degree A GW-invariants of (X,ω). For
d∈Z+, we denote by P(d) the set of partitions of d into positive integers d1≥ . . .≥dk. Each such
partition ρ corresponds to a Ferrers diagram, i.e. a collection of boxes indexed by the set

S(ρ) =
{
(i, j) : i∈1, . . . , k, j∈1, . . . , di

}
,

and to a dual partition ρ′≡(d′1≥ . . .≥d
′
k′) of d specified by

k′ = d1, d′j = max
{
i=1, . . . , k : di≥j

}
.

The hooklength of a box (i, j)∈S(ρ) is defined to be

ℓij(ρ) = di+dj−i−j+1 ∈ Z+ .

The degree d contribution n
(h)
h′,d∈Z+ of a genus h curve to the genus h′ curve count was predicted

in [6] to be given by

exp

(
∞∑

d=1

∞∑

h′=h

n
(h)
h′,d

( ∞∑

m=1

qmd

m

(
2 sin(mt/2)

)2h′−2
))

= 1 +
∞∑

d=1

qd
( ∑

ρ∈P(d)

∏

(i,j)∈S(ρ)

(
2 sin

(
ℓij(ρ)t/2

))2h−2
)
.

(2.11)

We note that

exp

( ∞∑

m=1

qm

m

(
2 sin(mt/2)

)−2
)

= 1 +
∞∑

d=1

qd
( ∑

ρ∈P(d)

∏

(i,j)∈S(ρ)

(
2 sin

(
ℓij(ρ)t/2

))−2
)
,

∞∑

d=1

( ∞∑

m=1

qmd

m

)
= −

∞∑

d=1

ln
(
1−qd

)
= ln

( ∞∏

d=1

(
1−qd

)−1
)

= ln

(
1+

∞∑

d=1

qd
∣∣P(d)

∣∣
)
;

the first identity above is the t1= t, t2= t
−1 case of [66, (4.5)]. Combining these two identities with

the h=0, 1 cases of (2.11), we obtain

n
(0)
h′,d =

{
1, if (h′, d)=(0, 1);

0, otherwise;
n
(1)
h′,d =

{
1, if h′=1;

0, otherwise.
(2.12)

11



However, n
(h)
h′,d is generally nonzero for h≥2, d∈Z+, and some h′>h.

The primary GW-invariants (2.1) in the CY classes A are encoded by the rational numbers
NX
g,A≡GWg,A(), i.e. the GW-invariants with no insertions. In this case, (2.4) and (2.5) were

predicted in [38] to reduce to

NX
g,A =

∑

m∈Z+

A/m∈A([ω])

m2g−3
g∑

h=0

( ∑

d∈Z+

m/d∈Z

d3−2g
g∑

h′=h

Ch′,0(g−h
′)n

(h)
h′,d

)
nXh,A/m , (2.13)

where nXg,A≡Eg,A(). Form∈Z+, we denote by 〈m〉 the sum of the positive divisors ofm. By (2.12),
the g=0, 1 cases of (2.13) become

NX
0,A =

∑

m∈Z+

A/m∈A([ω])

m−3nX0,A/m, NX
1,A =

∑

m∈Z+

A/m∈A([ω])

m−1

(
〈m〉nX1,A/m+

1

12
nX0,A/m

)
, (2.14)

respectively.

The system of equations (2.13) with all CY classes A on a symplectic sixfold (X,ω) is also invert-
ible. Thus, it determines the numbers nXg,A ∈ Q from the number NX

g,A. The original version of
Question 4, known as the Gopakumar-Vafa Conjecture for projective CY threefolds, in fact predicted
only the integrality of the numbers nXg,A obtained in this way and the existence of a Castelnuovo-
type bound for them. However, (E4) has been generally believed to be the underlying reason for
the validity of this conjecture since its appearance in the late 1990s. Until [46], (E4) had also
been central to every claim, including by the authors of [46] in the early 2000s, to establish the
integrality part of this conjecture; all of these claims had quickly turned out to be erroneous.

A fundamentally new perspective on the integrality part of the Gopakumar-Vafa Conjecture for
symplectic sixfolds is introduced in [46]. It completely bypasses the analytic step (E4) and ap-
pears to succeed in establishing the integrality of the numbers nXg,A arising from (2.13) via local
arguments that are generally topological in spirit. The existence of a subset J reg

ω ⊂Jω of second
category satisfying the first bullet in (E4) for symplectic CY sixfolds is treated in [99] following the
general approach to this transversality issue in [11], but with additional technical input. However,
it still remains to establish that the resulting counts of J-holomorphic curves satisfy the second
bullet in (E4). Taking a geometric analysis perspective previously unexplored in GW-theory, [10]
uses [84], which established an analogue of Gromov’s Convergence Theorem for J-holomorphic
maps without an a priori genus bound, to reduce the Castelnuovo-type bound (E3) for symplectic
CY sixfolds to the existence of J ∈Jω satisfying (E4).

Precise predictions for the structure of (2.4) and (2.5) have also been made in some cases for
symplectic manifolds of real dimensions 2n≥8. The genus 0 prediction for symplectic CY manifolds
is a direct generalization of the first equation in (2.14) and is given by

GWX
0,A

(
µ1, . . . , µk

)
=

∑

m∈Z+

A/m∈A([ω])

mk−3EX0,A/m
(
µ1, . . . , µk

)
∀µ1, . . . , µk∈H

∗(X); (2.15)
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see [47, (2)]. The genus 1 predictions for symplectic CY manifolds of real dimensions 8 and 10
appear in [47] and [74], respectively. In contrast to the arbitrary genus GW-invariants of symplectic
sixfolds in (2.9) and (2.13) and to the genus 0 GW-invariants of symplectic CY manifolds in (2.15),
the genus 1 GW-invariants of symplectic CY manifolds (X,ω) of real dimensions 2n≥ 8 include
contributions from families of J-holomorphic curves in (X,ω) of positive dimensions (2(n−3)-
dimensional families of genus 0 curves). This makes the analogues of (2.9), (2.13), and (2.15) in
the last case significantly more complicated. All curves appearing in the relevant families of J-
holomorphic curves are reduced in the sense of algebraic geometric geometry and have simple nodes
if n=4, 5. As noted in the last paragraphs of [74, Sections 1.2,2.2], non-reduced curves and curves
with non-simple nodes appear in such families if n≥6. In order to obtain a precise prediction for
the structure of (2.4) and (2.5) for the genus 1 GW-invariants of symplectic CY manifolds of real
dimensions 2n≥12, contributions from such curves to the genus 0 and genus 1 GW-invariants still
need to be determined.

Question 4 readily extends to the real GW-invariants GWφ
g,A of compact real symplectic manifolds

(X,ω, φ), whenever these invariants are defined. For example, the genus 0 real GW-invariants of
real symplectic fourfolds constructed in [98] are just signed counts of J-holomorphic curves. So,

the real analogues of (2.4) and (2.5) in this case also reduce to GWφ
0,A = Eφ0,A. Arbitrary genus

real GW-invariants are constructed in [30] for many real symplectic manifolds, including the odd-
dimensional projective spaces P2n−1 and quintic threefolds X5 ⊂P4 cut out by real equations. It
is established in [68] that the analogue of (2.9) for the Fano classes A on a real symplectic sixfold
(X,ω, φ) is

GWφ
g,A(µ) =

∑

0≤h≤g
g−h∈2Z

C̃h,A
(g−h

2

)
Eφh,A(µ) ∀ µ∈H∗(X), (2.16)

with the coefficients C̃h,A(g)∈Q defined by

∞∑

g=0

C̃h,A(g)t
2g =

(
sinh(t/2)

t/2

)h−1+〈c1(X,ω),A〉/2

. (2.17)

The invariants Eφh,A(µ) appearing in (2.16) are signed counts of real genus g degree A J-holomorphic
curves C⊂X.

The real Fano threefold case treated in [68] and [97, (5.41)] suggest that the real analogue of (2.13)
should be

Nφ
g,A =

∑

m∈Z+−2Z
A/m∈A([ω])

mg−2
∑

0≤h≤g
g−h∈2Z

( ∑

d∈Z+

m/d∈Z

d2−g
∑

h≤h′≤g
g−h′∈2Z

C̃h′,0
(g−h′

2

)
ñ
(h)
h′,d

)
nφh,A/m , (2.18)

for some ñ
(h)
h′,d ∈ Z (only the d odd cases matter). The right-hand sides of [97, (5.10),(5.28)]

suggest that

ñ
(0)
h′,d =

{
1, if (h′, d)=(0, 1);

0, otherwise;
ñ
(1)
h′,d =

{
1, if h′=1;

0, otherwise.
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This would reduce the g=0, 1 cases of (2.18) to

Nφ
0,A =

∑

m∈Z+−2Z
A/m∈A([ω])

m−2nφ0,A/m, Nφ
1,A =

∑

m∈Z+−2Z
A/m∈A([ω])

m−1〈m〉nφ1,A/m.

The numbers ñ
(h)
h′,d should arise from a real analogue of (2.11), with the exponent on the left-hand

side combining the real curve counts ñ
(h)
h′,d and the complex curve counts n

(h)
h′,d to account for the

real doublets of [31, Theorem 1.3]. The three theorems of [31, Section 1] should provide the neces-
sary geometric input to adapt the approach of [6] for (2.13) to the real setting; related equivariant
localization data is provided by [32, Section 4.2]. Some analogue of (2.11) for the real setting has
been apparently obtained by [27].

The approach of [46] to the integrality of the numbers nXg,A determined by (2.13) should be adapt-
able to other situations when the GW-invariants in question are expected to arise entirely from
isolated J-holomorphic curves. These situations include the real genus 0 GW-invariants of many
real symplectic manifolds and the real arbitrary genus GW-invariants of real symplectic CY sixfolds
constructed in [26] and [30], respectively. In fact, the integrality of the numbers EX0,A(µ) determined
by (2.15) is already a (secondary) subject of [46]. On the other hand, the approach of [46] does
not appear readily adaptable to situations when positive-dimensional families of J-holomorphic
curves in X are expected to contribute to the GW-invariants in question. These situations include
the genus 1 GW-invariants of symplectic CY manifolds of real dimensions 8 and 10 studied in [47]
and [74], respectively. The approaches of [99] and [10] to the existence of a subset J reg

ω ⊂Jω satis-
fying (E4) and to the Castelnuovo-type bound for the associated counts of J-holomorphic curves,
respectively, appear more flexible in this regard.

Enumerative geometry of curves in projective varieties is a classical subject originating in the mid-
dle of the nineteenth century. However, the developments in this field had been limited to very
low degrees until the emergence of GW-theory and its applications to enumerative geometry in
the early 1990s. As the moduli spaces Mg,k(A; J) have fairly nice deformation-obstruction the-
ory, the GW-invariants arising from these spaces are often amendable to computations. Whenever
these invariants can be related to enumerative curve counts as in Question 4, computations of
GW-invariants translate into direct applications to enumerative geometry. The most famous such
application is perhaps Kontsevich’s recursion for counts of genus 0 curves in CP2, stated in [50]
and proved in [86]. Analogues of this recursion for counts of real genus 0 curves in P2 defined
in [98] and in P2n−1 defined in [26] appear in [89] and [28, 29], respectively. The counts of genus g
degree d curves arising from the proofs of the mirror symmetry predictions for the projective CY
complete intersections in genus 0 in [34, 59] and in genus 1 in [106, 83] via (2.14) have been shown
to match the classical enumerative counts for g=0, d≤3 and for g=1, d≤4; see [12]. The genus 0
real GW-invariants of real symplectic fourfolds defined in [98] and of many higher-dimensional real
symplectic manifolds defined in [26] directly provide lower bounds for counts of genus 0 real curves;
the arbitrary genus real GW-invariants defined in [30] provide such bounds in arbitrary genera
via the relation (2.16) proved in [68]. For local CY manifolds, Question 4 points to intriguing
number-theoretic properties of GW-invariants; see G. Martin’s conjecture in [74, Section 3.2].

The coefficients C̃0,0(g) in (2.17) are the coefficients of the renown A-series central to the Index
Theorem [52, Theorem 3.13]; they in particular determine the index of the Dirac operator on a
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X1#X12
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L

Figure 2: A 2-fold simple normal crossings variety Z0 = X1 ∪X12
X2 with its smoothing

Zλ=X1#X12
X2, its dual intersection complex, and a toric 2-fold decomposition of P2 into P2 and

its one-point blowup P̂2 along a line L⊂P2 and the exceptional divisor E⊂ P̂2.

Spin bundle. The coefficients in (2.8) are closely related to the A-series as well. It is tempting to
wonder if there is some connection between the multiply covered contributions encoded by (2.8)
and by (2.17) and Dirac operators.

3 Symplectic degenerations and Gromov-Witten invariants

It is natural and essential to study the behavior of GW-invariants under reasonable degenerations
and decompositions of symplectic manifolds, as pointed out in [91]. The standard example of such
a decomposition is provided by the symplectic sum construction of [37]; it joins two symplectic
manifolds X1 and X2 along a common smooth symplectic divisor X12 (i.e. a closed symplectic sub-
manifold of real codimension 2) with dual normal bundles in the two manifolds into a symplectic
manifold X1#X12

X2. In fact, the symplectic sum construction of [37] provides a symplectic fibration
π : Z−→∆ over the unit disk ∆⊂C, whose central fiber Z0 is X1∪X12

X2 and the remaining fibers
are smooth symplectic manifolds which are symplectically deformation equivalent to each other; see
the first diagram in Figure 2. While the behavior of GW-invariants under the basic degenerations
and decompositions associated with the construction of [37] was understood long ago and has since
been followed up by numerous applications throughout GW-theory, the progress beyond these cases
has been slow. The interest in finding usable decomposition formulas for GW-invariants in more
general situations has grown considerably since the advent of the Gross-Siebert program [41] for a
(fairly) direct approach to the mirror symmetry predictions of string theory.

A sequence of J-holomorphic curves in the smooth fibers Zλ=X1#X12
X2 of a symplectic fibration

π : Z−→∆ associated with the construction of [37] with λ−→0 converges to curves in the singular
fiber Z0 =X1∪X12

X2. Each of the irreducible components of a limiting curve either lies entirely
in X12 or meets X12 in finitely many points (possibly none) and lies entirely in either X1 or X2. A
key prediction in [91] concerning the behavior of the GW-invariants of Zλ as λ−→ 0 is that they
should arise only from J-holomorphic curves in Z0 with no irreducible components contained in X12

and with the irreducible components mapped into X1 and X2 having the same contacts with X12;
see Figure 3. In particular, there should be no direct contribution from the GW-invariants of X12.
The multiplicity with which such a limiting curve should contribute to the GW-invariants of Zλ is
determined in [9] based on a straightforward algebraic reason.

Notions of stable J-holomorphic maps to simple normal crossings (or SC) projective varieties of the
form X1∪X12

X2 and of stable maps to Xi relative to a smooth projective divisor X12 are intro-
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X12

X1

X2

Figure 3: A connected curve in Z0 possibly contributing to the GW-invariants of Zλ.

duced in [54]. A degeneration formula relating the virtual cycles of the moduli spaces Mg,k(Aλ; J)
with Aλ ∈H2(Zλ) to the virtual cycles of the moduli spaces Mg,k(A0; J) with A0 ∈H2(Z0) ap-
pears in [55]. A splitting formula decomposing the latter into the virtual cycles of the moduli
spaces Mgi,ki;si(X12, Ai; J) of stable relative maps to (Xi, X12) via a Kunneth decomposition of
the diagonal

∆X12
=
{
(x, x) : x∈X12

}

in X 2
12 is also established in [55]. The relative GW-invariants of (Xi, X12) are in turn shown to

reduce to the (absolute) GW-invariants of Xi and X12 in [61]. Thus, [54, 55, 61] fully establish the
prediction of [91] in the projective category in the case of basic degenerations of the target as in
Figure 2. An expository account of the symplectic topology perspective on the numerical reduction
of the decomposition formula of [55] appears in [21].

The standard symplectic sum construction of [37] readily extends to the setting where the disjoint
unionX1⊔X2 is replaced by a single symplectic manifold (X̃, ω̃) and the two copies of the divisorX12

are replaced by a single smooth symplectic divisor X̃12 ⊂ X̃ with a symplectic involution ψ. The
NC symplectic variety Zψ;0≡Xψ is then obtained from X̃ by identifying the points on X̃12 via ψ.
This setting is discussed in Example 6.10 in the first two versions of [17]; a construction smoothing
Zψ;0 into symplectic manifolds Zψ;λ is a special case of the construction outlined in Section 7 of
the first version of [18] and detailed in [20]. The reasoning behind the decomposition formulas
for GW-invariants in the basic setting of the previous paragraph readily extends to provide a
relation between the GW-invariants of a smoothing Zψ;λ of the NC symplectic variety Xψ and

the relative GW-invariants of (X̃, X̃12). The only difference in the resulting formula is that a
Kunneth decomposition of the diagonal ∆X12

⊂X 2
12 is replaced by a Kunneth decomposition of the

ψ-diagonal
∆̃ψ =

{(
x̃, ψ(x̃)

)
: x̃∈X̃12

}
;

the resulting sum of pairwise products of the GW-invariants of (X̃, X̃12) should then be divided by 2.

The decomposition formulas of [55] do not completely determine the GW-invariants of a smooth
fiber Zλ = X1#X12

X2 in terms of the GW-invariants of (Xi, X12) in many cases because of the
so-called vanishing cycles: second homology classes in Zλ which vanish under the projection to
Z0=X1∪X12

X2. A refinement to the usual relative GW-invariants of (X,V ) of [54] is suggested
in [44] with the aim of resolving this unfortunate deficiency of the decompositions formulas of [55]
in [45]. This refinement is constructed in [22] via a lifting

ẽvVX : Mg,k;s(V,A; J) −→ V̂X;s
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of the relative evaluation map to a covering of Vs≡V
ℓ, where ℓ∈Z≥0 is the length of the relative

contact vector s. This refinement sharpens the decomposition formulas of [55] by pulling back
closed submanifolds

V̂ A
X1,X2;s ⊂

(
V̂X1;s×V̂X2;s

)∣∣
∆ ℓ
V

, (3.1)

with V =X12 and A ∈H2(X1#X12
X2), by ẽvVX1

× ẽvVX2
; see [23, Section 1.2]. However, this does

not necessarily lead to a decomposition of the GW-invariants of X1∪X12
X2 into the GW-invariants

of (Xi, X12) that completely describes the former in terms of the latter. The same approach
provides a sharper version of the relation between the GW-invariants of a smoothing Zψ;λ of Xψ

and the GW-invariants of (X̃, X̃12) indicated in the previous paragraph. The submanifolds (3.1)
in this case are replaced by certain submanifolds

V̂ A
X̃;ss

⊂ V̂
X̃;ss

∣∣
∆ ℓ
ψ

,

with V =X̃12; the resulting relative invariants of (X̃, X̃12) should then be divided by 2.

Qualitative applications of the above refinements to relative GW-invariants and to the decomposi-
tion formula of [55] are described in [22, 23]. These refinements in principle distinguish between the
GW-invariants of Zλ in degrees Aλ differing by torsion. Torsion classes can also arise from the one-
parameter families of smoothings Zψ;λ of Xψ as above. Quantitative computation of GW-invariants
in degrees differing by torsion has been a long-standing problem.

Question 5 Is it possible to compute GW-invariants in degrees differing by torsion in some cases
via the sharper version of the decomposition formula described in [23] and/or its analogue for the
degenerations of the form Zψ;λ above?

The Enriques surface X forms an elliptic fibration over P1 with 12 nodal fibers and 2 double fibers;
see [62, Section 1.3]. The difference F1−F2 between the two double fibers is a 2-torsion class.
A smooth genus 1 curve E has a fixed-point-free holomorphic involution ψ. The quotient

X2 ≡
(
P1×E

)/
∼, (z, p) −→

(
−z, ψ(p)

)
,

forms an elliptic fibration over P1 with 2 double fibers. The blowup X̃ of P2 at the 9-point base
locus of a generic pencil of cubics is an elliptic fibration over P1 with 12 nodal fibers. The NC
variety Z0 ≡ X2∪E X̃ can be smoothed out to an Enriques surface Zλ ≡ X. The genus 1 GW-
invariants of X are determined in [62] by applying the decomposition formula of [55] in this setting
and using the Virasoro constraints. However, the computation in [62] does not distinguish between
the map degrees differing by the torsion F1−F2; this torsion arises from the vanishing cycles and
thus is not detected by the decomposition formula of [55]. On the other hand, it may be possible to
fully compute the genus 1 GW-invariants of X by refining the computation in [62] via the sharper
version of this formula described in [23].

Another potential approach to a complete computation of the GW-invariants of the Enriques
surfaceX is provided by the extension of the standard symplectic sum construction of [37] indicated
above Question 5. Let ψ be a fixed-point-free holomorphic involution on a smooth fiber F ≈E of
X̃−→P1. The NC variety

Zψ;0≡Xψ ≡ X̃
/
∼, p ∼ ψ(p) ∀ p∈X̃12≡F,
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Figure 4: A 3-fold simple normal crossings variety Z0, its dual intersection complex, and a toric
3-fold decomposition of P2 into three copies of its one-point blowup P̂2 along the exceptional divisor
E⊂ P̂2 and the proper transform L⊂ P̂2 of a line L⊂P2.

has a Z2-collection of one-parameter families of smoothings Zψ;λ. The total spaces of these families

are Z2-quotients of the total families of the smoothings of X̃∪F X̃. The fibers Zλ of one of the
latter families are K3 surfaces. Thus, the fibers Zψ;λ in one of the families of smoothings of Xψ

should be Enriques surfaces (at least up to symplectic deformation equivalence). The extension of
the standard degeneration formula of [55] indicated above applies to these families of smoothings
and again distinguishes between the GW-invariants in degrees differing by the torsion F1−F2.

The Gross-Siebert program [41] for a direct proof of mirror symmetry requires degeneration and
splitting formulas for GW-invariants under degenerations π : Z−→∆ of algebraic varieties that are
locally of the form

π :
{
(λ, z1, . . . , zk, p)∈Ck+2×Cn−k : z1. . .zk=λ

}
−→ C, π

(
λ, z1, . . . , zk, p

)
= λ, (3.2)

around the central fiber Z0 ≡ π−1(0). The degenerations discussed above, i.e. the standard one
associated with the symplectic sum construction of [37] and its extension indicated in [17, 18],
correspond to k=2 in (3.2). The central fiber of π for k≥ 3 in the algebro-geometric category is
a more general NC variety; see Figure 4. Degeneration and splitting formulas for GW-invariants
in this more general setting require notions of GW-invariants for (smoothable) NC varieties and
for smooth varieties relative to NC divisors. A degeneration formula in the projective category
extending that of [55] has finally appeared in the setting of the logarithmic GW-theory of [42] in [1];
the latter includes GW-invariants of smoothable NC varieties and of smooth varieties relative to
NC divisors. However, a splitting formula for the GW-invariants of NC varieties in the projective
category remains to be established.

The logarithmic GW-invariants of [42] are special cases of the GW-invariants of exploded manifolds
introduced in [76]. Degeneration and splitting formulas for these invariants are studied in [77].
Based on the k=2 case established in [55], one might expect that all curves in Z0 contributing to
the GW-invariants of Zλ either

• have no irreducible components lying in the singular locus Z ′
0 of Z0 and meet at the smooth

points of Z0 or at least

• have no irreducible components in Z ′
0.
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As demonstrated in [77], even the weaker alternative does not hold in general. This makes any
general splitting formula necessarily complicated; its k=3 case is described in [78]. A more geo-
metric perspective on the GW-invariants of [76] appears in [43], without analogues of the crucial
degeneration and splitting formulas.

The GW-invariants of exploded manifolds of [76] and their interpretation in some cases in [43]
are essentially invariants of deformation equivalence classes of almost Kähler structures on mani-
folds. While these classes are much larger than the deformation equivalence classes of the algebro-
geometric structures in [42, 1], GW-invariants are fundamentally invariants of the still larger de-
formation equivalence classes of symplectic structures. Purely topological notions of NC symplectic

divisors and varieties are introduced in [17, 19], addressing a fundamental quandary of [40, p343] in
the case of NC singularities. Crucial to the introduction of these long desired notions is the new
perspective proposed in [17]:

A symplectic variety/subvariety should be viewed as a deformation equivalence class of
objects with the same topology, not as a single object.

It is then shown in [17, 19] that the spaces of NC symplectic divisors and varieties are weakly ho-
motopy equivalent to the spaces of almost Kähler structures, as needed for geometric applications.

The equivalence between the topological and geometric notions of NC symplectic variety estab-
lished in [17, 19] immediately implies that any invariants arising from [77, 43] in fact depend only
on the deformation equivalence classes of symplectic structures. These equivalences are also used
in [18, 20] to establish a smoothability criterion for NC symplectic varieties. Direct approaches
to constructing GW-invariants of symplectic manifolds relative to NC symplectic divisors in the
perspective of [17, 19] and to obtaining degeneration and splitting formulas for the degenerations
appearing in [18, 20] are discussed in [14] and [15], respectively.

The decomposition and splitting formulas for GW-invariants in [77] involve exploded de Rham co-

homology of [79], which makes these formulas very hard to apply. The purpose of this elaborate
modification of the ordinary de Rham cohomology is to correct the standard Kunneth decomposi-
tions of the diagonals of the strata of the singular locus Z ′

0 of the central fiber Z0 for the presence of
lower-dimensional strata. This removes certain degenerate contributions to the Kunneth decompo-
sitions of the diagonals of the strata of Z ′

0. A local, completely topological approach to computing
degenerate contributions in terms of the ordinary cohomology of the strata is presented in [100].

Question 6 Is there a reasonably usable formula for general NC degenerations π : Z−→∆ of sym-
plectic manifolds which splits the GW-invariants of a smooth fiber Zλ into the GW-invariants of
the strata of the central fiber Z0 that involves only the ordinary cohomology of the strata?

The introduction of symplectic topology notions of NC divisors, varieties, and degenerations in
[17, 18, 19, 20] has made it feasible to study Question 6 entirely in the symplectic topology cat-
egory, which is far more flexible than the algebraic geometry category of [42, 1] and the almost
Kähler category of [76, 43]. A symplectic approach to this question should fit well with the topo-
logical approach of [100] to degenerate contributions. A splitting formula for GW-invariants of Zλ
resulting from such an approach should involve sums over finite trees with the edges labeled by
integer weights and the vertices labeled by paths in the dual intersection complex of Z0 with addi-
tional de Rham cohomology data; these paths would correspond to the tropical curves of [77]. While
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such a formula would still be more complicated than in the standard case of [55], it should be more
readily applicable than the presently available splitting formula of [77] that involves exploded de
Rham cohomology.

Degeneration and splitting formulas for real GW-invariants under real degenerations of real sym-
plectic manifolds have been obtained only in a small number of special cases. A fundamental
difficulty for obtaining such formulas is that the standard notions of relative invariants of the
complex GW-theory do not have direct analogues in the real GW-theory in most settings. Real
GW-invariants of a real symplectic manifold (X,ω, φ) with simple contacts with a real symplectic
divisor V ⊂X can be readily defined whenever the real GW-invariants of (X,ω, φ) are defined and
V is disjoint from the fixed locus Xφ of φ. This observation lies behind the splitting formula and
related vanishing result for some genus 0 real GW-invariants under special real degenerations of
real symplectic manifolds obtained in [13].

The reduction of the complex relative GW-invariants of (X,V ) to the complex GW-invariants of X
and V in [61] suggests the possibility of expressing the real GW-invariants of a real symplectic sum
X1#X12

X2 in terms of the real GW-invariants of X1, X2, X12, whenever these are defined. If X1

and X2 are of real dimension 4, then X is a real surface and the real GW-invariants of X1#X12
X2

should reduce to the real GW-invariants ofX1 andX2. By [4, Theorem 7] and [3, Theorem 1.1], this
is indeed the case for the genus 0 real GW-invariants if X12≈P1 is a real symplectic submanifold
of self-intersection 2 in X2=P1×P1 and in some other settings with X12≈P1. Genus 0 real GW-
invariants have been defined for many real symplectic sixfolds and for all real symplectic fourfolds.
This leads to the following question.

Question 7 Is it possible to express the genus 0 real GW-invariants of a real symplectic sum
X1#X12

X2 of real symplectic sixfolds (Xi, ωi, φi) along a common real symplectic divisor X12 in
terms of the genus 0 real GW-invariants X1, X2, X12, whenever the genus 0 real GW-invariants of
the sixfolds are defined?

4 Geometric applications

Pseudoholomorphic curves were originally introduced in [39] with the aim of applications in sym-
plectic topology. These applications have included the Symplectic Non-Squeezing Theorem [39],
classification of symplectic 4-manifolds [63, 51], distinguishing diffeomorphic symplectic mani-
folds [85], symplectic isotopy problem [92, 88], and applications in birational algebraic geome-
try [48, 93]. However, many deep related problems remain open.

Rational curves, i.e. images of J-holomorphic maps from chains of spheres, play a particularly
important role in algebraic geometry. A smooth algebraic manifold X is called uniruled (resp. ra-
tionally connected or RC) if there is a rational curve through every point (resp. every pair of points)
in X. According to [48], a uniruled algebraic variety admits a nonzero genus 0 GW-invariant
with a point insertion (i.e. a count of stable maps in a fixed homology class which pass through
a point and some other constraints). This implies that the uniruled property is invariant under
symplectic deformations. The RC property is known to be invariant under integrable deformations
of the complex structure [48]. It is a long-standing conjecture of J. Kollár that the RC property
is invariant under symplectic deformations as well. It is unknown if every RC algebraic manifold
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admits a nonzero genus 0 GW-invariant with two point insertions; this would immediately imply
Kollár’s conjecture. The dimension 3 case of this conjecture is established in [93] by combining the
special cases treated in [96] with the minimal model program.

As GW-invariants are symplectic invariants, it is natural to consider the parallel situation in
symplectic topology. Given the flexibility of the symplectic category, this may also provide a
different approach to Kollár’s conjecture. A symplectic manifold (X,ω) is called uniruled (resp. RC)
if for some ω-compatible almost complex structure J there is a genus 0 connected rational J-
holomorphic curve through every point (resp. every pair of points) in X. This leads to the following
two pairs of questions.

Question 8 Let J be any almost complex structure on a uniruled (resp. RC) compact symplectic
manifold (X,ω). Is there a connected rational J-holomorphic curve through every point (resp. every
pair of points) in X?

Question 9 Does every uniruled (resp. RC) compact symplectic manifold (X,ω) admit a nonzero
genus 0 GW-invariant with a point insertion (resp. two point insertions)?

The affirmative answer to each case of Question 9 would immediately imply the affirmative answer
to the corresponding case of Question 8. The uniruled case of Question 9 is known only under the
rigidity assumptions that X is either Kähler [48] or admits a Hamiltonian S1-action [64]. It is not
difficult to construct J-holomorphic curves in a symplectic manifold that disappear as the almost
complex structure J deforms. On the other hand, regular J-holomorphic curves do not disappear
under small deformations of J , while J-holomorphic curves contributing to nonzero GW-invariants
survive all deformations of J . Thus, the above four questions concern the fundamental issue of the
extent of flexibility in the symplectic category with implications to birational algebraic geometry.

If u : P1 −→X is a J-holomorphic map into a Kahler manifold and for some z ∈ P1 the evalua-
tion map

H0(P1;u∗TX) −→ Tu(z)X, ξ −→ ξ(z), (4.1)

is onto, then H1(P1;u∗TX) = 0, i.e. u is regular. This statement is key to the arguments of [48]
in the algebraic setting. It in particular implies that if the rational J-holomorphic curves cover a
nonempty open subset of a connected Kähler manifold, then they cover all of X. As shown in [65],
the last implication can fail in the almost Kähler category. The first implication need not hold
either, even if the evaluation homomorphism (4.1) is surjective for every z ∈ P1. However, the
main results of [48] may still extend to the almost Kähler category. In particular, for the interplay
between openness and closedness of various properties of complex structures exhibited in the proof
of deformation invariance of the RC property for integrable complex structures in [48] to extend
to a non-integrable complex structure, the vanishing of the obstruction space needs to hold only
generically in a family of J-holomorphic maps covering X. This leads to a potentially even more
fundamental problem in this spirit.

Question 10 Let {uα : P
1 −→X} be a family of J-holomorphic curves on a compact symplectic

manifold (X,ω) that covers X. Is a generic member of this family a regular map?

There are still many open questions concerning the geography and topology of symplectic manifolds
The multifold smoothing constructions of [18, 20] may shed light on some of these questions. Just
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as the (2-fold) symplectic sum construction of [37], the multifold constructions could be used to
build vast classes of non-Kähler symplectic manifolds with various topological properties. They
might also be useful for studying properties of symplectic manifolds of algebro-geometric flavor, in
the spirit of the perspective on symplectic topology initiated in [39].

Question 11 ([16, Question 14]) Is every compact almost Kähler manifold with a rational J-
holomorphic curve of a fixed homology class through every pair of points simply connected?

By [8, Theorem 3.5], a compact RC Kähler manifold is simply connected. As noted by J. Starr,
the fundamental group of a compact almost Kähler manifold (X,ω, J) as in Question 11 is finite.
The multifold sum/smoothing constructions of [18, 20] can be used to obtain symplectic manifolds
that are not simply connected from simply connected ones and thus may be useful in answering
Question 11 negatively. The constructions of [18, 20] may also be useful in studying this question
under the stronger assumption of the existence of a nonzero GW-invariant of (X,ω) with two point
insertions.

As in the complex case, it is natural to expect that a real symplectic manifold (X,ω, φ) which has
well-defined genus 0 real GW-invariants and is covered by real rational curves admits a nonzero
genus 0 real GW-invariant with a real point insertion. However, the reasoning neither in [48],
which relies on the positivity of intersections in complex geometry, nor in [64], which makes use of
quantum cohomology, is readily adaptable to the real setting. Thus, there is not apparent approach
to this problem at the present.

Another important question in real algebraic geometry is the existence of real rational curves on
real even-degree complete intersections X ⊂Pn; this would be implied by the existence of a well-
defined nonzero genus 0 real GW-invariant of X. However, the real analogue of the Quantum
Lefschetz Hyperplane Principle (1.2) suggests that all such invariants should vanish. On the other
hand, one may hope for some real analogue of the reduced/family GW-invariants of [5, 53], which
effectively remove a trivial line bundle from the obstruction cone for deformations of J-holomorphic
maps to X. The resulting reduced/family real invariants could well be nonzero.
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