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Abstract

The first part of this work constructs positive-genus real Gromov-Witten invariants of real-
orientable symplectic manifolds of odd “complex” dimensions; the present part focuses on their
properties that are essential for actually working with these invariants. We determine the com-
patibility of the orientations on the moduli spaces of real maps constructed in the first part with
the standard node-identifying immersion of Gromov-Witten theory. We also compare these ori-
entations with alternative ways of orienting the moduli spaces of real maps that are available
in special cases. In a sequel, we use the properties established in this paper to compare real
Gromov-Witten and enumerative invariants, to describe equivariant localization data that com-
putes the real Gromov-Witten invariants of odd-dimensional projective spaces, and to establish
vanishing results for these invariants in the spirit of Walcher’s predictions.
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1 Introduction

The theory of J-holomorphic maps plays prominent roles in symplectic topology, algebraic geom-
etry, and string theory. The foundational work of [14, 19, 23, 17, 5] has established the theory
of (closed) Gromov-Witten invariants, i.e. counts of J-holomorphic maps from closed Riemann
surfaces to symplectic manifolds. The two main obstacles to defining real Gromov-Witten invari-
ants, i.e. counts of J-holomorphic maps from symmetric Riemann surfaces commuting with the
involutions on the domain and the target, are the potential non-orientability of the moduli space
of real J-holomorphic maps and the existence of real codimension-one boundary strata. These
obstacles are overcome in many genus 0 situations in [25, 26, 2, 24, 8, 4]; see [11, Section 1.3] for
some comparisons. In the first part of this work, we introduce the notion of real orientation on a
real symplectic 2n-manifold (X,w, ¢) and overcome both obstacles in all genera for real-orientable
symplectic manifolds of odd “complex” dimension n.

A real orientation on a real symplectic 2n-manifold (X,w, ¢) with n ¢ 2Z induces orientations on
the moduli spaces of real J-holomorphic maps from arbitrary genus g symmetric surfaces to (X, ¢).
Theorems 1.4 and 1.5 compare these orientations with the natural complex orientations and with
the orientations induced by the corresponding spin and relative spin structures whenever the latter
three make sense. By Theorem 1.2, the orientations on the moduli spaces of real J-holomorphic
maps induced by a real orientation on (X,w,¢) are “anti-compatible” with the node-identifying
immersion (1.4) which is central to much of “classical” Gromov-Witten theory. Theorems 1.2, 1.4,
and 1.5 are essential for studying the properties of real GW-invariants constructed in [11]. For
example, they play crucial roles in determining the normal bundles to the torus-fixed loci in [12]
and the contributions from the degenerate loci in [21].

1.1 Real-orientable symplectic manifolds

An involution on a topological space X is a homeomorphism ¢: X — X such that go¢p=idx. By
an involution on a manifold, we will mean a smooth involution. Let

X? = {reX: ¢(z)=2x}

denote the fixed locus. An anti-symplectic involution ¢ on a symplectic manifold (X,w) is an invo-
lution ¢: X — X such that ¢*w=—w. A real symplectic manifold is a triple (X,w, ¢) consisting of
a symplectic manifold (X,w) and an anti-symplectic involution ¢.

Let (X, ) be a topological space with an involution. A conjugation on a complex vector bundle
V — X lifting an involution ¢ is a vector bundle homomorphism ¢ : V' — V covering ¢ (or
equivalently a vector bundle homomorphism ¢: V — ¢*V covering idx) such that the restriction
of ¢ to each fiber is anti-complex linear and pop=1idy. A real bundle pair (V, p) — (X, ¢) consists



of a complex vector bundle V— X and a conjugation ¢ on V lifting ¢. For example,
(cha(bXC) - (X7¢)7

where ¢: C* — C" is the standard conjugation on C", is a real bundle pair. If X is a smooth
manifold, then (7T'X,d¢) is also a real bundle pair over (X, ¢). For any real bundle pair (V,¢)—>
(X, ¢), we denote by

ASP(Vop) = (AL, ALP)

the top exterior power of V over C with the induced conjugation. Direct sums, duals, and tensor
products over C of real bundle pairs over (X, ¢) are again real bundle pairs over (X, ¢).

Definition 1.1 ([11, Definition 5.1]). Let (X, ¢) be a topological space with an involution and
(V,¢) be a real bundle pair over (X, ¢). A real orientation on (V, ¢) consists of

(RO1) a rank 1 real bundle pair (L, $) over (X, ¢) such that

wa(V¥) = wi(L9)*  and  AZP(V,) ~ (L,$)%”, (1.1)
(RO2) a homotopy class of isomorphisms of real bundle pairs in (1.1), and

(RO3) a spin structure on the real vector bundle V¢®2(L*)$* over X compatible with the ori-
entation induced by (RO2).

An isomorphism in (1.1) restricts to an isomorphism

ARPV® ~ (L9)®2 (1.2)

of real line bundles over X?. Since the vector bundles (L‘;))®2 and 2(L*)$* are canonically oriented,

(RO2) determines orientations on V¥ and V¥@2(L*)?*. By the first assumption in (1.1), the real
vector bundle V¥@2(L*)?" over X¢ admits a spin structure.

Let (X,w, ¢) be a real symplectic manifold. A real orientation on (X, w, ¢) is a real orientation on
the real bundle pair (T'X,d¢). We call (X,w, ¢) real-orientable if it admits a real orientation.

1.2 Compatibility with node-identifying immersion

A symmetric surface (X,0) is a closed oriented surface ¥ (manifold of real dimension 2) with an
orientation-reversing involution . The fixed locus of ¢ is a disjoint union of circles. If in addition
(X, ¢) is a manifold with an involution, a real map

u: (%,0) — (X, 9)

is a smooth map u: ¥ — X such that uooc = ¢ou. We denote the space of such maps by ‘Bg(X)¢’U.
The main focus of [11] is on smooth and one-nodal connected symmetric surfaces, but in the present
paper we also need to consider disconnected and two-nodal symmetric surfaces. Throughout this
paper, the term symmetric surface will thus refer to smooth connected surfaces unless explicitly
stated otherwise.



For a symplectic manifold (X,w), we denote by J, the space of w-compatible almost complex
structures on X. If ¢ is an anti-symplectic involution on (X,w), let

TS ={Jed,: ¢*T=—J}.

For a genus g symmetric surface (X, 0), possibly nodal and disconnected, we similarly denote by
J¥ the space of complex structures j on ¥ compatible with the orientation such that ¢*j=—j. For

Jejf, je JZ, and ueB,(X)?, let

= 1

07ju = i(du +Jo duoj)
be the 0 ;-operator on B (X )%,

Let (X,w, ®) be a real-orientable symplectic 2n-manifold with n¢ 27, g,1€ Z=°, Be Hy(X;7Z), and
Je jf . We denote by ﬁgJ(X , B; J)? the moduli space of equivalence classes of stable real degree B
J-holomorphic maps from genus g symmetric (possibly nodal) surfaces with [ pairs of conjugate
marked points. By [11, Theorem 1.4], a real orientation on (X,w, ¢) determines an orientation on
this compact space, endows it with a virtual fundamental class, and thus gives rise to genus g real
GW-invariants of (X,w, ¢) that are independent of the choice of J eJ?.

We denote by ﬁ;l(X ,B;J)? the moduli space of stable real degree B morphisms from possibly
disconnected nodal symmetric surfaces of Euler characteristic 2(1—g) with [ pairs of conjugate
marked points. For each i=1,...,1[, let

ev;: ﬁ;vl(X,B; J)? — X, [u, (2, 20),-- -, (z;’,zl_)] — u(z),

(2
be the evaluation at the first point in the i-th pair of conjugate points. If [ =2, let
~5/® ~5®
M, (X, B; J)? = {[u] ety (X, B; J)?: evi_y([u]) =evi([u])}.
The short exact sequence

vl ] e
0 — TG (X, B J)? — T, (X, B3 )|y

9,

*
(X.Bye T eviTX — 0

induces an isomorphism
t ~=®
AP (T, (X, B; J)

¢|ﬁ;',z(X,B;J)¢) ~ ARP (T (X, B; 1)) @ evif (AZP(TX)) (1.3)

of real line bundles over ﬁ;l(}( ,B; J)%.

The identification of the last two pairs of conjugate marked points induces an immersion
</® ooy
LMy 9140(X, By J)? — M (X, B3 J)?. (1.4)

This immersion takes the main stratum of the domain, i.e. the subspace consisting of real morphisms
from smooth symmetric surfaces, to the subspace of the target consisting of real morphisms from
symmetric surfaces with one pair of conjugate nodes. There is a canonical isomorphism

N T, (X, B; J)?

= — ~ L111@cLiv2
Tgﬁ;—Q,l-',-Q(Xa B; J)®
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of the normal bundle of ¢ with the tensor product of the universal tangent line bundles for the first
points in the last two conjugate pairs. It induces an isomorphism

(AR (T (X, B3 J)?)) ~ AP (T, 140(X, B; J)?) @ AR (L141@c Li42) (1.5)
of real line bundles over ﬁlg',Q?HZ(X, B; J)?. Along with (1.3) with (g,1) replaced by (g—2,1+2),
it determines an isomorphism

Aﬁgp (Tﬁ;f2,l+2(Xv B; J>¢|ﬁfq:2,z+2(X,B;J)¢) ® A%R (»Cl+1®(C El+2)

] (1.6)
~ (AP (T (X, B; 1)°)) @ exiy (AL (TX)

of real line bundles over ﬁlg._zJ_;’_z(X, B; J)?.

Theorem 1.2. Let (X,w, ) be a real-orientable 2n-manifold with n¢ 27, g,1€ Z2°, Be Hy(X;7Z),
and J € jf. The isomorphism (1.6) is orientation-reversing with respect to the orientations on
the moduli spaces determined by a real orientation on (X,w, @) and the canonical orientations on

L111®cLiy2 and TX.

The substance of this statement is that the orientations on ﬁfq.—ll +2(X, B, J)? induced from the
orientations of ﬁ;,Q’HQ(X,B,J)‘ZS and ﬁ‘;’l()(,B,J)q5 via the isomorphisms (1.3) and (1.5) are
opposite. This unfortunate reversal of orientations under the immersion (1.4) can be fixed by mul-
tiplying the orientation on ﬁ;J(X, B, J)? described at the end of [11, Section 3.2] by (—1)l9/2+1
for example. Along with the sign flip at the end of Section 2.3, this would change the canonical
orientation on 93 (X, B, J)®? constructed in the proof of [11, Corollary 5.10] by (—1)l9/2l+lolo,
where |o|p is the number of topological components of the fixed locus of (X, ). This sign change
would make the genus 1 degree d real GW-invariant of P3 with d pairs of conjugate point con-
straints to be 0 for d =2, 1 for d =4, and 4 for d = 6. In particular, it would make the d =4
number congruent to its complex analogue modulo 4; this is the case for Welschinger’s (genus 0)
invariants for many target spaces. However, this property fails for the (g,d)=(1,5) numbers (the
real enumerative invariant is 0, while its complex analogue is 42).

We note that the statement of Theorem 1.2 is invariant under interchanging the points within the
last two conjugate pairs simultaneously (this corresponds to reordering the nodes of a nodal map).
This interchange reverses the orientation of the last factor on the left-hand side of (1.6), because
the complex rank of £;11®cLis2 is 1, and the orientation of the last factor on the right-hand side
of (1.6), because the complex rank of T'X is odd.

Remark 1.3. If ne2Z and 2¢g+ > 3, the comparison of Theorem 1.2 should be made with the tangent
bundles of the moduli spaces of maps twisted by the tangent bundles of the moduli spaces of curves
as in [11, (1.3)]. The isomorphism (1.6) is then replaced by its tensor product with the inverse
of (4.40). The proof of Theorem 1.2 implies that this isomorphism is orientation-preserving, since
the orientation-reversing isomorphism (4.41) now enters twice. The above interchange still preserves
this conclusion, since it now preserves the orientation of T'X and £;,1®c L2 appears twice.

1.3 Comparison with complex orientation

Let goe Z>Y. We define a go-doublet to be a two-component smooth symmetric surface (2, o) of
the form -
Y =Y1uXy = {1} xSy u {2} x X, o(i,z) = (3—i,2) V (i,2)€X, (1.7)



where ¥ is a connected smooth oriented genus go surface and 3 denotes ¥ with the opposite
orientation. The arithmetic genus of a gg-doublet is 2gg—1.

Suppose (X, w, @) is a real-orientable 2n-manifold, l€ ZZ°, Be Hy(X;Z), and JeJ%. With (%,0)
as in (1.7), let B
9j’tago—l,l(‘)(? B’ J)d’,U < mZgofl,l(Xu -87 ‘])d)

denote the open subspace of real J-holomorphic maps from (X, ). For each sc{1,...,1}, let
mégo—l,l(‘X? B; J);b,a < EUGgo—l,l (X7 B; J)d’;ﬂ'

be the open subspace consisting of marked maps so that the second point in the i-th conjugate
pair lies on ¥ if and only if ¢€es. In particular,

My 11X, B; )27 = || (Mo a(X, Bo; J) x Mgy 1(X, = Bo3 J)) (1.8)
B()EHQ(X;Z)
Bo—¢xBo=B

where My, (X, Bo; J) is the usual moduli space of degree By J-holomorphic maps from smooth
go curves with [ marked points. The projection

M3y, _1 (X, B )27 — || Mgou(X, Bo; J) (1.9)
BQEHQ(X;Z)
Bo—¢4Bo=B

to the first factor in (1.8) is a diffeomorphism (in the sense of Kuranishi structures). The moduli
space on the right-hand side of (1.9) carries a natural orientation obtained by homotoping the
linearization of the d-operator to a C-linear Fredholm operator; see [20, Section 3.2]. We will call
the orientation on the left-hand side of (1.9) induced by this orientation the complex orientation of
ms, 1 (X, By ).

Theorem 1.4. Suppose (X,w, ¢) is a real-orientable 2n-manifold with n¢ 27, go,1€ Z>°, (,0) is
a go-doublet , BE Hy(X;7Z), and J€ J2. The orientation on imggo_l,l(X, B; J)f’g induced by a real

orientation on (X,w, $) and its complex orientation differ by (—1)%+1+lsl,

Since the orientation on 9.7(; (X, B J )¢’ induced by a real orientation on (X,w, @) is compatible
with orienting the fibers of the forgetful morphisms

ﬁ;,l+1(X,B; J)d’ — ﬁ;}l(X,B;J)d’ (1.10)

by the first marked point in the last conjugate pair, the statement of this proposition is compatible
with the forgetful morphisms. Under the assumptions of this proposition, the “complex” dimension
of the right-hand side of (1.9) in the [=0 case, i.e.

dim{* My, 0(X, Bo; J) = (c1(TX), Boy + (n—3)(1—yg),
is even. Thus, the “conjugation” diffeomorphism

| |9Mg00(X, Bos J) — || Mo 0(X, Bo; J),  [w,i] — [¢on i,
BoeHa(X;7) BoeHa(X;Z)
Bo—¢«Bo=B Bo—¢xBo=B
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is orientation-preserving. This implies that the validity of Theorem 1.4 is independent of the or-
dering of the topological components of X.

An illustration of Theorems 1.2 and 1.4 in the genus 0 case is [10, Lemma 5.2]. It describes the
normal bundle to a stratum of genus 0 maps consisting of a central component with a pair of
conjugate bubbles, i.e. a 0-doublet , attached. This boundary stratum is oriented by choosing one
of the nodes and taking the complex orientation associated with the corresponding bubble. The
claim of [10, Lemma 5.2] is that the normal bundle is then oriented by the complex orientation of the
smoothings of this node. According to Theorem 1.4, the “canonical” orientation of this boundary
stratum is obtained by taking the opposite of the complex orientation on the distinguished bubble.
According to Theorem 1.2, the orientation of the normal bundle is then opposite to the complex
orientation of the smoothings of the distinguished node. Thus, [10, Lemma 5.2] is a consequence
of Theorems 1.2 and 1.4.

1.4 Comparison with spin and relative spin orientations

Let X be a topological space, Y X be a subspace, and FF'— Y be a real oriented vector bundle.
A relative spin structure on F' consists of a real oriented vector bundle £ — X and a spin structure
on FOE|y. If (X,¢) is a topological space with an involution and (L,(E) is a real bundle pair
over (X, ¢), the map

2L — L¥|xs,  (v,w) — v +iw, (1.11)
is an isomorphism of real oriented vector bundles over X?®. Thus, a real orientation on a real bundle

pair (V, ) as in Definition 1.1 determines a relative spin structure on the real oriented vector bun-
dle V¥ — X? with E=L* in the above notation; we will call this structure the associated relative
spin structure on V¥. If in addition L? — X? is orientable, 2(L"‘)¢’ﬂ< has a canonical homotopy
class of trivializations as in the proof of [11, Corollary 5.6]. Such a real orientation on (V) thus
determines a spin structure on V¥; we will call the latter the associated spin structure on V¥,

Let 7 be the standard involution on P!; we take it to be given by z—1/z on C. For [ >2, we denote
by M ; the uncompactified moduli space of equivalence classes of (P!, 7) with [ pairs of conjugate

marked points. The Deligne-Mumford compactification W,Q of M{, includes 3 additional stable
real two-component nodal curves. A diffeomorphism of W’Q with a closed interval is given by

- - Z+_Z+ Z+—Zf |Z+_Z+|2
M, — R "=[0, 25 20), (25 2] — 22 L. =2 L =7 2 . 1.12
i O.c0h oo bl = s o = iy O

It takes the two-component curve with 2 and 2 on the same component to 0 and the two-
component curve with zf and z, on the same component to 00. For [>2, the fibers of the forgetful
morphism

. .

Mo,l+1 - Mo,z

are oriented by the canonical complex orientation of the tangent space at the first marked point in
the last conjugate pair. It follows that the moduli space ./\/1871 is orientable.

Let (X,w, ¢) be a real symplectic manifold. By [11, Theorem 1.3], a real orientation on (X, w, ¢)
and an orientation on MS?Q determine an orientation on each moduli space Mo (X, B; J)*7 of



real J-holomorphic maps from (P!,7) to (X,¢). The standard approach [24, 2, 7] to orienting
Mo, (X, B; J )7 involves orienting the associated moduli space of disk maps from a relative spin
structure on TX? — X?; in some cases, the resulting orientation on the disk space descends to an
orientation on Mo (X, B; J)?". Theorem 1.5 below compares the orientations on Mg (X, B; J)%7
resulting from the two approaches to orienting it. Both approaches involve some sign conventions,
which we specify next.

The construction of the orientation on the real line bundle (2.12) in the proof of [11, Proposi-
tion 5.9] involves a somewhat arbitrary sign choice for the Serre duality isomorphism [11, (5.21)].
The (real) dimensions of its domain and target are 3(¢g—1)+2l. Thus, this choice has no effect on
the homotopy class of this isomorphism or the resulting orientation of the real line bundle (2.12) if
g¢27. If ge 27, changing this choice changes the resulting orientation of (2.12) and the orientation
on the moduli spaces M, (X, B; J)?7 of real maps. In light of Proposition 4.18, the above sign
choice is determined by a choice of orientation of the real line bundle (2.12) over MSQ. In this
case, the operator Oc is surjective and its kernel consists of constant R-valued functions. Thus, an
orientation on (2.12) over HSQ is determined by an orientation on MQQ. As in [10, Section 3], we
orient HS,Z by the diffeomorphism (1.12).

Let G, denote the group of holomorphic automorphisms of (P!, 7). The exact sequence
0 — TS —> TiaGr — ToC — 0

and the standard orientations of S' and C determine an orientation on G. Let Bo(X, B; J) denote
the space of (parametrized) degree B J-holomorphic real maps from (P!, 7) to (X, ¢); thus,

Moo(X, B; ) = Po(X, B; J) /G- . (1.13)

An orientation on the left-hand side of (1.13) determines an orientation on PBo(X, B;J) via the
canonical isomorphism

AP (TuBo(X, By J)) ~ AP (ThyMoo(X, B; ))?T) @ AgP (TaG-). (1.14)

An orientation on the marked moduli spaces Mg ;(X, B; J )% is then determined by orienting the
fibers of the forgetful morphisms (1.10) by the first marked point in the last conjugate pair. Since
G has two topological components, an orientation on B¢ (X, B;J) may not descend to the quo-
tient (1.14). By [8, Theorem 6.6] with (E,7) = (L, $)*, a real orientation on (X,w, ¢) induces an
orientation on Py (X, B; J) that descends to this quotient and extends to the stable map compact-
ification.

The (virtual) tangent space of Po(X, B;J) is the index (as a K-theory class) of the linearization
of the 0j-operator at u. An orientation on this index, or equivalently on det D (rx,d4)lu, 15 de-
termined by a relative spin structure on TX? — X?; see the proof of [6, Theorem 8.1.1] or [18,
Theorem 6.36]. If this orientation descends to the quotient (1.13), the induced orientation on the
latter depends on the ordering of the two lines on the right-hand side of (1.14) if

dim™* Mo o(X, B; J)*" = (e1(TX), B) +n—3,

is odd. If (X,w, ¢) is real-orientable, this is the case if and only if ne2Z.



The marked moduli space My, (X, B;J )®7 can also be oriented by first orienting the marked
parametrized space ;(X, B; J) from the orientation of Py (X, B; J) via the forgetful morphism as
in (1.10) and then taking the quotient as in (1.13). If [ >2, we can then take (X, B)=(pt,0) and
obtain an orientation on

Mgz = gﬁo,g(pt, O)id’T .

With the orienting convention (1.14), this orientation agrees with the orientation on HS’Q deter-
mined by the diffeomorphism (1.12).

Theorem 1.5. Suppose (X,w, ) is a real-orientable manifold, 1€ ZZ°, Be Hy(X;Z), and JeJs.
The orientations on Mg (X, B; J)®™ induced by a real orientation on (X,w, ¢) as in Definition 1.1
and by the associated relative spin structure on TX®— X® differ by (—1)5(3), where

o(B) = {<01(X)21B>+2J |

If in addition Lo X% s orientable, then the orientations on Mg (X, B; J)‘W induced by the real
orientation on (X,w, @) and by the associated spin structure on TX? are the same.

A key step in the proof of this theorem in Section 3.2 is Proposition 3.5; it obtains an explicit
comparison of orientations of determinants of Fredholm operators. This comparison is in the spirit
of the undetermined sign of [24, Proposition 8.4]. As indicated in Section 3.3 and illustrated in [12],
Proposition 3.5 makes it possible to determine the equivariant weights of vector bundles along torus
fixed loci in settings such as in [16, Section 5], [22, Section 4], and [4, Section 6.4]. We in fact
give three proofs of Proposition 3.5, a direct computation and as a consequence of the equivariant
computations in [4].

Remark 1.6. The approach to orienting the moduli spaces of real maps from (P!, 7) to (X, ¢) by
“stabilizing” the real bundle pair (T'X, d¢) with two copies of a real bundle pair (E,T) over (X, ¢) is
introduced in [8]. For these moduli spaces, the orienting procedure of [11, Theorem 1.3] specializes
to the orienting procedure of [8]. While the stabilizing real bundle pair (E,7) in [8] can be of any
rank, the purpose of (E,7) is also fulfilled by A(tCOp(E,F) and so it is sufficient to restrict to the
rank 1 real bundle pairs. On the other hand, the proof of Theorem 1.5 readily extends to real
bundle pairs (L, gg) of any rank. In sharp contrast to the relative spin orienting procedure of |6,
Theorem 8.1.1], the orientation from the approach of [8] with a rank 1 real bundle (E,7) depends
only on wi(ET) and the spin structure on TX?@®2E7, not on (E,7) itself; see Remark 3.10.

1.5 Outline of the paper and acknowledgments

Section 2 sets up the notation necessary for the remainder of this paper and summarizes the orien-
tation construction of [11]. Theorems 1.4 and 1.5 are proved in Sections 3.1 and 3.2, respectively.
Section 3.3 obtains a number of computationally useful statements concerning orientations of the
determinants of real Cauchy-Riemann operators on real bundle pairs. Theorem 1.2 is established
in Section 3.

We would like to thank E. Brugallé, R. Crétois, E. Ionel, S. Lisi, M. Liu, J. Solomon, J. Starr,
M. Tehrani, G. Tian, and J. Welschinger for related discussions. The second author is very grateful

to the TAS School of Mathematics for its hospitality during the initial stages of our project on real
GW-theory.



2 Notation and review

We set up the necessary notation involving moduli spaces of stable maps and curves in Section 2.1.
We then recall standard facts concerning determinant lines of Fredholm operators in Section 2.2.
Section 3 reviews some of the key statements from [11].

2.1 Moduli spaces of symmetric surfaces and real maps

Let (3,0) be a genus g symmetric surface. We denote by D, the group of orientation-preserving
diffeomorphisms of ¥ commuting with the involution o. If (X, ¢) is a smooth manifold with an
involution, 1€ Z>%, and B € Ho(X;7Z), let

B, (X, B)?7 < By(X)"7 x £

denote the space of real maps u: (X,0) — (X, ¢) with u.[X]z = B and [ pairs of conjugate
non-real marked distinct points. We define

Hg (X, B)? = (By1(X,B)" xJZ)/Ds.

If Je J9 , the moduli space of marked real J-holomorphic maps in the class B € Ho(X;Z) is the
subspace

Dﬁg,l(XvB; J)d)’a = {[ua (Zf_azl_)a‘-'a(Zl—i_?zl_)aj]eHg,l(XvB)qs’o’: a],juzo}a

where 0 7; is the usual Cauchy-Riemann operator with respect to the complex structures J on X
and j on X. If g+1>2, . ‘
MG, = Mg(pt, 047 = Hyy(pt, 0)'47

is the moduli space of marked symmetric domains. There is a natural forgetful morphism
f:Hgi(X,B)?7 — My, (2.1)

it drops the map component u from each element of the domain.

We denote by o
M, (X, B; J)*7 oM, (X, B; J)°

Gromov’s convergence compactification of M, (X, B; J )9 obtained by including stable real maps
from nodal symmetric surfaces. The (virtually) codimension-one boundary strata of

M, (X, B; ))»7 — M, (X, B; J)®° < M, (X, B; J)*°

consist of real J-holomorphic maps from one-nodal symmetric surfaces to (X, ¢). Each stra-
tum is either a (virtual) hypersurface in My (X, B;J )% or a (virtual) boundary of the spaces
My (X, B; J )‘b"’ for precisely two topological types of orientation-reversing involutions ¢ on .
Let

Mg (X, B; J)? = | |Mgu(X,B; )7 and My, (X, B; J)? = UﬁgJ(X,B; J)Po
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denote the (disjoint) union of the uncompactified real moduli spaces and the union of the com-
pactified real moduli spaces, respectively, taken over all topological types of orientation-reversing
involutions o on . If g+1>2, we denote by

M, =M, (pt, O)Id"DMgl, RM,; = M, (pt,0) UMgl

gl =

the real Deligne-Mumford moduli spaces. The forgetful morphism (2.1) extends to a morphism
f: 9, (X, B; J)? — RM,, (2.2)

between the compactifications.

2.2 Determinant line bundles

Let (V,¢) be a real bundle pair over a symmetric surface (X, 0). A real Cauchy-Riemann (or CR-)

operator on (V, ) is a linear map of the form
D =0+A: (V)¢ ={¢eT(5;V): oo =pot} 2.3
— TP (D V)P = {Cel (5 (T*8,§) ' @c V) odo = poc}, '

where 0 is the holomorphic d-operator for some j€Jy and a holomorphic structure in V' and
A e I'(Z;Homg(V, (T*S,))"' @cV))*?
is a zeroth-order deformation term. A real CR-operator on a real bundle pair is Fredholm in the
appropriate completions.
If X,Y are Banach spaces and D: X — Y is a Fredholm operator, let
det D = AP (ker D) ® (Ag®(cok D))*

denote the determinant line of D. A continuous family of such Fredholm operators D; over a
topological space H determines a line bundle over H, called the determinant line bundle of {D;}
and denoted det D; see [20, Section A.2] and [27] for a construction. A short exact sequence of
Fredholm operators

0 — X’ X X" 0
lD/ lD lD//
0 —— Y Y Y’ 0

determines a canonical isomorphism
det D = (det D') ® (det D"). (2.4)

For a continuous family of short exact sequences of Fredholm operators, the isomorphisms (2.4)
give rise to a canonical isomorphism between determinant line bundles.

Families of real CR-operators often arise by pulling back data from a target manifold by smooth
maps as follows. Suppose (X, J, ¢) is an almost complex manifold with an anti-complex involution
and (V) is a real bundle pair over (X, ¢). Let V be a p-compatible connection in V' and

AeD(X;Homg(V, (T*X, J)" @cV))*.
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For any real map u: (X,0) — (X, ¢) and je JZ, let V* denote the induced connection in «*V and
App = Ao Gu e T(3; Homg (u*V, (T*3, )% @c u* V)" %
The homomorphisms
55 = %(V” +i0V"¥0j), Doy = éuv—i-Aj;u: (3 u*V)“*“" — Fjo’l(Z; u*V)“*‘p
are real CR-operators on u*(V, ¢) — (3, o) that form families of real CR-operators over families
of maps. If ¢g,1€Z?° and Be Hy(X;Z), let
det Dy, p) — By (X, B)*7 x JZ
denote the determinant line bundle of such a family. It descends to a fibration
det Dy, o) — Hgu(X,B)*°,

which is a line bundle over the open subspace of the base consisting of marked maps with no
non-trivial automorphisms.

Example 2.1. Let (V,¢)=(C,¢); this is a real bundle over (pt,id). If g+1>2, the induced family
of operators dc = D c,) on My defines a line bundle

det oc — M.
If (X, ¢) is an almost complex manifold with an anti-complex involution ¢ and
(Vi) = (X XC,px¢) — (X, ),
then there is a canonical isomorphism
det D(c ¢ ~ f*(det oc)
of line bundles over H (X, B)%°.

For a real CR-operator D on a rank n real bundle pair (V,¢) over a symmetric surface (X, 0),
we define the relative determinant of D to be the tensor product

det D = (det D) ® (det ds,¢) ", (2.5)

where det dx.¢ is the standard real CR-operator on (X, o) with values in (C,¢c). This notion plays
a central role in the construction of real GW-theory in [11].

Let (X,w, ®) be a real symplectic 2n-manifold, g,1e Z>°, Be Hy(X;7Z), JeJ2, and
[u] = [u, (2, 27),-- -, (z;’,zl_),j] eﬁg,l(X,B;J)‘?.
Denote by ¥, the domain of u. If
€= (Sur (212N s (50 20)1)
is a stable curve, then the forgetful morphism (2.2) induces an isomorphism
AR (T Mg (X, B; J)*7) ~ (det Dirx,agyu) ® Mg (TiepMy,) - (2:6)

Orientations on the two lines on the right-hand side of (2.6) thus determine an orientation on the
left-hand side of (2.6). If (X,w, ¢) is real-orientable and n is odd, as in the cases relevant to the
present paper, the index of D(7x q4),, is odd if and only if ge2Z. The induced orientation on the
left-hand side of (2.6) then depends on the specified order of the factors on the right-hand side
of (2.6).
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2.3 Real orientations and relative determinants

Let (X, ¢) be a topological space with an involution and (V, ¢) be a real bundle pair over (X, ¢). An
isomorphism © in (1.1) determines orientations on V¥ and V¥@2(L*)?*. Given a real orientation
on (V, ) as in Definition 1.1, we will call these orientations the orientations determined by (RO2) if
O lies in the chosen homotopy class. An isomorphism © in (1.1) also induces an isomorphism

ASP(V@2L*, 0@20%) ~ ALP(V.0) @ (L*,0%)%

- N 2.7
~ (L, 9)®* @ (L*,6*)®* ~ (ExC, o xc), 27)

where the last isomorphism is the canonical pairing. We will call the homotopy class of isomor-
phisms (2.7) induced by the isomorphisms © in (RO2) the homotopy class determined by (RO2).

Proposition 2.2. Suppose (3,0) is a symmetric surface, possibly disconnected and nodal, and
(V, ) is a rank n real bundle pair over (X,0). A real orientation on (V,¢) as in Definition 1.1
determines a homotopy class of isomorphisms

U (V@2L*, p®2¢*) ~ (ExC™2 o) (2.8)

of real bundle pairs over (X,0). An isomorphism ¥ belongs to this homotopy class if and only if
the restriction of ¥ to the real locus induces the chosen spin structure (RO3) and the isomorphism

APT: AR (VLY p@26%) — AP (ExC"2 o x¢) = (ExC,0x¢) (2.9)
lies in the homotopy class determined by (RO2).

The only cases of this proposition relevant to [11] are for ¥ smooth and with one real node. The
proof of [11, Proposition 5.2] establishes Proposition 2.2 under the assumption that ¥ is connected
and smooth, but it applies without the first restriction. The proof of [11, Proposition 6.2] extends
[11, Proposition 5.2] to one-nodal symmetric surfaces and contains all the ingredients necessary to
establish the full statement of Proposition 2.2; the latter is done in [13]. The proof of Theorem 1.2
makes use of this proposition in the case (3, 0) has a pair of conjugate nodes. This case follows
readily from [11, Proposition 5.2]; see the proof of Lemma 4.4.

Corollary 2.3. Suppose (3,0) is a symmetric surface, possibly disconnected and nodal, and D
is a real CR-operator on a rank n real bundle pair (V, @) over (X,0). Then a real orientation on
(V,¢) as in Definition 1.1 induces an orientation on the relative determinant det D of D.

For ¥ smooth or one-nodal, this corollary is deduced from the corresponding cases of Proposi-
tion 2.2 in the proofs of [11, Corollary 5.7] and [11, Corollary 6.6], respectively. The proof of the
latter readily extends to all symmetric surfaces (X, 0).

Corollary 2.3 implies that a real orientation on a real symplectic manifold (X, w, ¢) determines an
orientation on the line

d/e;t D(TX,d(;S);u = (det D(TX,d¢);u) ® (det é@’zu)@bn . (2.10)

By [11, Corollary 6.7] and Corollary 4.6, this orientation varies continuously with [u].
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Corollary 2.4. Suppose (X,0) is a symmetric surface, possibly disconnected and nodal, and

(L,(E) — (%,0) is a rank 1 real bundle pair. If L? — X% is orientable, there exists a canoni-
cal homotopy class of isomorphisms

(L22@2L*, 6®2@2¢*) ~ (ExC3, o x¢) (2.11)
of real bundle pairs over (3,0).

As explained in the proof of [11, Corollary 5.6], there is a canonical real orientation on the real

~

bundle (L, $)®? over (3, o) if L? — ¥ is orientable. In particular, there is a canonical homotopy
class of isomorphisms

(T*£2?@2T%, (do*)®?*@2do) ~ (ExC?, 0 x¢)

of real bundle pairs over (X, 0) if ¥ contains no real nodes (of type (H2) or (H3) in the terminology
of [18, Section 3] and [11, Section 3.2]).

Let g, € ZZ° be such that g+ > 2 and (X,0) be a smooth connected symmetric surface of
genus g. Combining the Kodaira-Spencer isomorphism, Dolbeault Isomorphism, Serre Duality,
and Corollaries 2.3 and 2.4, we find that the real line bundle

ARP(TMS)) ® (det o) —> MY, (2.12)

is canonically oriented; see the proof of [11, Proposition 5.9]. If n ¢ 2Z and the domain ¥, of u
in (2.6) is smooth, the canonical orientation on (2.12) and an orientation on (2.10) determine
an orientation on the line (2.6) which varies continuously with u. Thus, a real orientation on a
real symplectic manifold (X,w, ¢) determines orientations on the uncompactified moduli spaces
M,1(X, B; J)? of real J-holomorphic maps from (X, 0) to (X, ¢).

By [11, Proposition 6.1], the canonical orientations of the real line bundle (2.12) extend across
a codimension-one boundary stratum of Rﬂw if and only if the parity of the number |o|y of
connected components of the fixed locus 37 of ¥ remains unchanged. By construction, the same is
the case of the orientations on M, (X, B; J)?7 induced by a real orientation on (X, w, ¢) if n¢ 2Z.
In order to orient the compactified moduli spaces ﬁgyl(X ,B;J)?, we multiply the orientation on
M, (X, B; J)» induced by a real orientation on (X,w,$) by (—1)9*7lo+1. This does not change
the orientations whenever the fixed locus X7 of ¥ is separating.

3 Comparison of orientations

There are now standard ways of imposing orientations on the moduli spaces M, ;(X, B; J )¢"’ for
certain types of symmetric surfaces (3, 0). Theorems 1.4 and 1.5 compare such orientations with
the orientations constructed in [11] and briefly described in Section 2.3.

3.1 Canonical vs. complex

We continue with the notation and setup of Section 1.3. In the setting of Theorem 1.4, each of
the factors in (2.10) and (2.12) has a natural complex orientation. By Lemma 3.1 below, the
orientations of the tensor product in (2.10) induced by a real orientation on (X,w,¢) and by the
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complex orientations on the two factors are the same. By Lemma 3.2, the canonical orientation of
the tensor product in (2.12) and the orientation induced by the complex orientations on the two
factors differ by (—1)%+1+lsl,

The exponent of gg+1 above arises for the following reason. Let V be a complex vector space of
dimension k. The map

Homc¢(V,C) — Homg(V,R), 0 — Red, (3.1)

is then an isomorphism of real vector spaces. Its domain is a complex vector space and thus has a
canonical complex orientation; its image has an orientation induced from the complex orientation
of V. The isomorphism (3.1) is orientation-preserving with respect to these orientations if and
only if k is even. The only step in the proof of [11, Proposition 5.9] not compatible with the
natural complex orientations is taking the (real) dual in [11, (5.21)]. The sign discrepancy of (3.1)
for the twists by the marked points is taken into account earlier in the proof. The “remaining”
vector space in [11, (5.21)] has complex dimension 3gy—3 and accounts for the exponent of go+1
in the sign of Theorem 1.4.

A rank n real bundle pair (V, ) over a doublet (3, 0) as in (1.7) corresponds to a complex vector
bundle Vi — X with

V=ViuVa={1}xVyu {2} xVy, o(i,z) = (3—i,v) ¥ (i,v)€V,
where V denotes Vy with the opposite complex structure. With these identifications,
[(%V)? e TS V) @T(S2 V), TIPS V)P < TV (815 Vi) @ T2 (85 Va),
and the projections
T(%5V)? —T(S0; Vo) and TS V)% < I (S0; Vo) (32)

to the first component are isomorphisms of real vector spaces. Via these projections, every real
CR-operator D on the real bundle pair (V, ¢) corresponds to an operator

Do: T(Zo; Vo) — T} (Z0: Vo) -

The projections (3.2) induce isomorphisms between the kernels and cokernels of D and Dy and
thus an isomorphism

det D ~ det Dy . (3.3)

Since Dy is a real linear CR-operator on Vj in the sense of [20, Definition C.1.5], det Dy has a
canonical “complex” orientation obtained by homotoping Dy to a C-linear Fredholm operator;
see [20, Section 3.2]. We will call the orientation on det D induced from this orientation via the
isomorphism (3.3) the complex orientation of det D.

Lemma 3.1. Let (X,0), (V,¢), and D be as above. The orientations of the relative determi-
nant det D of D induced by a real orientation on (V,p) as in Corollary 2.3 and by the complex
orientations on the two factors are the same.
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Proof. The homotopy class of isomorphisms as in (2.8) determined by a real orientation on (V)
determines an orientation on the line

)@(n+2)

(det D det 32;@

<V@2L*,¢@z<z*>) ® (
= n+2

Any isomorphism ¥ in (2.8) corresponds to an isomorphism

(3.4)

Wo: Vp@2LE — S x CH2

of complex vector bundles over ¥y by the restriction to 3; < ¥. The isomorphism in (3.4) is
orientation-preserving with respect to the orientation on the left-hand side induced by ¥ and the
orientation on the right-hand side induced by ¥q. Since ¥ is a C-linear isomorphism, the operator
on Yo x C"*? induced by (D(V@2L*,¢@2$*))0 via ¥q is a real linear CR-operator. Since any two
such operators are homotopic, the orientation on the last factor in (3.4) induced from the complex
orientation of the third factor in (3.4) is the complex orientation. Thus, the orientation on the
left-hand side of (3.4) induced by a real orientation on (V,¢) is the orientation induced by the
complex orientations on the two factors.

By (2.4), there are horizontal canonical isomorphisms

(2.4) ®2
det D(V@2L*,<p@2$*) ~ (det D(V,so)) ® (det D(L*,&*))
(3.3)l~ (3.3)i~ (3.5)
(2.4)

2
det (D(V@zL*,<p@2$*))o ~ (det (D(V#p))o) ® (det (D(L*,(E*))o)@

making the diagram commute. Thus, the top isomorphism in (3.5) is orientation-preserving with
respect to the complex orientations on the three determinants. The orientation of det D induced
by a real orientation on (V, ) as in Corollary 2.3 is obtained by combining

(1) the orientation on LHS of (3.4) induced by,
(2) the top isomorphism in (3.5), and
(3) the canonical orientations of (det D(L*,&*))@)Z and (det 52;@)®2.

By the last sentence of the previous paragraph and the sentence after (3.5), this is the orientation
induced by the complex orientations on the two factors. O

For geZ and [€Z?° with g+1>2, we denote by
RMyg = RM,

the Deligne-Mumford moduli space of possibly disconnected stable nodal symmetric surfaces of
Euler characteristic 2(1—g) with [ pairs of conjugate marked points and its subspace consisting of
smooth curves. If go,l€Z>% with 2go+1>3 and (X, 0) is a go-doublet as in (1.7), let

o . . id,o .
S90—14 = M50 —14(pt,0)' 7 = RM3, 4.
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For each sc{1,...,1}, let
. id,
Mgg()—l,l;ﬁ = ngo—l,l(pt7 0)}5 g e Mggo—l,l

be the open subspace consisting of marked curves so that the second point in the i-th conjugate
pair lies on X; if and only if ¢es. In particular,

M3go—1s © Mo X Mot (3.6)

where My, ; is the usual Deligne-Mumford moduli space of smooth genus gy curves with [ marked
points. The projection
ggo—l,l;s - MS]OJ (37)

to the first factor in (3.6) is a diffeomorphism. The moduli space on the right-hand side of (3.7)
carries a natural complex orientation. We will call the orientation on the left-hand side of (3.7)

induced by this orientation the complex orientation of M7, .

Lemma 3.2. Let go,l€ Z>" with 2go+1=3 and (X,0) be a go-doublet. The canonical orientation
on the real line bundle

ARP (T M3, 1 1.0) ® (det dg) —> M,y 4. (3.8)

constructed as in the proof of [11, Proposition 5.9] and the orientation induced by the complex
orientations of the factors differ by (—1)90+1+1sl,

Proof. Since the interchange of the points within a conjugate pair reverses the canonical orientation
of (3.8), it is sufficient to establish the claim for s =(J. Let

[CO] = [207'2?7 s 7zl+7j] € Mgo,l and [C] = [27 (Zii_>zl_)a LR (Zl+7zl_)7j|—l(_j):| € Mggo—l,l‘
Similarly to the proof of [11, Proposition 5.9], we define
TCo =TS (-2 —...—7), T*Co =TS0 (27 +...+2),
TC =TY(—zf —27 —...—2 —7), T*C =T*S(2 +21 +... 42 +7).

Denote by SCy the skyscraper sheaf over ¥ and by SC*, SC~, and SC the skyscraper sheaves
over X given by

§Co=T"%ol 4, oo+ SCH=TT| s, i+ SC=T'T|_, ,-, SC=SCT®SC™.
The projection
m: HY(3;8C)7 = (HY(E; SCT)@H (E;5C7)) — HO(X;5CT) = H(Xo; SCo) (3.9)

is an isomorphism of real vector spaces. In the proof of [11, Proposition 5.9], we orient the domain
of this isomorphism and its dual, i.e. the space of homomorphisms into R, via the isomorphism

i HO(S;5CT)* = T4 3@. . .@T.+ % — (H'(3;50)7)"

from the complex orientations of Tz;rE, ..., T +%. Thus, the isomorphism
)
*
Homg (H®(S0; SCo), C) ~ H(3; 5¢*)* L (HO(3;.50)7) (3.10)
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is orientation-preserving with respect to the complex orientation on the left-hand side and the
orientation in the proof of [11, Proposition 5.9] on the right-hand side.

The Kodaira-Spencer map, Dolbeault isomorphism, and Serre Duality for [C] eM3, _;,asin [11,
(5.20),(5.21)] and [Co]e M, ; form a commutative diagram

TiepMGy 1, —o= HY (3 TC)” —2> H(55,7C)° —2—— (HO(S; T*CT*%)7)"

~ ~ ~ * |~
r l«, l,» T TN

Ticg Mao it —ao H' (S0; TCo) —2m H' (803 TCo) —2> Home (HO(So; T*Co®T*p), C)

with the vertical arrows given by the restrictions to 31 =3i. Since the isomorphisms in the bottom
row of the above diagram are C-linear, the natural isomorphism

AP (TieiM$go—11) ® AP (HO(S; T*CRT*%)7)") (3.11)
~ A" (Tic Mgo) ® Ag” (Home (H' (20; T*Co®@T* o), C))

is orientation-preserving with respect to the orientation on the left-hand side in the proof of [11,
Proposition 5.9] and the orientation on the right-hand side induced by the complex orientations on
the factors.

Since 2gg+1>3,
HY(Z0; T*Co®T*%0) =0,  dimgc H(Z0; T*Co®@T*%0) = 3g0—3 + I. (3.12)

The short exact sequence of sheaves [11, (5.22)] over ¥ and its analogue over ¥y induce a commu-
tative diagram of exact sequences

HY (S T*SQT*Y)° — HO(X; T*CRT*Y)° —= HY(%;5C)? —— HY(3; T*YQT*%)?
HO(20; T*So®T*%0) — HO(Xo; T*Co®T*Xg) — H®(X¢; SCo) — H' (Z0; T*Lo®T*%0) ,

where we omit the zero vector spaces on the ends of the two rows. Since the isomorphisms in the
bottom row of the above diagram are C-linear, the natural isomorphism

AP (HO (S5 T*CRT™Y)7) @ det O(pes aomyee ® Ay (H'(20; 5C)7)
~ AP (H(S0; T*Co®T %), €) @ det(Ores aos)s2) ® Ay (H° (S0; SCo))

is orientation-preserving with respect to the orientation on the left-hand side in the proof of [11,
Proposition 5.9] and the orientation on the right-hand side induced by the complex orientations on
the factors.

By the choice of the orientation on H?(¥¢;SC)?, the isomorphism 7F in (3.10) is orientation-
preserving with respect to the complex orientation on its domain. Since the complex dimension

18



of the last vector space is [, it follows that the sign of the vertical isomorphism 7 in the last
commutative diagram is (—1)!. Thus, the sign of the natural isomorphism

A]%op (HO(E; T*C@T*Z)U) ® det é(T*Z,do*)®2

top ( 70 . . _ (3.13)
~ AR (H (Xo; T*Co®T 20),C) ® det (a(T*E,da*)@@?)

0

with respect to the orientation on the left-hand side in the proof of [11, Proposition 5.9] and the
orientation on the right-hand side induced by the complex orientations on the factors is (—1)".

By Lemma 3.1, the natural isomorphism
det E(T*Edg*)@z ® det gg;c ~ det (E(T*Ejdg*)(@z)o &® det(gg;(c)o (3.14)

is orientation-preserving with respect to the orientation on the left-hand side induced by a real
orientation on (T%X,do*)®? and the orientation on the right-hand side induced by the complex
orientations on the factors. The canonical orientation on the real line bundle (3.8) is obtained by
combining the canonical orientations of the left-hand sides of (3.11), (3.13), and (3.14).

By the second statement in (3.12), the sign of the canonical isomorphism
ARP((HY(Z;T*CT*E)7) ") @ AP (H(S; T*CRT*E)7)
~ AP (Home (HO(S0; T*Co®T* %), C)) ® Ap® (H(S0; T*Co®T*S0))

with respect to the canonical orientation on the left-hand side and the orientation on the right-hand
side induced by the complex orientations on the factors is (—1)39073%!, Combining this with the
sign of the isomorphism (3.13), we obtain the claim. O

Proof of Theorem 1./. Throughout this argument, we will refer to the orientation on the mod-
uli space M5, (X, B; J)? determined by a fixed real orientation on (X,w,¢) as the canonical
orientation. Since the canonical orientation is compatible with orienting the fibers of the forgetful
morphism (1.10) by the first point in the last conjugate pair, we can assume that 2go+1>3. Let
[u] be an element of M3 ', (X, B; D27 [uo] be its image under (1.9), and [C] eM3, 4, and
[Cole My, 1 be their images under the forgetful morphisms to the corresponding Deligne-Mumford
moduli spaces.

The canonical orientation of the tangent space at [u] is obtained from the canonical isomorphism
. A ®(n+1
AP (TrgM3, 1 4(X, B; J)?) @ (det dxc) &

~ ~ o am Atop , B (3.15)
~ ((det Dz agh) @ (det 5:0) ™" ) © (ARP (Ther M8y -1 1) © (det Ic) )

determined by the forgetful morphism (2.2) and the canonical orientation of (det dx.c)®™+1 for
n¢ 2Z. The orientation of the first tensor product on the right-hand side of (3.15) is determined
by the real orientation on (X,w, ¢) as in Corollary 2.3. The orientation of the last tensor product
on the right-hand side of (3.15) is the canonical orientation of [11, Proposition 5.9]. The standard
complex orientation of the tangent space at [ug] is obtained from the canonical isomorphism

AP (Tpag) P01 (X, Bo; J)) @ (det (s ) &

_ . . _ (3.16)
~ ((det(Derx aglu) o) @ (det (3.c) )" ) ® AR (Tiey Moot) @ (det (3sc) )
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determined by the forgetful morphism to the Deligne-Mumford space and the standard complex
orientation of det(dc|s, )o. The orientations of all four factors on the right-hand side of (3.16) are
the standard complex orientations.

The restriction to 31 = ¥y intertwines the isomorphisms (3.15) and (3.16) and respects the four
factors on the right-hand sides. By Lemma 3.1, the isomorphism between the first pairs of factors
on the right-hand sides is orientation-preserving. By Lemma 3.2, the sign of the isomorphism
between the last pairs of factors is (—1)% 1%l This establishes the claim. O

3.2 Canonical vs. spin and relative spin

We establish Theorem 1.5 and similar statements by relating the orientations arising from Corol-
lary 2.3 to the orienting procedure for the determinants of Fredholm operators over oriented sym-
metric half-surfaces described in [9)].

An oriented symmetric half-surface (or simply oriented sh-surface) is a pair (X°,¢) consisting of an
oriented bordered smooth surface % and an involution ¢: 0% — 0% preserving each component
and the orientation of dX°. The restriction of ¢ to a boundary component (0%%); is either the
identity or the antipodal map

a: St — St z—> —2z,

for a suitable identification of (9X%); with S' — C; the latter type of boundary structure is called
crosscap in the string theory literature. We denote by

o5t 055 < oxb X

the unions of the standard boundary components of (X°,¢) and of the crosscaps, respectively. If
5% =, (2%, ¢) is a bordered surface in the usual sense. An oriented sh-surface (%%, ¢) doubles to
a symmetric surface (X, ) so that o restricts to c on the cutting circles (the boundary of ¥%); see
[9, (1.6)]. In particular, X7 = 9SX%°. Since this doubling construction covers all topological types
of orientation-reversing involutions o on X, for every symmetric surface (3, o) there is an oriented
sh-surface (X, ¢) which doubles to (%, o).

A real bundle pair (V&) over an oriented sh-surface (X, ¢) consists of a complex vector bun-
dle V® — %% with a conjugation & on V?|,5 lifting e. Via the doubling construction after [9,
Remark 3.4], such a pair (V?,¢) corresponds to a real bundle pair (V, ) over the associated sym-
metric surface (X, 0) so that V?=V/|ss and € is the restriction of ¢ to V?|;ss. In particular,

Ve = (V) c Vige =V

osxb

is a totally real subbundle.

By [4, Lemma 2.4], the homotopy classes of trivializations of the real bundle pair (V, ) over 9§%°
correspond to the homotopy classes of trivializations of its top exterior power Ag)p(V, v). If (L, 5)
is a rank 1 real bundle pair over (X, o), the real bundle pair 2(L,<Z) has a canonical homotopy
class of trivializations over 8{2”; see the proof of [4, Theorem 1.3]. Thus, a homotopy class of

trivializations of (V) over d5%° corresponds to a homotopy of trivializations of (V, @)®2(L, ¢).
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Furthermore, a homotopy class of isomorphisms of real bundle pairs as in (1.1) determines a ho-
motopy class of trivializations of the restriction of (V@) to 0{X°. It also induces an orientation on
the real vector bundle V¥ — g5¥°.

If the real vector bundle V¥ — 682” is oriented, a relative spin structure on V¥ consists of an
oriented vector bundle L — ¥ and a homotopy class of trivializations of the oriented vector bundle

V@ Ly — 055" = 27 (3.17)

Since every oriented vector bundle over ¥.? is trivializable, the vector bundle L|s, — X° admits a
trivialization W% . Along with a trivialization of (3.17), the restriction of ¥4 to L| aexp induces a
trivialization of V¥. If 8f2b = ¢ and the rank n of V is at least 3, the homotopy classes of the
trivializations of V¥ induced by two trivializations of L|s; differ on an even number of components

of o5¥° = oXP.

A real CR-operator on a real bundle pair (V' &) over an oriented sh-surface (X?, ¢) is a linear map
of the form

Db =P+ A:T(25 V) ={¢eT (25 V?h): €oc=20|pm}
— T3 (V) =T (3% (T2, 1) " @c V),
where ¢° is the holomorphic d-operator for some complex structure j® on X° and holomorphic

structure in V? and
A€ T(£% Homg (V2 (T*£", )" @c V?))

is a zeroth-order deformation term. By [9, Corollary 3.3], j® doubles to some jeJy if and only if ¢
is real-analytic with respect to j°. In such a case, D is Fredholm in appropriate completions and
corresponds to a real CR-operator D on the associated real bundle pair (V, ) over (X, 0); see |9,
Proposition 3.6]. In particular, there is a canonical isomorphism

det D = (det D) ® (det d5,c)®" ~ (det D) ® (det d%,c)®" = det D, (3.18)

where n=rkcV, 92;(@ is the standard real CE{—operator on the trivial real bundle pair (X xC, o x¢)
over (X,0) as in Example 2.1, and ag;(c = Oyp.c is the standard real CR-operator on the trivial
relative bundle pair (X°xC,cxc) over (X%, ¢).

An orientation on the right-hand side of (3.18) thus determines an orientation on the left-hand side
of (3.18). By the proofs of [18, Lemma 6.37] and [9, Theorem 1.1], an orientation on the former is
determined by a collection consisting of

(OC1) a homotopy class of trivializations of V¥ over 95%?;
(OC2) a homotopy class of trivializations of the real bundle pair (V,¢) over 9%

If n > 3, changing the homotopy class in (OC1) within its orientation class over precisely one
topological component of (3’62b changes the induced orientation on the right-hand side of (3.18).
Changing the homotopy class in (OC2) class over precisely one topological component of 6{%° also
changes the induced orientation on the right-hand side of (3.18).
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Let (L, ¢) be a rank 1 real bundle over (£,0) and Dy, be a real CR-operator on (L, ¢). By the
sentence above containing (OC1) and (OC2) applied with V replaced by V@2L, an orientation on

(det(D*@DS;)) ® (det éh.c)®" ) ~ (det D)@ (det 2. )" @ (det DY) 2@ (det é4.0)®* (3.19)

is determined by a trivialization ¢y g2, of the real vector bundle V“”@QL‘Z over 882” and a triv-
ialization 1{,q,; of the rank 1 real bundle pair (V@®2L,p®2¢) over o$0. Since the last two
factors in (3.19) are canonically oriented, 1ygor, and 1/1{/@2 ;, thus determine an orientation on the
right-hand side of (3.18). We will call it the stabilization orientation induced by ¥y ger and w(/@sz
omitting zp{,@u if 05%° = and Yygor if 050 = .

Via (1.11) with L* replaced by L, 1y gar, also induces a trivialization of (3.17). If 0{X°= &, Yvaar
thus determines a relative spin structure on V¥, and another orientation on the right-hand side
of (3.18). We will call the latter the associated relative spin (or simply ARS) orientation. If LY — %7
is orientable (but d§%° is not necessarily empty), then

e y@er and the canonical homotopy class of trivializations of 9L% determine a homotopy class of
trivializations of V¥ over 95%°, and

~.

* Uy gor, and the canonical homotopy class of trivializations of 2(L, ¢) determine a homotopy class
of trivializations of (V, ) over 0§%°.

Thus, Yyeer and 1/1{/@ ;, determine another orientation on the right-hand side of (3.18) in this case;
we will call it the associated spin (or simply AS) orientation. Lemmas 3.3-3.7 and Corollary 3.8 be-
low compare these three orientations on the right-hand side of (3.18).

In the case of the involutions
Pl P, 2 —1/z and n:Pl —P, 22— —1/z

we can take X? to be the unit disk around the origin in CcP!. This will be our default choice in
these settings.

Lemma 3.3. With notation as above, suppose (3,0) = (PL, 7). If L9 — §' is orientable, the
stabilization and AS orientations on the right-hand side of (3.18) induced by a trivialization Vyegar,

of VS"(—BZL(E are the same.

Proof. Fix a trivialization ¢, : L? — §'x R; the canonical homotopy class of trivializations of
2L% is the class containing 2t7. A trivialization 1y of V¥ lies in the associated homotopy class
of trivializations of V¥ if and only if Yygor and ¥y @2¢ lie in the same homotopy class of

trivializations of V¥@2L®. In this case, the natural isomorphism (3.19) is orientation-preserving
with respect to the orientation on the left-hand side induced by ¥y g2 and the orientations on

(det D)@ (det d%c)®"  and  ((det D})®(det 3.c))®* (3.20)

induced by vy and v, respectively. Since the last orientation is the same as the orientation
induced by the canonical orientations of (det D%)®? and (det ég;c)(m, the stabilization orientation
on the first tensor product in (3.20) induced by 9y g2z, and the AS orientation (i.e. the orientation
induced by 1) are the same. O
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Lemma 3.4. With notation as above, suppose (X,0) = (P, 7). If L% — S' is orientable, the
stabilization and ARS orientations on the right-hand side of (3.18) induced by a trivialization Yy gar,

of V“DEB2L‘?~5 are the same if and only if deg LedZ.

Proof. Let d=deg L. By [1, Proposition 4.1, we can assume that (L, (75) is the holomorphic line

Op1(d) with the standard lift of 7. Since L? — S! is orientable, de 2Z. By [20, Theorem C.3.6],
there exists a trivialization W% of L|s» so that

wh (L(z) = {(e,ac'®?): ¢’eS', aeR} = S'xC. (3.21)
Let ¥, be the trivialization of Lo given by
wL({\I/%}_l(ew,aeideﬂ)) = (ew, a) € S'xR.
The trivialization W9 of L|s5 induced by 2¢y, via (1.11) with L* replaced by L is then described by
WY : L|psy — ST XC, \Il%({\I/%}_l(ew, o) = (ew, ce_ido/Q) v (eie, c) e StxC. (3.22)
Thus, the homotopy classes of ¥¢ and W |5 differ by d/2 times a generator of m; (SO(2)) ~Z.

Let ¢y and 1|, be trivializations of V¥ such that ¢y@2¢ 7, and w(/@\lﬂﬂazb lie in the same homotopy

class of trivializations of VP@2L? as Yyger. By Lemma 3.3, the stabilization orientation on the
right-hand side of (3.18) induced by 9y gy, is the orientation induced by )y as in the proof of
[6, Theorem 8.1.1]. By definition, the ARS orientation on the right-hand side of (3.18) induced
by Yye@or, is the orientation induced by +{,. By (3.22), ¢y and |, are homotopic (and thus the
two induced orientations are the same) if and only if d/2€2Z. O

Suppose (¥,0) = (P!, 7) and deg L = 1. Similarly to the proof of Lemma 3.4, [1, Proposition 4.1]
and [20, Theorem C.3.6] imply that there exists a trivialization ¥4 of L|y» so that (3.21) holds

with d=1. Let 1y be the trivialization of 2L% given by
wo({\ll%}_l(ew, a1e??) (s 11 (Y, agew/Q)) = (ew, (a1 +ia2)e19/2) eStxC (3.23)
for all a1,a2€R.

Proposition 3.5. The orientation on det DSL = (det D%)®2 induced by the trivialization Vg as in
the proof of [6, Theorem 8.1.1] agrees with the canonical square orientation.

We give three proofs. In the first one, we write out the real holomorphic sections and the relevant
trivializations explicitly. In the second proof, we use the comparisons of different orientations on
the moduli spaces of real lines obtained in [4]. The last argument deduces the claim directly from
the fixed-edge equivariant contribution determined in [4]. In all three arguments, we take Dy, to
be the standard d-operator in Op:(1).

Proof 1. Let PL=P!—{1}. The holomorphic map

h: B={teC: |t|]<1} — P',  t— ¢,
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is injective and intertwines the standard conjugation on B with 7 on P!. We can assume that
L= (h(B)xCuP,xC)/~, (h(t),tc) ~ (h(t),c) ¥ (t,c)e(B—0)xC,
o([t,c]) = [f,¢] ¥ (t,c)eBXC, ¢([z,¢]) = [7(2),¢] ¥ (2,¢)ePLxC.

The space of real holomorphic sections of L is then generated by the sections s; and so described by

_.1+z

silzl) =1 s2(le]) = 19—

Y zePl.

The canonical orientation for det Dg 1, is then determined by the basis
s11 = (51,0), s12=1(52,0), 821 =1(0,81), s22=1(0,32),
for the kernel of the surjective operator Dg I

We define a trivialization \II% of L over the unit disk ¥° around z=0 in Cc P! by

Y ([h(t), c]) = (", 2i c) V (t,c)e BxC,
\I/%([z, c]) = (z,2i(z—1)c) v (z,c)e(}P’l—{oo}) xC.

This trivialization satisfies (3.21) with d=1. The trivialization 1y of 2L% over S' extends to the
trivialization

Wo: 2L[p1_qg00p — (P*—{0,00}) x C?,

o ([2,c1], [z, c2]) = (z,i(z—2"Ner—2z7 1 (1—2)%co, 27 (1—2)%c1 +i(z—2 1)ea) .

This trivialization intertwines 2(5 with the standard lift of 7[p1_(g o) to a conjugation on the trivial
bundle (P! —{0,0})xC2.

We note that
{Wos11}(2) = (12_1(22—1),,2_1(1—2)2), {Wos12}(2) = (,27_1(1+z)2,iz_1(1—2'2))7
{Wosar }(2) = (=271 (1—2)% iz (22 —1)), {Wosaa}(z) = (—iz ' (1—22), 27 (1+2)?).
The orientation on det Dg ; induced by the trivialization g is obtained from the isomorphism
ker D}, —> ROR @ {Res._o(Po€): {eker DY}, &€ — ({Tol}(1), Res.—o(Tof)).

The last space above is a complex subspace of C2. Under this isomorphism, the basis s11, S12, 21, S22
is sent to
(0,0;—1,1), (4,0;1,i), (0,0;—1,—i), (0,4;—i,1).

Thus, an oriented basis for the target of the above isomorphism is given by

(4,0;0,0), (0,4;0,0), (0,0;—i,1), (0,0;1,1).
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The change of basis matrix from the first basis to this one is given by

01 0 0
00 0 1
1 0 0 1
01 -1 0
The determinant of this matrix is +1. O

Proof 2. Define

7_3:IP>3 —>P3) [217Z27Z3az4] I [72771774773]7
My (PY) = 0 (PL, D)7, 94 (PP) = 9y (P2, 1),

The inclusion ¢: P! —P3 as the first two coordinates induces an embedding of M (P!) into 9 (P3).
Let

17,0197 (P?)
NP = and N gt = 002
0F = 7 o P! [2,0] 7,001 (P1)
denote the normal bundle of P! in P3 at [1,0,0, 0] and the normal bundle of 90t; (P') in 9t; (P3) at ¢
with the positive marked point at z =0, respectively. The former is a complex vector space and
thus is canonically oriented. The differential of the evaluation map ev; induces an isomorphism

d[L70]eV1 : ./Vhpﬁ)ﬁ — M(O)P' (3.24)

By [4, Lemma 5.3], this isomorphism is orientation-reversing with respect to the algebraic orienta-
tions on My (PL) in 9y (P3) defined in [4, Section 5.2].

Since the normal bundle of (P!, 7) in (IP3,73) is isomorphic to 2(L, ¢), the composition
ker DS, — Tj, o0 (P?) —> A, )M
is an isomorphism. Combining it with (3.24), we obtain an isomorphism
ker Dy — N, o)t — NP (3.25)
Since the canonical orientation on det Dg ; is obtained from the isomorphism
ker D3y — 2Ly, & —&(0),

and the complex orientation on Ly, the isomorphism (3.25) is orientation-preserving with respect
to the canonical orientation on the left-hand side.

The real vector bundle R
AL? — S'=RP! c P! (3.26)

carries a canonical spin structure; see [4, Section 5.5]. Along with Euler’s sequence for P3, it deter-
mines an orientation on 9; (P3); we will call it the spin orientation. It agrees with the orientation
induced by the trivialization 2¢g over S'. Along with Euler’s sequence for P! and the relative spin
orienting procedure of [6, Theorem 8.1.1], the canonical spin structure on (3.26) determines an ori-
entation on M (P!); we will call it the relative spin orientation. Along with the spin orientation on

25



91 (P3), it induces an orientation on N[L,O]sm; we will call it the spin orientation. Since ¢y extends
over the disk X® P!, the first isomorphism in (3.25) is orientation-preserving with respect to the
orientation on the left-hand side induced by ¢ and the spin orientation on /\f[L70]9ﬁ.

As summarized in the paragraph above [4, Remark 6.9], the algebraic orientations on 9 (P!)
and 911 (P3) are the same as the relative spin orientation and the opposite of the spin orientation,
respectively. Therefore, the spin orientation on /\/[L,O]mt is the opposite of the algebraic orientation.
Since the second isomorphism in (3.25) is orientation-reversing with respect to the latter, it follows
that the composite isomorphism in (3.25) is orientation-preserving with respect to the orientation
on the left-hand side induced by . Since this is also the case with respect to the canonical
orientation on the left-hand side, these two orientations on ker Dg ; agree. O

Proof 3. Under a change of coordinate on 2(L, %) which is homotopic to the identity, the triv-
falization v is equivalent to the trivialization [4, (6.13)]. By [4, Section 6.4], there are natural
Stactions on (P!, 7) and 2(L, ®) so that the evaluation isomorphism

€vVar.o

ker DS, =5° 2L[g, &€ — £(0), (3.27)

is S'-equivariant. By the do=1, i€ 27 case of [4, (6.21)], the S'-equivariant Euler class of ker DIQ’L
with respect to the orientation induced by g is given by

e(ker D3r) = — (A=) (= Xi—=A) = (Mi=A) (Ai+Ay) = e(2L]o) -
This establishes the claim. O

Corollary 3.6. With notation as above, suppose (X,0) = (P, 7). Ings—nS’1 is not orientable, the
stabilization and ARS orientations on the right-hand side of (3.18) induced by a trivialization Yygar

of V“"@2L(g are the same if and only if deg L—1€47Z.

Proof. Let d=deg L. Since L? S is not orientable, d¢ 2Z. Similarly to the proof of Lemma 3.4,
[1, Proposition 4.1] and [20, Theorem C.3.6] imply that there exists a trivialization ¥4 of L5

so that (3.21) holds. Let 157, be the trivialization of 2L? given by
1/]2[/({\1;%}71(697aleid9/2), {\I’%}*l(ew,ageidep)) _ wo((eie’alewp)? (ei97a26i9/2)) c Sl < C .
The trivialization W9 of L|sss induced by 9oy, via (1.11) with L* replaced by L is then described by
U9 Llgsy — ST C, W ({Wh171(e?,¢)) = (e, ce™@D02) v (& ) € S xC. (3.28)
Thus, the homotopy classes of 9 and WY |5, differ by (d—1)/2 times a generator of m; (SO(2)) ~ Z.

Let ¢y and ¢}, be trivializations of V¥ such that ¢y@ior, and QJZ)(/@‘I]%L’)Eb lie in the same homotopy
class of trivializations of VA@R2L? as 1y ger. By Proposition 3.5, the stabilization orientation on the
right-hand side of (3.18) induced by ¥y g2z, via the isomorphism (3.19) is the orientation induced
by 1y as in the proof of [6, Theorem 8.1.1]. By definition, the ARS orientation on the right-hand
side of (3.18) induced by ¥yger is the orientation induced by ¢{,. By (3.28), ¥y and 1{, are
homotopic (and thus the two induced orientations are the same) if and only if (d—1)/2€2Z. O
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Lemma 3.7. With notation as above, suppose (X,0) = (P',n). The stabilization and AS orien-
tations on the right-hand side of (3.18) induced by a trivialization |, g,y of (V@2L,p®2¢) are
the same.

Proof. Fix a trivialization ¢} of (L, 5) over (S, a); the canonical homotopy class of trivializations
of 2(L, ¢) is the class containing 24} . A trivialization v{, of (V, ¢) over (S', a) lies in the associated
homotopy class of trivializations of (V, @) over (S*,a) if and only if Vy@or and 1y, @29 lie in the
same homotopy class of trivializations of (V@®2L,p@®2¢) over (S',a). In this case, the natural
isomorphism (3.19) is orientation-preserving with respect to the orientation on the left-hand side
induced by /g, and the orientations on (3.20) induced by 11, and 17, respectively. Since the
last orientation is the same as the orientation induced by the canonical orientations of (det D% )®?2
and (det 02)®2, the stabilization orientation on the first tensor product in (3.20) induced by VvaoL
and the AS orientation (i.e. the orientation induced by 1){,) are the same. O

Corollary 3.8. Let (3°,¢), (S,0), (V,¢), (L,$), D, and D" be as above Lemma 3.3.

(1) If %0 =& and (0%°)1, ..., (0% are the components of 0§%° = 0%, then the stabilization
and ARS orientations on the right-hand side of (3.18) induced by a trivialization of V¥ ®2L?
are the same if and only if

deg L—|{i=1,...,m: wi(L%)]ag), #0}| € 4Z.

(2) If L‘z—u}’gEb is orientable, then the stabilization and AS orientations on the right-hand side

of (3.18) induced by a trivialization of V@®2L? and a trivialization of (Ve@2L, g0®25)\a§2b are
the same.

Proof. For each i=1,...,m, let

As in the proofs of [18, Lemma 6.37] and [9, Theorem 1.1], we pinch off a circle near each boundary
component (0X%); to form a closed surface ¥/ with m disks By, ..., B,, attached. We deform the
bundles V' and L to bundles Vy and Ly over the resulting nodal surface ¥ so that deg Lg|sy =0.
Thus, a trivialization of Log|sy» that extends over each disk extends over ¥y. The two determinants
on the right-hand side of (3.18) are canonically isomorphic to the determinants of the induced real
linear CR-operators Dy and ¢y on Vg and YoxC, respectively. An orientation on (det Do )®(det 0p)®"
is determined by orientations of the analogous tensor products over ¥y and the m disks. The former
have canonical complex orientations. If 9fX° = ¢F, the stabilization and ARS orientations of the

tensor products of the determinant lines over B; induced by a trivialization of V9"€|—)2L‘5 are the
same if and only if

deg LO‘Bi — SZ(L) € 4Z, (329)
see Lemma 3.4 and Corollary 3.6. Summing up (3.29) over i=1,...,m, we obtain the first claim.
The second claim follows similarly from Lemmas 3.3 and 3.7. O
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Proof of Theorem 1.5. Since the fibers of the forgetful morphism (1.10) are canonically oriented,
it is sufficient to establish the claims for [ =2. In this case, the moduli space is oriented via the
canonical isomorphism (2.6) with (g,1) = (0,2) and o =7. By the paragraph above Theorem 1.5,
the orientation of the last factor in (2.6) is the same in all three approaches to orienting the
moduli space. The orientations of the first factor on the right-hand side of (2.6) are compared
by Corollary 3.8 with L replaced by L*. Taking into account that c;(7T'X) = 2¢;(L), we obtain
Theorem 1.5. O

Remark 3.9. It is not necessary to require that the rank n of the real bundle pair (V,¢) being
stabilized be at least 3, since lower-rank real bundle pairs can first be stabilized with the trivial
rank 2 real bundle pair. The proof of Theorem 1.5 requires only the (¥,0) = (P!, 7) case of
Corollary 3.8, but it is natural to formulate it for arbitrary symmetric surfaces (X, o).

Remark 3.10. Two real line bundles L}, LY — Y are isomorphic if and only if wi (L) = wq (L5),
provided Y is paracompact. In such a case, there is a canonical homotopy class of isomorphisms
between 2L and 2L%. If VR —Y is an oriented vector bundle, a spin structure on VE®2LE thus
corresponds to a spin structure on VR(—BQLR The proofs of Proposition 3.5 and Corollaries 3.6
and 3.8(1) imply that the stabilization orientation on the right-hand side of (3.18) induced by a

spin structure on V‘PEBQL‘i’ depends only on wl(L¢) and this spin structure, and not on (L, gb) itself.

3.3 Some applications

We now make a number of explicit statements concerning orientations of the determinants of real
CR-operators on real bundle pairs over (P!, 7) and (P!,n). The proofs of these statements, which
are useful for computational purposes and are applied in [12], are in the spirit of Section 3.2.

Let 4f —> RP! denote the tautological line bundle. For f: RP! — GL.R, define
Up:RP xRF — RP'xR* by Uy(z,0) = (2, f(2)v).

Denote by I,” € O(k) the diagonal matrix with the first diagonal entry equal to —1 and the remaining
diagonal entries equal to 1.

Lemma 3.11. Let k,meZ>°. If k=2, every automorphism U of the real vector bundle
Viom = (RP' xRF) @ maft — RP!

is homotopy equivalent to an automorphism of the form ‘I’f@ldm«,ﬂf for some f: RP! — O(k);
any two such maps f differ by an even multiple of a generator of w1 (SO(k)). If m > 1, the
automorphism W negating a ’y%% component is not homotopic to \I]f@ldm'yﬂf for any constant map f.

If m =2, the interchange ¥ of two of the i components is not homotopic to \I/fEi—)Idmﬂe for any
constant map f.

Proof. Let I,j =1, zoeRP! be any point, and

Aut%o(th) = {\IIEAut(Vk,m)i ;1:0_[ @I Ak |x0}

Since O(k+m) has two connected components, one containing I’ pim and the other I~ . it is

sufficient to establish the first two claims of this lemma for an automorph1sm Ve Auty, (Vim)-
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Since every line bundle over the interval I=[0, 1] is trivial,
Auty (Vigm) ~ {feCI;O(k+m)): f(0), f(1)=IF,,,}- (3.30)
The first claim thus follows from the map
m (O(k), I,;i) —m (O(k:—i—m), I,irm)

induced by the natural inclusion O(k) — O(k+m) being surjective for k>2. The second claim
follows from the kernel of this map being the even multiples of a generator of w1 (SO(k)).

By rotating in the fibers of 24}, the interchange of the two components of 27 can be homotoped to
the automorphism negating the first component and leaving the second component unchanged.
Thus, the last claim of the lemma follows from the third. It is sufficient to establish the latter for
kE=>1.

We first consider the (k,m)=(1,1) case of the third claim. Since every line bundle over I is trivial,
Vig = (JIXC)/~, (1,¢) ~ (O,E) V ceC.
With respect to this identification, the relevant automorphism W is given by
U:Vig—Vig,  U([t,]) = [t. €.
For each seR, define an automorphism ¥, of V; 1 by
e Vig— Vig,  W([t,c]) = [t,em072D5g].

The family (¥s)gefo,1] is @ homotopy from the automorphism W of V1 1 to the element of Aut, (V11)
corresponding to the map

f:(1,0,1) — (0(2), I3, I, ), t— e 2™

under the identification (3.30). Since f is a generator of m1(0(2),1; ) ~ Z, its image under the
homomorphism

™ (0(2), 12_) —> 1 (O(k+m), Ik_+m)
induced by the natural inclusion O(2) — O(k+m) is non-trivial. This implies the last claim. O

Let a e Z>9, (L,gg) be a rank 1 real bundle pair over (P!, 7) of degree 1+2a, and Dy be a real
CR-operator on (L, $). Fix a nonzero vector e€ ToP!. The homomorphism

€VEo : ker DL - (1+a)L|07 eVL;O(g) = (5(0)> Ve‘fa e 7v§)a€)7

is then an isomorphism. It thus induces an orientation on det Dy from the complex orientation
of Llp; we will call the former the complex orientation of det Dy..

Let (Lo, o) be a rank 1 real bundle pair over (P!, 7) of degree 1. If (L1, ¢1) and (La, o) are rank 1
real bundle pairs over (P!, 7) of odd degrees, the composition of the isomorphism 1) in (3.23) with
the isomorphism

Lfl @ng ~ Lgo @Lgo
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induced by isomorphisms on each component determines an orientation on
det D1 @1, & (det DLl) ® (det DLQ)

via the isomorphism (3.18) with ¥ being the unit disk around 0 € C. By the third statement
of Lemma 3.11, changing the homotopy class of a component isomorphism would change the
orientation and the spin of the induced trivialization and thus would have no effect on the induced
orientation. This is also implied by the next statement.

Corollary 3.12. Suppose ay,as € Z7°, (Ll,ng) and (Lg,ggg) are rank 1 real bundle pairs over
(PL,7) of degrees 1+2a1 and 1+ 2as, respectively, and Dy, and Dy, are real CR-operators on
(L1, 1) and (La, ¢2). The orientations on det(Dr,®Dy,) induced by the isomorphism g in (3.23)
and by the complex orientations on det(Dr,) and det(Dy,) are the same.

Proof. The construction of the orientation on the determinant line induced by a trivialization of
the real part of the bundle in the proofs of [6, Theorem 8.1.1] and [18, Lemma 6.37] commutes
with the evaluations at the interior points; these can be used to reduce the degree of the bundle.
Thus, it is sufficient to consider the case a1, as=0. The latter is Proposition 3.5. O

Suppose ~
0— (Vi) — (Veo,00) @ (Ve 0c) —> (£,0) — 0 (3.31)

is an exact sequence of real bundle pairs over (P!, 7) such that V,?* — S is orientable of rank

k>2 and

(V;;, (Pc) = é’; (‘/c;h ¢c;i) and (£7 (g) = @ (Lla 52)

i=1 i=1
are direct sums of rank 1 real vector bundle pairs of odd positive degrees. By Lemma 3.11, the

short exact sequence (3.31) and a trivialization of V4”* determine a homotopy class of trivializations
of V¥ up to

(1) simultaneous flips of the orientation and the spin,
(2) composition with an even multiple of a generator of m (SO(k)).

Via the isomorphism (3.18) with ¥ being the unit disk around 0 € C, a trivialization of V,**
thus determines an orientation of the determinant of a real CR-operator Dy on the real bundle
pair (V, ). It also determines an orientation of the determinant of a real CR-operator Dy, on the
real bundle pair (V4, p.). A short exact sequence

0— Dy — Dy, ®Dy, — D; — 0 (3.32)

of real CR~operators on the real bundle pairs in (3.31) gives rise to an isomorphism
det (Dv) ® det (Dg) ~ det (DV.) ® det (DVC) . (3.33)

Corollary 3.13. The isomorphism (3.33) is orientation-preserving with respect to

e the orientations on det(Dy) and det(Dy,) induced by a trivialization of V&* and

e the complex orientations on det(Dy) and det(Dy,).
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Proof. Since the claim is invariant under augmenting (V,, ¢.) and (£, ¢) by the same rank 1 real
bundle pair of odd positive degree, we can assume that m = 2m’ for some m’ € Z=°. By Corol-
lary 3.12, the complex orientations on det(D,) and det(Dy;, ) are then induced by the trivializations

m/py of £ and V¥°. The short exact sequence (3.31) determines a homotopy class of isomorphisms
of real bundle pairs

(V.9)® (L. 0) ~ (Vo 0) @ (Ve 00) (3:34)
over (P!, 7). By the above, the orientations on
det (Dv@DL) = det (Dv)®det (Dg) and
det (Dv.(-BDvC) = det (DV.)®det (DVC)

specified in the statement of this corollary are induced by homotopy classes of trivializations of the
real bundles

(3.35)

VEQLY, VI @VF —> S

that are identified under the isomorphism (3.34) restricted to the real parts of the bundles. The
isomorphism (3.33) is orientation-preserving with respect to these orientations. ]

We will next obtain an analogue of Corollary 3.13 for real bundle pairs over (P!,7n). Define a
C-antilinear automorphism of C? by

¢y: C* — C2, ¢y (v1,v2) = (D2, —01);

it has order 4. Let
v =Op(—1) = {((,v)eP' xC*: vel=C?}

denote the tautological line bundle. For aeZ*, the involution 7 lifts to a conjugation on 2v®* as
" (602, w®) = (n(0), (eq ()2, (=6 (1)) ).
We denote the induced conjugations on
20p1(a) = (2fy®a’)* and Op1(2a) = AL (2051 (a))

by ﬁ%al) and ﬁfa), respectively. We note that ﬁﬁl ) &27752&).

Let a € Z*° and D, be the real CR-operator on (2(91@1(1—#2@),17571;2&)) induced by the standard
0-operator on 20p1(1+2a). Fix a holomorphic connection V on Op:(1+2a) and a nonzero vector
eeTpP'. The homomorphism

evgo : ker D, — ((1+a)(9]p1(1+2a)|0)@((1+a)(9p1(1+2a)|0),
eva;O(fla 62) = ((fl (0)7 Vet -, v§a£l)v (€2(0)’ Vebo, .., V§a€2))v

is then an isomorphism. It thus induces an orientation on det D, from the complex orientation
of Op1(142a)p; we will call the former the complex orientation of det D,.

As before, denote by ST P! and 3* c P! the unit circle and the unit disk around 0€ P!, respectively.
Let 9, be the trivialization of (20p:1 (1), 77&11)) over S! given by

. 17 _. _1 17
U (a1, ag) = ( 13121 2+‘ZZ_1OZQ((1 ZZ)) > eC? ¥ (a1,02)€20m(1)|., zeS™. (3.36)
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This is a component of the composite trivialization appearing in the proof of [4, Proposition 6.2].
The next statement is the analogue of Proposition 3.5 in this setting.

Corollary 3.14. The orientation on det D8 induced by the trivialization 1y, as in the proof of [4,
Lemma 2.5] agrees with the complex orientation.

We give three proofs of this statement; they correspond to the three proofs of Proposition 3.5.
Proof 1. We denote by p; and ps the two standard holomorphic sections of Opi(1):
p1(l, (vi,v2)) =v1, pa(l, (vi,v2)) =v2 Y (€, (v1,02)) € 7.
The complex orientation for det D8 is determined by the basis
s11= (p1,p2), s12=(ip1, —ip2), 21 = (—p2,p1), S22 = (ip2,ip1),

for the kernel of the surjective operator D8.

The trivialization ¢, extends as a trivialization ¥{, of (20p1(1), 7791)) over P! —{0, 0} by the same
formula. We note that

{Whs11}(z) = (0,2), {Whs12}(z) = (—2,0),
{Thsa }(z) = (=271 (1+2%), 271 (1-2%)), {P(saa}(z) = (271 (1—27),iz7 1 (1+2%)).

The orientation on det D(b) induced by the trivialization vy, is obtained from the isomorphism
ker D} — ROR @ {Res._o(V(€): Eeker DY}, & — (Re({T(€}(1)), Res.—o(T(¢)).

The last space above is a complex subspace of C2. Under this isomorphism, the basis s11, 12, 21, 522
is sent to
(0,2;0,0), (—2,0;0,0), (0,0;—i,1), (0,0;1,1).

Thus, an oriented basis for the target of the above isomorphism is given by
(2,0;0,0), (0,2;0,0), (0,0;—i,1), (0,0;1,1).

The change of basis matrix from the first basis to this one is given by

0 -1 0 0
1 0 00
0O 0 1 0
0 0 0 1
The determinant of this matrix is +1. O

Proof 2. Define

7733P3 —)P37 [217227Z37Z4] I |727_717747_73]7
My(P) = My (PH, )77, 9y (P?) = My (P2, 1),
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We now proceed through the first two paragraphs of the second proof of Proposition 3.5 replacing
7, 73, and D5, by 1, n3, and D}, respectively. By [4, Lemma 5.3], the isomorphism (3.24) is still
orientation-reversing with respect to the algebraic orientations on 9t (P!) in 9t (P3) defined in [4,
Section 5.2]. The isomorphism (3.25) is now orientation-preserving with respect to the complex
orientation on the left-hand side.

Along with Euler’s sequence for P! and the orienting procedure of [4, Lemma 2.5], the trivial-
ization v, determines an orientation on 9% (P'); we will call it the 1)}-orientation. Since the top
exterior power of the real bundle pair

2((20p1 (1), 711) |1 — (S%.mls1) < (P11 (3.37)

is canonically a square, it admits a canonical homotopy class of trivializations; see Lemma 2.4 and
Section 5.5 in [4]. Along with Euler’s sequence for P3, it determines an orientation on 9ty (IP3);
we will call it the square root orientation. Along with the 1){-orientation on oMy (P, it induces
an orientation on N[L,O]zm; we will call it the t{-orientation. Since the square root orientation
on My (P?) agrees with the orientation induced by the trivialization 21 of (3.37), the first iso-
morphism in (3.25) is orientation-preserving with respect to the orientation on the left-hand side
induced by 4, and the vy-orientation on N, 9.

As summarized in the paragraph above [4, Remark 6.9], the algebraic orientations on 9t (P!)
and 9y (P3) are the same as the 1(-orientation and the opposite of the square root orientation,
respectively. Therefore, the 1){-orientation on ./\/'[MO]SD? is the opposite of the algebraic orientation.
Since the second isomorphism in (3.25) is orientation-reversing with respect to the latter, it follows
that the composite isomorphism in (3.25) is orientation-preserving with respect to the orientation
on the left-hand side induced by . Since this is also the case with respect to the complex
orientation on the left-hand side, these two orientations on ker DY agree. O

Proof 3. The reasoning in the third proof of Proposition 3.5 with 7 and DS 1, replaced by 1 and DS,
respectively, applies without any changes, except [4, (6.13)] is no longer relevant. O

By [4, Lemma 2.4], the homotopy classes of trivializations of (2(’)191(1—1—2(1),778?2‘1)) over St corre-

spond to the homotopy classes of trivializations of

~(142 ~(1 ~(2a)\®2
AEP (2051 (142a), 711TY) ~ AP (205 (1), 1) ® (O (2a), 7)) (3.38)
over S!. Since the last factor in (3.38) is a square, it has a canonical homotopy class of trivializations
over S1. Thus, the trivialization v, of the first factor on the right-hand side of (3.38) determines a
homotopy class of trivializations of (20p1 (142a), 'ﬁﬁr%)) over S and thus an orientation on det D?.
The next statement is the analogue of Corollary 3.12; it is deduced from Corollary 3.14 in the same

way as Corollary 3.12 is obtained from Proposition 3.5.

Corollary 3.15. Suppose a€Z>°. The orientation on det D’ induced by the trivialization Y as
in the proof of [4, Lemma 2.5] agrees with the complex orientation.

Suppose

~

00— (Vip) — (Vo,00) ® (Ve ) — (£,0) — 0 (3.39)
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is an exact sequence of real bundle pairs over (P!,n) such that

= ~ a; 9% U ~(1+2a’;
(Ver0e) = P(20p1 (142a;), 7 72))  and  (£,3) = D20 (1424}), 7T
i=1 i=1

for some a;, aieZ>°. Since the homotopy classes of trivializations of (V,, .)|g1 correspond to the
homotopy classes of trivializations of (£,¢)|g1, a homotopy class of trivializations of (Vi,@s)|g1
determines a homotopy class of trivializations of (V,¢)|s1 via the exact sequence (3.39). Via
the isomorphism (3.18) with X being the unit disk around 0 € C, a trivialization of (Vi,pe)|g1
thus determines an orientation of the determinant of a real CR-operator Dy on the real bundle
pair (V, ). It also determines an orientation of the determinant of a real CR-operator Dy, on the
real bundle pair (Vi,p.). A short exact sequence (3.32) of real CR-operators on the real bundle
pairs in (3.39) gives rise to an isomorphism as in (3.33).

Corollary 3.16. The isomorphism (3.33) is orientation-preserving with respect to
e the orientations on det(Dy) and det(Dy,) induced by a trivialization of (Va, @) over St and
e the complex orientations on det(Dy) and det(Dy,).

Proof. By Corollary 3.15, the complex orientations on det(D,) and det(Dy,) are induced by the
trivializations ma)( of (L,$) and (V,,p.) over S'. The short exact sequence (3.39) determines
a homotopy class of isomorphisms (3.34) over (P!,7). Thus, the orientations on (3.35) specified
in the statement of this corollary are induced by homotopy classes of trivializations of the real
bundle pairs

(V,0)B(L, 3), (Va, 00)®(Ve, 00) — (S',nlg1)

that are identified under the isomorphism (3.34) restricted to S'. The isomorphism (3.33) is
orientation-preserving with respect to these orientations. ]

4 The compatibility of the canonical orientations

In this section, we establish Theorem 1.2. In order to do so, we study how each step in the con-
struction of the orientation on M, ;(X, B; J)? in [11, Section 5] extends across the strata consisting
of maps from symmetric surfaces with a pair of conjugate nodes. The argument is similar to
[11, Section 6], which studies the extendability of the orientation on 9, (X, B;J)? induced by
a real orientation on (X,w, ¢) across the codimension-one strata. We also compare the resulting
extensions with the corresponding objects over the normalizations.

4.1 Two-nodal symmetric surfaces

We begin by establishing Proposition 2.2 for symmetric surfaces with one pair of conjugate nodes.
If (X,0) is a symmetric surface, possibly nodal and disconnected, and G is a Lie group with a
natural conjugation, such as C*, SL,,C, or GL,C, denote by C(X,0;G) the topological group of
continuous maps f: ¥ — G such that f(o(z))= f(z) for all zeX. The restrictions of such functions
to the fixed locus X7 ¥ take values in the real locus of G, i.e. R*, SL,R, and GL,R, in the three
examples.
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Lemma 4.1. Suppose (X,0) is a symmetric surface, possibly nodal and disconnected, x€ ¥ —X7,
and G is a connected Lie group with a natural conjugation. For every feC(X,0;G) and an open
neighborhood U C ¥ of x, there exists a path feC(X,0;G) such that fo=f, fi(x)=1d, and fi=f
on X—=Uvo(U).

Proof. By shrinking U, we can assume that Uno(U) = . Let p: ¥ — [0,1] be a smooth o-
invariant function such that p(x) =1 and p=0 on X—U uo(U). Choose a path g; € G such that
go=1d and g1 = f(x). The path f;eC(%,0;G) given by

gp_(lz)tf(z), if zeU,
fi(z) = m_lf(z), if zeo(U);
f(2), if z¢Uvo(U);

has the desired properties. O

We will denote the nodes of a connected symmetric surface (3,0) with one pair of conjugate
nodes by xi—rz. A normalization of such (E,:c{-%,o) is a smooth, possibly disconnected, symmetric
surface (3, 5) with two distinguished pairs of conjugate points, (z], 27 ) and (23, x5 ); the normal-
ization map takes xj to a:fz and x; to z7,.
Lemma 4.2. Suppose (X,0) is a connected symmetric surface with one pair of conjugate nodes,
neZ", and feC(%,0;SL,C). If

flge: 87 — SL,R
is homotopic to a constant map, then f is homotopic to the constant map Id through maps
fieC(¥,0;SL,C).
Proof. By Lemma 4.1, we can assume that f(ale) =1Id. Let f € C( 7;SL,C) be the function
corresponding to feC(%,0;SL,C). In particular, f(z O, f ( )=

Proceeding as in the proof of [11, Lemma 5.4], choose a symmetric half-surface YPe ¥ and a
neighborhood U 3 of 03P so that either z,xy eX—U or i, xy eXV—U. Let Ty =5 in the
first case, zo ==, in the second case, and x1 =z in both cases. Take the cutting paths C; so that
x1, 22 ¢ C; and the extensions of the homotopies of ]? from C; to P so that they do not change f
at 21 or x3. Choose disjoint embedded paths y; and 75 in the disk D? in the last paragraph of the
proof of [11 Lemma 5.4] from 0D? to 1 and w3, respectively. Since f(xz) =1d in this case, we can
homotope f to Id over 7; while keeping it fixed at the endpoints. Similarly to the second paragraph
in the proof of this lemma, this homotopy extends over D? without changing f over 0D? or v3_;
and thus descends to 3°. We then cut D? along 1 and 79 into another disk and proceed as in the
second half of the last paragraph in the proof of [11, Lemma 5.4]. The doubled homotopy in the
proof of this lemma then satisfies ft(m‘;—r) = ﬂ(w%) and so descends to X. O]

Corollary 4.3. Let (X,0) be a connected symmetric surface with one pair of conjugate nodes and
P, V: (V) — (ExC", 0xc)
be isomorphisms of real bundle pairs over (X, 0). If the isomorphisms
Dlye, Ulye: VP — xR,
AFPR, ALY : ALP(V, ) — ALP(EXC™ o x¢) = (ExC,0x¢)

are homotopic, then so are the isomorphisms ® and W.
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Proof. The first paragraph of the proof of [11, Corollary 5.5] applies without any changes. The
second paragraph applies with [11, Lemma 5.4] replaced by Lemma 4.2 above. O

Lemma 4.4. Proposition 2.2 holds for connected symmetric surfaces with one pair of conjugate
nodes.

Proof. Let TN/, L—3 be complex vector bundles and

.

77[112 ‘7|xz_r — ‘7|x2i and 1[)21 Eimli i E gi

be isomorphisms of complex vector spaces such that

V=‘~//~, v~ (v) Vvef/‘m%, and L=E/~, v~1o(v) VveZ’Ili.

Denote by ¢1 and @9 the lift of ¢ to V and the lift of gg to L, respectively. Define
(W,512) = (V@2L*, 1028%),  thia = 1 @2(45 )" s W],. — W],

Thus, (V,31) and (L, 32) are real bundle pairs over (£,5) that descend to the real bundle pairs
(V,) and (L, ¢) over (X, 0). Furthermore,

Y120 @12 = P12 0 Y12 (4.1)
For any feC(¥,5; GLp+2C), let
\Tff: (ix@””,&xc) —> (ix@””,&xc), Ui(z,v) = (z,f(z)v).
Let & () =23 , fori=1,2.

The choices (RO2) and (RO3) in Definition 1.1 for (X, 0) lift to (,5). By [11, Proposition 5.2],
there thus exists an isomorphism

~

®: (W, 312) — (ExC"2,5 xc)

of real bundle pairs over (i,&) that lies in the homotopy class determined by the lifted real
orientation. It satisfies the spin structure requirement of Proposition 2.2. By the proof of [11,
Proposition 5.2], ® can be chosen so that it induces the isomorphism in (2.9) over (3, ) determined
by the lift of a given isomorphism in (1.1) over (X, ). This implies that

{5/ xid}o{ATPRY = {AELPBYo (AL Pro}: AT 2 — {aF} x AFPC" P = {25} xC.  (4.2)

In the next paragraph, we homotope ® near xi—r so that it descends to an isomorphism ¥ over ¥;
the latter satisfies the two properties in the last sentence of Proposition 2.2. By Corollary 4.3, any
two such isomorphisms ¥ are homotopic.

Define ¢*eGL,,»C by

idx gt = {5 x1d}oPorpip0d1: {27} xC™? — {af}xC"F2. (4.3)
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By (4.2), detcpt =1, i.e. eSL,2C. By (4.1), Wf 1~ . Since SL,12C is connected, there exist
feC(%,5;SL,42C) and a neighborhood U of z] in ¥ such that

vt if 2—at; , R
z) = x5y ¢U, Unco(U)= . 4.4
) {m, oy, TRV UnE) =0 (1.
By (4.3) and (4.4),

{5/><Id}olflfo&> = \Tffo(f)owlg: f/IV/|xI£ — {zF}xC" T2,

Thus, ] focf> descends to an isomorphism ¥ in (2.8) of real bundle pairs over (3, o) that induces
the isomorphism in (2.9) determined by a given isomorphism in (1.1). O

Suppose (E,xlig,a) and (ixz—r,x;—r,&) are as above. A rank n real bundle pair (V) over (X, 0)
lifts to a rank n real bundle pair (V, ) over (3,5). A real orientation on (V;¢) lifts to a real

orientation on (V,$). A real CR-operator D on (V, ) lifts to a real CR-operator D on (V,®).
There is a short exact sequence of Fredholm operators

0 ——=T(%; V)¢ (S5 V)?
lD lﬁ (4.5)
0,1 /v, 0,1,8. TG
0——TI} (V)9 —=TI} (3 V)9 0 0

<2
14
8
o
o
+
)

with the last homomorphism in the top row given by
evxﬁ(é) = f(mf)—é(:c;) eV i¢—2 ZVTZV;— .
Thus, there is a canonical isomorphism
det D ~ det D ® ARV,e (4.6)

of real lines.
If ¥ is an isomorphism as in (2.8) and W is its lift to (3, ), then the diagram

~ ~ o~ ~ ~ ~ evx+
0—T(S; Vo2L*)** (5 Ve2l*) ™ “2v . @21t —>0
12 X

12

7 ¥ i\y
0 C(%,0;Cn*2) C(X,5;Cn?) —=2—— Cn+2 0

commutes. If ¥ is an isomorphism as in (2.8) in the homotopy class determined by a real orientation
on (V, ), then the lift ¥ of ¥ to (V, $) lies in the homotopy class of isomorphisms determined by

the induced real orientation on (V,$). These two observations yield the following comparison of
the orientations on the relative determinants provided by Corollary 2.3.

Corollary 4.5. Let (2,0), (3,5), (V,¢), and (V, ) be as above. The isomorphism
det D ~ (det D) ® AF'V,+ @AF'C" (4.7)

induced by the isomorphisms (4.6) for (V,¢) and (ExC"™, oxc) is orientation-preserving with respect
to the orientation on det D determined by a real orientation on (V,¢), the orientation on det D

~

determined by the lifted real orientation on (V, @), and the complex orientations of VIB and C™.
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4.2 Smoothings of two-nodal symmetric surfaces
For a disk AcC centered at the origin, let
A* = A—{0}, AR = {(t,1): teA}, AR = A*2AAS
A A2 — A2 TA(tJr,t*) = (F,F)

Thus, A2 is the fixed locus of the anti-complex involution 7a on A2

Let C = (%,21,...,%) be a marked Riemann surface with two nodes and m : U — A? be a
holomorphic map from a complex manifold with sections si,...,s;: A2 — U. We will call the
tuple (m, s1,...,5) a smoothing of C if

e Yy=m1(t) is a smooth compact Riemann surface for all te A*?%;
o si(t)#s;(t) for all te A? and i+ j;
b (207 51(0), ceey SZ(O)) :C

Suppose C= (%, (21, 27),..., (3,2 )) is a marked symmetric Riemann surface with involution o
and a pair of conjugate nodes, (7, s1,...,s;) is as above, and Ta : Y — U is an anti-holomorphic
involution lifting the involution 7o. We will call the tuple (7,7a,s1,...,5;) a smoothing of C if
(7, 81,TA0S1,...,51,7A08;) is a smoothing of C and Ta|yx, =o. In such a case, let o =7a|y, for
each teAl%g.

With (7, 7a, $1,...,8;) as above, denote by xﬁ €Y and X —> ¥ the nodes and the normalization
of X, respectively, and set X* = E—{xi—a}. Let

Ui = {(t+,t_,zf,z§’)eA2xC2: 12| 2 | <1, 21 2f =tT},
Uy = {(tT,t7, 27,25 )eA*xC?: |27 ], |25 | <1, 2725 =t~ }.
As fibrations over A,

if |o7 | > 125 ];

)

’ 4.8
)it |2 <] (48)

(

for some family U’ of deformations of ©* over A2, a choice of coordinates ziir on ¥ centered at aczi,
and their extensions to U. The local coordinates z:—r and the family &’ in (4.8) can be chosen so
that U’ is preserved by Ta and the identification in (4.8) intertwines 7o with the involution

t +
U~ U oy ud)/ ~, (t, 21, 25) ~ {(t’zg
y 2

Z/{J—r — U, (t*,t*,zli,z%) — (F,F, zli,zgi). (4.9)
In particular, U retracts onto ¥ respecting the involution 7a.

Suppose 7 : U —> A? and Ta are as above, (V, ) — (U,7a) is a real bundle pair, and V and A
are a connection and a 0-th order deformation term on (V,¢) as in Section 2.2. The restriction of
V and A to (V,9)|(s,,0,) With te A2 determines a real CR-operator Dy. By [15, Appendix D.4]
and [3, Section 3.2], the determinant lines of these operators form a line bundle

det Dy, ) —> AR - (4.10)
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We denote by det dc — A%& the determinant line bundle associated with the standard holomorphic
structure on (U x C,7Ta x¢). The proof of the next statement is essentially identical to the proof of
[11, Corollary 6.7], with Lemma 4.4 replacing the use of [11, Proposition 6.2].

Corollary 4.6. Let (m,7a), (V,¢), and (V, A) be as above. Then a real orientation on (V,p) as
in Definition 1.1 induces an orientation on the line bundle

det Dy, ) = (det D(y.,)) @ (det dc)®" — AR, (4.11)

where n=rkcV. The restriction of this orientation to the fiber over each teAﬁ‘i2 is the orientation
on det Dy induced by the restriction of the real orientation to (V, 90)|(Zt,at) as in Corollary 2.3.

~

Let (X, 0) be a smooth symmetric surface and (L, ¢) be a rank 1 real bundle pair over (X, o). For
a pair x=(z",x7) of conjugate points of (X, o), define
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L(x) = L(z"+27), L%*(x)=L®cL(x), {L(x)®2}i = (L(x)®?|,+ ®L(x)®*|,-)
(L)% = (L9} @ (L9?(x)],+ @ L2 (x)[,- )"

The projection
{L(x)®?}, — {L(x)®?}}, = L(x)®?|,+ ®LZ2(x)],+

is an isomorphism of real vector spaces and thus induces an orientation on its domain from the
complex orientation of its target. This induced orientation is invariant under the interchange of
2 and 27; we will call it the canonical orientation of {L(x)®?}L.

For a real CR-operator Dy, x®2 on (L(x), $)®2, there is a short exact sequence

0 ——I(S L))" —— (S L)) —— {L(x)®?} —0

iDL@Q () i Dy x)®2

0,1 ¢ 0,1 ¢
0—— Fj (Z, L®2(X)) E—— Fj (Z, L(X)®2) —0
of Fredholm operators. By (2.4), it induces a canonical isomorphism
det D, xy@2 ~ (det DL®2(x)) ® A%({L(X)@)Q}i) . (4.12)
The analogous exact sequence for an operator D@z () on (L®%(x), 5®2) yields an isomorphism
72
det Dyen () ~ (det Dyg2) ® AR ((L®2(%)],+ ®LE* ()], ) ). (4.13)
Combining these two isomorphisms with the identity isomorphism on det (_?g;(c, we obtain an iso-
morphism . .
det Dpgee ~ (det Dye2) ® Af ({L(x)®2},). (4.14)

Corollary 4.7. With notation as above, suppose the real vector bundle L® — %7 is orientable.
The isomorphism (4.14) is orientation-preserving with respect to the orientations induced by Corol-
laries 2.8 and 2.4 on det Dy 2 and det Dygz and the canonical orientation on {L(x)®?}].
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Proof. Let (f], &) be the two-nodal symmetric surface consisting of (3, o) with a 0-doublet P L/PL
attached at ¥ and 27; see (1.7). Let X=(Z",27) be a pair of conjugate points on ¥ —¥, with
zTePl, and (L, ¢) be the rank 1 real bundle pair over (,5) such that

(E’@}P}ruﬂﬂ_ = (Opt LOp1, Gl p1 x¢).

(L,9)l = (£ 0),
Choose a smoothing

T U — A2 AU — U, st A2 — U
of (,(2%,27),5). For te A2, (S, 01) ~ (3, 0).

Let (V,¢) be a real bundle pair over (U, 7a) that restricts to (f/, $) over & and
V(s) = V(s+ Taos).

For t€ A2, the restrictions of the real bundle pairs (V, ) and (V(s), ) to (3¢, 0¢) are isomorphic
to (L, ¢) and (L(x), ), respectively. The canonical real orientations on (f/,gg)@Q and (E(ﬁ),$)®2
provided by Corollary 2.4 (like all other real orientations) extend to real orientations on (V, ¢)®?
and (V(s), p)®2, respectively. The restrictions of the latter to

e (3, 01) with te A%? are the canonical real orientations on (L, $)®2 and (L(x), $)®2, respectively,

e Y3 are the canonical real orientation on (L, 5)®2,

° IP’}r UPL are the canonical real orientations on
~ ®2 A~ A~ ~ ®2
(OM'—‘OP1_J|P1+L.P1_ xc) and (OJPﬂ+ (Z4)uOp1 (5137),0'|P1+u19>1_ x¢)

)

respectively.

Let Dy, @24 be a family of real CR-operators on (V, 0)®2 as above Corollary 4.6; we can assume
that it restricts to the standard J-operator over the O-doublet. It induces a family Dy (s) ,y®2,¢ of
real CR-operators on (V (s), 9)®2. Let

Dige = Dwgezno  and - Digyen = D(v(s)0)9%0
be the restrictions of these operators to (£,5). Similarly to (4.12),
1 1 4 ®211
det Dy (s) )2 ~ (det Dvye2) © A ({V(s)%°},)

as real line bundles over t€ AZ. By the first bullet point above and Corollary 4.6, it is thus sufficient
to show that the isomorphism

det Dy gye2 ~ (det Dygs) ® A ({L(R)®%}y) (4.15)

is orientation-preserving with respect to the orientations on det Di(§)®2 and det D; g, induced by
the canonical real orientations on (E()A(), $)®2 and (f), $)®2, respectively, and the complex orienta-
tion on {L(x)®?}L.
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Let (L, 3) be the lift of (L ,®) to the normalization (3, 5) of (3,5); the latter consists of (3, ) and
the O- doublet PL P!, The isomorphisms (4.7) induce a commutative diagram

det DL( 2)®2 (Te\t Dz(;()@Q ®A%Lx+®/\%§c
(det Dygn) ® AL ({L(R)®?},) — (det D; ) ® AR L+ ®AZC ® A ({L(X)®2)).

By the second and third bullet points above and Corollary 4.5, the horizontal isomorphisms in this
diagram are orientation-preserving with respect to the orientations on the relative determinants
induced by Corollaries 2.3 and 2.4 and with respect to the complex orientations on the remaining
lines.

The left vertical isomorphism in the diagram is the tensor product of the isomorphisms

det D, L det Dygy and
. (4.16)
det Dy (cieny | ~ (det DL®2‘ )®A4 ({Z®)®*)L).
+l_l —

The first of these isomorphisms is orientation-preserving with respect to the canonical real orien-
tations because L(X)|g = L|x. Under the restrictions to P! as in (3.2), the second isomorphism
n (4.16) corresponds to an isomorphism induced by two short exact sequences of C-linear ho-
momorphisms. Thus, it is orientation-preserving with respect to the complex orientations on

det DE(’A‘)®2|P1+HP1) and det Dz®2|u>1 ot as in Section 3.1. By Lemma 3.1, these complex orienta-

tions are the same as the orientations induced by any real orientations on the squares. Thus, the
second isomorphism in (4.16) and the left vertical isomorphism in the commutative diagram are
orientation-preserving with respect to the orientations on the relative determinants induced by
Corollaries 2.3 and 2.4. Along with the last sentence of the previous paragraph, this implies that
the right vertical isomorphism is also orientation-preserving with respect to these orientations. [J

Let & be a smooth Riemann surface and €. A holomorphic vector field & on a neighborhood
of z in ¥ with {(z)=0 determines an element

Ve, e TiE@c T2 = C.

Similarly, a meromorphic one-form 7 on a neighborhood of x inﬁ] has a well-defined residue at z,
which we denote by J,7. For a holomorphic line bundle L — ¥, we denote by Q(L) the sheaf of
holomorphic sections of L.

If (X, 0) is a symmetric Riemann surface with a pair of conjugate nodes $1i2 €Y and x%, :175i €Y are
the preimages of the nodes in its normalization, let

TS(—x) = TS( —zf —2] x5 —x35),  T*E(x) = T*S(af +a7 +25 +25).

The next statement is the analogue of [11, Lemma 6.8] in the present situation.
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Lemma 4.8. Suppose (m: U —> A% FA) is a smoothing of (¥,0) as above. There exist holomorphic
line bundles T, T —> U with involutions @, lifting Ta such that

7l = (FEualrs). (7Bl = (5 @l )?) ¥ eea™
Q(Tls,) = {eQTE(-—x)): Ve, 2 +VE],+ =0},
Q(Tls,) = {neQ(T*S(x)): 9%1,;:77+9‘ix2t77=0}.
Furthermore, (7A'7 OV~ (T, p)*.

Proof. We continue with the notation as in (4.8) and (4.9). Denote by TV"*U’ — U’ the vertical
tangent bundle. Let

T =UFxCuly xCuT"U')/~, T = (UF xCuly xC o (TU')*) ) ~,
+
Qo)
R cz%@‘jf‘(t,ziy if |27 > |25 |; . %&77 if |27 > |25 |;
(t,Zl_,Z2_,C)~ B J_rla } ! if | ‘<‘ | (tazl_az2_76)N d1 +o2E
szajéf(t@i)v e <12y —c%, 1f|zl|<|22|
2

Under the identiﬁcations (4.8), the vector field and one-form on a neighborhood of the node in U
associated with (t, zfr ) 22 ,C )eZ/lO x C correspond to the vector field and one-form on L{O given by

c(zlia — 2y d ) and cdzfIEt = —c dZﬂEt

S + +
021 025 2] 25

respectively (the above equality of one-forms holds for t* # 0). Thus, T and 7 have the desired
restriction properties. The identifications in the construction of 7 and 7 above intertwine the
trivial lift of (4.9) to a conjugation on (Uy Ll )xC with the conjugations on TV"'U’ and (TV"*U')*
induced by d7a. Thus, they induce conjugations ¢ and @ on 7 and T. By the same reasoning as in
the proof of [11, Lemma 6.8], (T, $) and (T, ¢)* are isomorphic as real bundle pairs over (U, 7). O

Corollary 4.9. Let (X,0), (m,7a), and 7',’7'—>L{ be as in Lemma 4.8. The orientation on the
restriction of the real line bundle

det @5 gn = (det ) ® (det oc) — Af (4.17)

(T,0)®?
to Ax2 determined by the canonical isomorphisms of Corollaries 2.3 and 2.4 extends across t=0 as
the orientation determined by the canonical isomorphism of Corollaries 2.3 and 2.4 for the nodal
symmetric surface (X%, 0).

()

Proof. By Corollaries 2.3 and 2.4, the restriction of the real bundle pair
(T®2@2T, $%2@2p) — U, 7a) (4.18)

to the central fiber (X, o) has a canonical real orientation. Since U retracts onto X respecting the
involution 7a, this real orientation extends to a real orientation on (4.18) which restricts to the
canonical real orientation over each fiber (3¢, 0t) with t € A%2. By Corollary 4.6, the extended
real orientation induces an orientation on the real line bundle (4.17) over A%. The restriction of
this orientation to the fiber over each t € A%? is the orientation induced by the restriction of the
extended real orientation to the fiber of (4.18) as in Corollary 2.3, i.e. the canonical orientation on
each fiber of (4.17). O
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The next two statements are the analogues of [11, Lemmas 6.9,6.10] for smoothings of two-nodal
Riemann surfaces and hold for the same reasons.

Lemma 4.10 (Dolbeault Isomorphism). Suppose (3,0) and (m,7a) are as in Lemma 4.8 and
(L, ¢) — (U, 7a) is a holomorphic line bundle so that deg L|x, <0 and deg L[sy <0 for each irre-
ducible component X' cX.. The families of vector spaces H(%(Et; L) and H'(Z¢; L) then form vector
bundles Réﬂ'*L and R'my L over A% with conjugations lifting TA which are canonically isomorphic
as real bundle pairs over (A%, 7).

Lemma 4.11 (Serre Duality). Suppose (¥,0), (w,7a), and (7AV, @) are as in Lemma 4.8 and
(L, 3)—> (U, 7r) is a holomorphic line bundle so that deg Lis >29a(2) —2 and deg L]y =294 (X")—2
for each irreducible component X' X. The family of vector spaces HO (Et, L) then forms a vector
bundle R2 5T« L over A with a conjugation lifting Ta and there is a canomcal isomorphism

*

Rim (L*®T) ~ (R, L) (4.19)

of real bundle pairs over (A%, 7p).

4.3 Canonical isomorphisms and canonical orientations

Let (3, mI—FQ, o) be a symmetric surface with a pair of conjugate nodes. We will next compare the
orientations of isomorphisms of determinant lines associated with (X,0) which are induced via
its smoothings (Z¢,0¢) as in Section 4.2 and via its normalization (3,5). We continue with the
notation introduced in Section 4.2.

Let Cx, Sx — 5. denote the skyscraper sheaves with fibers C at the preimages x:—r of the nodes
of ¥ and fibers T:_i 3, respectively. The projections

(4.20)

Q

HO (35 Cx)” — €2 = HO(55C,0 )@H (55C ),
Sx)

to the values at ;] and z3 are isomorphisms. We use the first isomorphism to orient H O(E Cyx)?

HO(5:5x)" — TLE@TES = HO(S: 5,1 ) @H(£55,1)
2

from the standard orientation on C. We use the second isomorphism to orient H (3 Sx)? from the
orientations on T* 3 and T* 3 induced from the complex orientations on T, +2 and T, +2 respec-

tively, as in the proof of Lemma 3.2. As indicated at the beginning of Sectlon 3.1, the orlentatlon
on each T* Y induced from the complex orientation of T, +E is the opposite of the complex ori-

entation of T;+E. Thus, the induced orientation on T;TXELJTI;E agrees with the complex orientation.

The residues of meromorphic one-forms on 5 provide canonical identifications
T*i(x)|x+ ~C.
With the notation as in Corollary 4.7, we thus have
$ 21 _ 2 2 0 0(53. g \?
{T*S(x)®?}, = {T*E(x)® } @{T*Z® )}( sy =H (5:C) @H"(5; Sy)

Ty 7x1 Tg »Tg
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With L=T%3%, (4.14) becomes

det0 e 53 0) ()42~ (@000 s (g3 y)22) © AGCOARC ® Ay (H'(5; 55)7). (4.21)

Let (fo_r2 — 3] be the skyscraper sheaf over CCI_FQ. By Lemma 4.8, there is an exact sequence

0— O(T®) — O(T*%(x)®?) — C, ®C, — 0

Z12 Z12
of sheaves over ¥. Thus, (4.6) applied with (7, $)®2|s; and (£xC, oxc) determines an isomorphism
—~ ) ) —~
et 07 pye2),) ® ARCOARC ~ det 0 gusi ) (az)+ )2 - (4.22)
Combining this isomorphism with (4.21), we obtain an isomorphism
et 07 pye2),) ® AZCRARC ~ (det O+ (azy+)e2) ® ARCOAZC®AL(H(Z;8¢)7).  (4.23)

Corollary 4.12. Let (¥,0), (i,&), (m,7TA), and 7',7\'—>LI be as in Lemma 4.8. The isomor-
phism (4.23) is orientation-preserving with respect to

e the canonical orientation of Corollary 4.9 on det 3(% 22257
e the canonical orientation of Corollaries 2.3 and 2.4 on det B(T*i (d5)%)®27

o the orientation on Ho(i; Sy )? described above and the complex orientation on C.

Proof. The canonical orientation of Corollary 4.9 on det 5( o2, is the orientation induced by

,?\—7@)
the canonical real orientation on the restriction of (7, %) to X. The latter lifts to the canonical
real orientation on the real bundle pair

(T*S(x), (d5)*)®* — (5,5). (4.24)

By Corollary 4.5, the isomorphism (4.22) is thus orientation-preserving with respect to the ori-
entation in the first bullet item above, the complex orientation on C, and the orientation on
det a(T*i(x),( dz)+yez induced by the canonical real orientation on (4.24). By Corollary 4.7, the
isomorphism (4.21) is orientation-preserving with respect to the latter and the orientations in the

second and third bullet items above. The last two statements together imply the claim. O
Let (m,7A, $1,--.,5) be a smoothing of a marked symmetric Riemann surface
C = (E,(zf,zf),...,(z;’,zl_)) (4.25)

with a pair of conjugate nodes, T, T —U be the holomorphic line bundles with involutions ¢, @
as in Lemma 4.8, and

~ ~

TC = T(_Sl_%IAOSl—. . .—8[—%AOSI)’ TC = T(81+7’\'JA031+. . '+Sl+7-AOSZ)'
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By the last statement of Lemma 4.8, 7C*=TC. Let

~

C= (2,(Zf_,zl_),...,(Z;_,Zl_),(II?T,.CUI),(CC;,.TQ_)), (426)
TC =TS(—2 —2] —...—2 —2] —af —a] —af —23),

T*C = T*f](zf—I—zl—-l-- ) .—i—zfr—i—zl_—i—xf-i-wl_ +$;+1’2_)'

Let SC — % and SC —> % be the skyscraper sheaves of the cotangent bundles at the marked
points as in the proof of Lemma 3.2. We also denote by SC< SC the lift of SC to X, i.e. the natural
complement of the subsheaf Sy of SC.

By Lemma 4.8, taking the (second order) residues of sections of TCRT at zf € S induces an
isomorphism
- N - 2
det a(%c@gi’,@@) s ~ det a(T*C@T*E,(d&)*@) ® ARC; (4.27)
it corresponds to the isomorphism (2.4) for the short exact sequence of Fredholm operators rep-

resented by the middle column in Figure 1. Combining (4.27) with the isomorphism (4.6) for the
trivial rank 1 real bundle pair (V, ), we obtain an isomorphism

(det 5(AC®7A',<2®2)|2) ® ARC ~ (det E(T*(?@T*i,(d&*)@)) ® A:C. (4.28)

The exact sequence represented by the middle row in Figure 1 and its analogue for C determine
isomorphisms

det 0
det 0

®2|2) ® AEgOp (HO(EQ 50)0)7
) ® AP (HO(Z; 5C)7).

(7A—C®7A—,¢®2)’E % (detg
~ (det 0

(7:8) (4.29)

(T*CQRT*X,(d5*)®2) (T#5,(d5%*))

The isomorphisms (4.29) induce orientations on the first factors on the two sides of (4.28) from

~ ~

(1) the orientations of HO(; SC)? and H(; SC)? described in the proof of Lemma 3.2, and

(2) the canonical orientations on

det 0+ &2y = (det 0 T, ®2|2) ® (det dc|s) and (4.30)
det O (qz)%)02 = (det a(T*i(d&)*)@)z) ® (det ocls)

provided by Corollaries 2.3 and 2.4.
Corollary 4.13. The isomorphism (4.28) is orientation-preserving with respect to the two orien-
tations described above and the complex orientation on C.

Proof. The exact sequence represented by the first row in Figure 1 and the [ =0 case of the second
isomorphism in (4.29) determine isomorphisms

p A to S 5
Aot Oracgrsss aps)e) ~ (00 0rasigerss @men) ® Ax” (H' (%5 5C)7),

_ _ < (4.31)
det O s @+, (a5%)e2) F (A0t O s gey@z) ® Ag (HO(X; 5%)7).
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Figure 1: Commutative diagram for the proof of Corollary 4.13

The second isomorphism in (4.29) is the composition of the first isomorphism in (4.31) and the
second one tensored with the identity on Aﬁgp(HO(E; SC)7).

Combining the analogue of (4.27) for [ =0 (i.e. the isomorphism induced by the left column in
Figure 1) with the isomorphism (4.6) for the trivial rank 1 real bundle pair (V,¢), we obtain an
isomorphism

—~ ) —~

(T S00erH S (a+)82)) © ARC. (4.32)

The canonical orientation on the second line in (4.30) and the second isomorphism in (4.31) in-
duce an orientation on the first factor on the right-hand side of (4.32). By the commutativity
of the squares in Figure 1, it is sufficient to show that the isomorphism (4.32) is orientation-
preserving with respect to the canonical orientation on det 3(% 2825 the above orientation on
det é(T*i‘(x)@T*i, (d5+)®2) and the complex orientation on C.

The composition of the isomorphism (4.32) tensored with the identity on A2C and the second
isomorphism in (4.31) tensored with the identities on det éi;tc and two copies of A]%Q(C is homotopic
to the isomorphism (4.23). By the previous paragraph, the claim is thus equivalent to the isomor-
phism (4.23) being orientation-preserving with respect to the canonical orientations on the first
factors on the two sides, the complex orientation on C, and the orientation on Ag(H 0(; S)?)

induced as in the paragraph containing (4.20). This is indeed the case by Corollary 4.12. O

The next two statements are obtained from Lemmas 4.10 and 4.11 in the same way as [11, Corol-
lary 6.12] is obtained from [11, Lemmas 6.9,6.10].

Corollary 4.14. If the marked curve (4.25) is stable, the orientation on the restriction of the real
line bundle 5
ARP (R TC)7) @ AP ((RimsTC)7) — AR

to Aﬂ*g induced by Dolbeault Isomorphism extends across t =0 as the orientation induced by Dol-
beault Isomorphism for the nodal symmetric surface (X, 0).
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Corollary 4.15. If the marked curve (4.25) is stable, the orientation on the restriction of the real
line bundle

AP ((RImaTC)7) @ ARP ((RAmu(TC®T))?)™) — AR
to Aﬂ*g induced by Serre Duality as in the proof of [11, Proposition 5.9] extends across t=0 as the
orientation induced by Serre Duality for the nodal symmetric surface (X, 0).

We continue with the setup for (4.26). By Lemma 4.8, there is an exact sequence
0 — O(TClz) — O(TC) — C,+ ®C, — 0 (4.33)
of sheaves with lifts of the involution o over 3. The projection of
A°(z;C . @C, )" < H'(Z;C,+ )@H (%;C,- ) =C@C (4.34)
12 12 12 12

to the first component induces an isomorphism of real vector spaces.

If C is stable, the real part of the cohomology sequence induced by (4.33), its analogue in Dolbeault
cohomology, and Dolbeault Isomorphism induce a commutative diagram

0——>C— H'(%;0(TC|s))” — H'(Z;0(1C))” —=0
Jid lDI J{DI (435)
0 C H'(Z;7C)° H'(Z;7C)° 0

of exact sequences. In particular, there are canonical isomorphisms

ARP(H'(25,0(T¢C5))7) ~ ARP(H'(3,0(1C))7) @ AZPC,

~ 4.36
AP (HY(2;7C)7) ~ AP (H' (35,7C)7) @ ARPC. (430

Combining them together, we obtain an isomorphism
AP (HY(S;0(TCls))7 ) @AY (HY (2, TC)7) wm

~ (ARP (T (350(TC)) ) @A (H' (55 7C)7) ) ® ARCOARC.

Corollary 4.16. The isomorphism (4.37) is orientation-preserving with respect to the canonical
orientation of Corollary 4.14 on the left-hand side, the orientation on the first tensor product on
the right-hand side induced by Dolbeault Isomorphism, and the canonical orientation on the last
tensor product.

Proof. By the commutativity of the diagram (4.35), the isomorphism (4.37) is orientation-preserving
with respect to the orientations on the left-hand side and on the first tensor product on the right-
hand side induced by Dolbeault Isomorphism. The former is the orientation of Corollary 4.14. [
Combining the dual of (4.27) with the second isomorphism in (4.36), we obtain an isomorphism
AP (HY(3;TC)7) QALY (HO(Z; TCRT)?)™)
top 133, oo top 0. sk 7, w0\ * 2 2 (v (4'38)
~ (AR (H'(5; TC)7) AP ((HO(S; T*CRT*S)°) )) @ AZCRAL(CY),

where C¥ = Hom¢(C, C). The complex orientation on C induces an orientation on C¥ under the
isomorphism (3.1). The latter is the opposite of the complex orientation of CV.
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Corollary 4.17. The isomorphism (4.38) is orientation-preserving with respect to the canonical
orientation of Corollary 4.15 on the left-hand side, the orientation on the first tensor product on
the right-hand side induced by Serre Duality, and the complex orientations on C and CV.

Proof. Since the diagram

0—>C H'(3;,1C)7 0

H'(%;7C)°

® ® ®

0~—C~—— HO(E;’?—C@?\')U -~ Ho(i; T*C~®T*§])" ~—0

| |

R R R

induced by the imaginary parts of the Serre Duality pairings commutes, the isomorphism (4.38)
is orientation-preserving with respect to the orientations on the left-hand side and on the first
tensor product on the right-hand side induced by Serre Duality and the complex orientations on C
and CVY. The former is the orientation of Corollary 4.15. The first pairing in the above diagram is
the real part of a C-linear pairing and thus identifies the oriented real vector space C in the first
row with the complex dual CV of the vector space C in the second row. O

4.4 Comparison of the canonical orientations

Before establishing Theorem 1.2 at the end of this section, we obtain its analogue for the real
Deligne-Mumford moduli spaces; see Proposition 4.18 below. This is done after comparing the be-
havior of the Kodaira-Spencer (KS) map under the smoothings and normalization of a symmetric
surface (X, o) with a pair of conjugate nodes; see Lemma 4.19.

Let geZ and 1€ Z>° be such that g+1>2. The identification of the last two pairs of conjugate
marked points induces an immersion

L RMG 540 — RM s (4.39)

the image RNQ'  of RMP 5. o under this immersion consists of symmetric surfaces with one pair

of conjugate nodes. There is a canonical isomorphism

FTRM;
TRM;-2,Z+2

L

~ L111®cLit2

of the normal bundle of ¢+ with the tensor product of the universal tangent line bundles for the first
points in the last two conjugate pairs. Thus, there is a canonical isomorphism

F(ARP(TRMG,)) ~ AZP(TRM; 5;19) @ AR (L141®c Li2) (4.40)

of real line bundles over Rﬂ;_w 4o
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Combining the isomorphism (4.40) with the isomorphism (4.6) for the trivial rank 1 real bundle
pair (V, ), we obtain an isomorphism

(ARP(TRM 5 ;,2)®(det 0c)) ® AR (Li41®c Lit2)

. . B} (4.41)
~ (AR (TRM, ;) ®(det dc)) ® (AZC)

of real line bundles over Rﬂ;_u +2- Since the complement of RN, in a small neighborhood

in Rﬂ;l is connected and consists of smooth curves, the canonical orientation on the real line
bundle (2.12) provided by [11, Proposition 5.9] extends across R/\fg' ; and thus induces an orientation
on the first tensor product on the right-hand side of (4.41).

Proposition 4.18. Let g € Z and | € Z7° be such that g+1 > 2. The isomorphism (4.41) is
orientation-reversing with respect to the orientations on the real line bundles (2.12) provided by
[11, Proposition 5.9] and the complex orientations of L141®cLi+2 and C.

Suppose C, C, (m,7a,51,...,51), (T,¢), and (7A', @) are as in (4.25) and (4.26) with L{|AD% — AZ
embedded inside of the universal curve fibration over Rﬂ;l. Combining the first isomorphism
n (4.36) and (4.40), we obtain an isomorphism

ARP (TieRM;, ) @ AP (H' (3; O(TClx)))

top . top [ 31 [ o ) ) (4.42)
~ (AR (T[CN]RMg—Q,l-i-Q)@AR (H (Z;O(T@) )) ®AR(£Z+1®C£1+2)®ARC-

The KS map induces an orientation on the left-hand side of (4.42) whenever C is a smooth curve.
Since the complement of R/\/'g' ; in a small neighborhood in IR{M;J is connected and consists of
smooth curves, this orientation extends over RNH' I

Lemma 4.19. The isomorphism (4.42) is orientation-preserving with respect to the orientations
on the left-hand side and the first tensor product on the right-hand side determined by the KS map
and the canonical orientations of L1411 &c L2 and C.

Proof. The proof is similar to that of [11, Lemma 6.16]. The parameter ¢ in Section 4.2 can be
viewed as an element of the complex line bundle £;1®c L;;2 and parametrizes the smoothings of
the marked symmetric surface C as in (4.25). In the notation of Section 4.2, they are described by
t=(t*,t7) with ¢t~ =¢T. Denote by TC~—>Z/~IQ,2,Z+2 the twisted down vertical tangent bundle over

~

the universal curve m: Uy_2 12 —>RNg'l.

As in the proof of [11, Lemma 6.16], the vector bundles

TRN,, (R'7.(TC))” — RN,
extend over a neighborhood of Mg.,l in Rﬂ;l as a subbundle of T' Rﬂ;?l and a quotient bundle

of (le*TC)”. The KS map induces an isomorphism between these two extensions and gives rise
to a diagram

ToRM? 51 s Te,RM;, L1®cLa|s

KS\L% KSl% KSl%

T@) <7I‘I1 Zt, (TC|Et))Jt C
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commuting up to homotopy of the isomorphisms given by the vertical arrows. The crucial point
is that the KS map sends the deformation parameter ¢t* € £ ®c Ly to the C-factor in (4.42) in an
orientation-preserving fashion. This is shown in the next paragraph.

Similarly to the last part of the proof of [11, Lemma 6.16], we cover a neighborhood of ¥ in U by
the open sets

2/11ir = {(t+,t_,z;£,z;£)el/{6£: 2|z§\<1} and UQJL = {(t+,t_,zf£,z;£)eu(;£: 2|zf£|<1},

along with coordinate charts each of which intersects at most one of Z/{Iir and Z/IQi. By the same
computation as before, the Cech 1-cocycle corresponding to the radial vector field [11, (6.25)] for
the smoothing parameter t=t" is given by

~ 0 0 ~ 0
0t =t — — 0f, = -2t —— 4+ 25— 4.43
0;12 = #1 azf_r 22 62% 0;21 21 Py 22 azg_r ( )

1

on U nU3 after re-scaling by |t|~! and vanishes on all remaining overlaps. In order to determine
the image of the angular vector field, we replace t with et in the computation in the proof of
[11, Lemma 6.16] and differentiate the resulting overlap maps flir2 and f;ﬁ with respect to 0 at
0 =0. Over Z/{Di, we then obtain the right-hand sides of the two expressions in (4.43) multiplied
by +i. Thus, the KS map sends t* € £L1®c L2 to the C-factor in (4.42) in an orientation-preserving
fashion. O

Proof of Proposition 4.18. Let (5,5) be an element of Rﬂ;_mﬁ. Its image under ¢ is a
marked symmetric curve (C, o) with a pair of conjugate nodes. We continue with the notation and
setup in the proof of Lemma 4.19.

The isomorphisms (4.40) and (4.27) induce an isomorphism
ARP (Tie)RM;, ) @ AR ((HO(2; TC®T)7)™) (4.44)
~ (Agp (Ti) RM; o12) ©AE™ (HO(S; T*@@T*i)”)*)) ® A% (L141®cLiv2) ® AZ(TY).

Orientations on the left-hand side of (4.44) and the first tensor product on the right-hand side are
obtained by tensoring the orientations on the corresponding terms

(1) in (4.42) determined by the KS map,
(2) in (4.37) determined by Dolbeault Isomorphism and Corollary 4.14,
(3) in (4.38) determined by Serre Duality and Corollary 4.15.

By Lemma 4.19 and Corollaries 4.16 and 4.17, the isomorphism (4.44) is orientation-preserving
with respect to these two orientations and the complex orientations on £;11®c L2 and CV.

The orientations on
A]tgp (T[C]RM;J) ® (det aC’[C]) and Aﬁsp (T[é]Rﬂ;_QM) ® (det 5@‘[5])

provided by [11, Proposition 5.17] are the tensor products of the orientations on
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(1) the left-hand side of (4.44) and the first tensor product on the right-hand side described above
and

(2) the first tensor products on the two sides of (4.28) described below (4.29).

The isomorphism (3.1) with V =C induces a homotopy class of identifications of (A2C)*®A%(CV)
with R. By the previous paragraph and Corollary 4.13, the isomorphisms

(AR (Tl RM; ) @ (det dec)*) @ (ARC)*
~ (Aggp (TieRMg s 140) ® (det ég;c)*) ® AR (L141®cLi42) R (ARC) " ®@AZ(CY)

induced by the isomorphism (4.40), the isomorphism (4.6) for the trivial rank 1 real bundle
pair (V,¢), and trivializations of (AZC)*®A%(CV) in the above homotopy class are orientation-
preserving with respect to the orientations of Proposition 4.18 and the complex orientations of C
and CY. Since the isomorphism (3.1) with V' =C is orientation-reversing with respect to the com-
plex orientations of C and CY, the isomorphism (4.41) is also orientation-reversing with respect to
the orientations of Proposition 4.18. O

Proof of Theorem 1.2. Throughout this argument, we omit (X, B,.J)? from the notation for
the moduli spaces of maps and let

L=L1®cLitz-
By the construction of the orientations in the proofs of Corollary 5.10 and Theorem 1.3 in [11], it
is sufficient to verify the claim over an element [] eﬁlg._w 49 with a smooth stable domain. Let u
be the induced real map from the corresponding nodal symmetric surface. We denote the marked
domains of % and u by C and C , respectively, and let ¢=ev; 1 (@).

The forgetful morphisms (2.2) induce the short exact sequences represented by the left and middle
columns in the two diagrams of Figure 2. The top row in the first diagram is the exact sequence on
the indices of Fredholm operators determined by the exact sequence (4.5) with (V, ¢) =u*(T'X, d¢);
the middle row is the exact sequence above (1.3). The middle and bottom rows in the second di-
agram are the exact sequences associated with the normal bundles N: above (1.5) and (4.40),
respectively.

The middle row and column in the first diagram in Figure 2 determine isomorphisms
[} an’® n o <=®
AP (TaMg s 142) ® AR (T,X) @ AR (£lg) ~ g™ (TaTg0112) ® AR (L) (4.45)
~ (det Dg) @ ARP (TsRM; _51.0) ® AR (L]5) -

By the commutativity of the squares in this diagram, the composition of the two isomorphisms
in (4.45) equals to the composition of the isomorphism

ARP (T _o410) ® AR (T,X) ® AR (L)
~ (det Dy) ® A" (TCNRH;—MH) ® ATy X) ® AR (L]g)

induced by the first column and the isomorphism (4.6) with (V,¢) = «*(TX,d¢); the latter is
induced by the first row.

(4.46)

o1



evz+
0———>IndD, Ind Dy ——= T, X —>0
id
<5/ oy ] dgevii1
0——= T30y 510 Ty 59— TyX —=0
df df
—e d PR
0——=TpRM, o) 90— TsRMy 549 —0
0 0
0 0
00— >TIndD, id Ind D, 0
0——= Ty 5,0 — T, Ll3 0
df df id
—e d —e
0 0 0

Figure 2: Commutative diagrams for the proof of Theorem 1.2
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The middle row and column in the second diagram in Figure 2 determine isomorphisms

AR (T3 110) © AF(T,X) © AR (L) )
~ ARP (T ) @ AFN(T,X) ~ (det D,) ® AP (TeRM,, ) @ AF(T,X).

By the commutativity of the squares in this diagram, the composition of the two isomorphisms
in (4.47) equals to the composition of the isomorphisms (4.46) and (4.40); the latter is induced by
the bottom row. Thus, the isomorphism

(det Dg) @ ARP (T-RM; 5;,5) ® AR (L]5) ~ (det D) @ AP (TeRM, ) @ AR (T, X)  (4.48)

induced by (4.45) and (4.47) is the tensor product of the isomorphism (4.6) with (V, ¢) =u*(T X, d¢)
and the isomorphism (4.40).

The isomorphism (4.45) induces an isomorphism
AP (T30 y140) © AR(T,X) @ AR (£]p) ® (det ) *
B L B (4.49)
~ ((det D3) @ (det d5,0) ™" ) @ (AR (TeRM;_3.15) @ (det 05, ) ) @R (£l¢) -
The isomorphism (4.47) and the isomorphisms (4.6) with
(V,¢) = u*(TX,do), (ExC,oxc)
induce an isomorphism
ARP (T 1 0) ® AT, X) ® AR (L)) ® (det 3i;c)®(n+l)
~ ((det D,) @ (det 25:c) " ) @AF(T, X)@AF'C" (4.50)
® (A;;P (TeRM ) © (det acsz)) ®AC.

A real orientation on (X, w,¢) induces orientations on

mn

det Dy = (det D)@ (det 35, .)®" and  det D, = (det D,)®(det dx,c) ™. (4.51)

The isomorphisms (4.49) and (4.50) induce orientations on their common domain from the ori-
entations in (4.51), the orientation of (2.12) provided by [11, Proposition 5.9], and the canonical
orientations on £, T'X, and C. The substance of Theorem 1.2 is that the two induced orientations
are different.

The two induced orientations are different if the composition of the inverse of the isomorphism
in (4.49) with the isomorphism in (4.50) is orientation-reversing. By the sentence containing (4.48),
this composition is the tensor product of

(1) the isomorphism (4.7) with (V, ) =u*(T'X, d¢) and
(2) the isomorphism (4.41).

By Corollaries 4.5 and 4.6, the first isomorphism is orientation-preserving. By Proposition 4.18,
the second isomorphism is orientation-reversing. O
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