Mirror Symmetry: from curve counts to hypergeometric series

Aleksey Zinger

Stony Brook University
26/06/09
joint with Jun Li, R. Vakil, D. Zagier

From string theory to enumerative geometry

Basic notions

- Calabi-Yau 3-fold $X=$ (cmpt) complex manifold $\operatorname{dim}_{\mathbb{C}} X=3, c_{1}(T X)=0$
- Mirror family $\widehat{X}=$ family of Calabi-Yau 3-folds some singular

What is special about CY 3-folds X?

expected \# of genus- g degree- d curves in X is finite, $n_{g, d} \in \mathbb{Z}$ e.g. $n_{0,1}=2,875 \quad \#$ of lines on general X_{5}

$$
n_{g, 1}=n_{g, 2}=0 \forall g \geq 1
$$

genus g degree d GW of $X: N_{g, d} \in \mathbb{Q}$ "linear combination" of $n_{g^{\prime}, d^{\prime}}, g^{\prime} \leq g, d^{\prime} \leq d$

More generally: $n_{1, d}$ is finite if $c_{1}(T X)=0(\operatorname{any} \operatorname{dim} X)$
\Longrightarrow genus 1 degree d GW of $X: N_{1, d} \in \mathbb{Q}$
Main example: $X \equiv X_{n} \subset \mathbb{P}^{n-1}$ hypersurface of degree n

Mirror symmetry for X

$$
\mathbb{A}_{g}^{X}(Q) \equiv \sum_{d=1}^{\infty} N_{g, d} Q^{d} \stackrel{?}{=} \mathbb{B}_{g}^{X}(q), \quad Q=Q(q), q=q(Q)
$$

$\mathbb{B}_{g}^{X}(q)=$ explicit function determined by mirror family of X

Mathematical verifications

$\mathbf{g}=\mathbf{0}$: Givental'96/Lian-Liu-Yau'97/... (X_{n}, etc.)
$\mathbf{g}=1$: '07 (hypersurfaces $X_{n} \subset \mathbb{P}^{n-1}$ only)
$\mathrm{g} \geq \mathbf{2}$: ?

B-model PFs for $X=X_{n}$

$$
\begin{aligned}
& \mathbb{F}_{0}(x, q)=\sum_{d=0}^{\infty} q^{d} \frac{\prod_{r=1}^{r=n d}(n x+r)}{\prod_{r=1}^{r=d}(x+r)^{n}} \in 1+q \cdot \mathbb{Q}(x)[[q]] \\
& \mathbb{I}_{0}(q)=\mathbb{F}_{0}(0, q), \quad \mathbb{F}_{1}(x, q)=\left\{1+\frac{q}{x} \frac{\partial}{\partial q}\right\} \frac{\mathbb{F}_{0}(x, q)}{\mathbb{I}_{0}(q)} \\
& \mathbb{I}_{1}(q)=\mathbb{F}_{1}(0, q), \quad \mathbb{F}_{2}(x, q)=\left\{1+\frac{q}{x} \frac{\partial}{\partial q}\right\} \frac{\mathbb{F}_{1}(x, q)}{\mathbb{I}_{1}(q)} \\
& \mathbb{I}_{3}(q), \mathbb{I}_{4}(q), \ldots, \mathbb{I}_{n-1}(q) \in 1+q \cdot \mathbb{Q}[[q]] \\
& \mathbb{F}_{0}(x, q) \equiv \mathbb{I}_{0}(q)\left(1+\mathbb{J}(q) x+O\left(x^{2}\right)\right) \Longrightarrow \mathbb{I}_{1}(q)=1+q \frac{\partial}{\partial q} \mathbb{J}(q)
\end{aligned}
$$

Mirror symmetry in genus 1 for $X=X_{n}$

$$
\begin{aligned}
\mathbb{B}_{1}^{X}(q)=(& \left.\frac{(n-2)(n+1)}{48}+\frac{1-(1-n)^{n}}{24 n^{2}}\right) \mathbb{J}(q) \\
& -\frac{(3 n-8)(n-1)}{48} \log \left(1-n^{n} q\right) \\
& +\frac{n^{2}-1+(1-n)^{n}}{24 n} \log \mathbb{I}_{0}(q)-\frac{1}{2} \sum_{r=0}^{n-1}\binom{r}{2} \log \mathbb{I}_{r}(q)
\end{aligned}
$$

Mirror Symmetry in genus 1 for $X=X_{n} \subset \mathbb{P}^{n-1}$

$$
\mathbb{A}_{1}^{X}(Q) \equiv \sum_{d=1}^{\infty} N_{1, d} Q^{d}=\mathbb{B}_{1}^{X}(q), \quad Q=q \cdot e^{J(q)}
$$

Some properties of $\mathbb{I}_{r}(q)$

$$
\begin{aligned}
& \mathbb{F}_{0}(x, q)=\sum_{d=0}^{\infty} q^{d} \prod_{r=1}^{r=n d}(n x+r) \\
& \prod_{r=1}^{r=d}(x+r)^{n}
\end{aligned} 1+q \cdot \mathbb{Q}(x)[[q]] \quad\left\{\begin{array}{l}
\mathbb{I}_{0}(q)=\mathbb{F}_{0}(0, q), \quad \mathbb{F}_{1}(x, q)=\left\{1+\frac{q}{x} \frac{\partial}{\partial q}\right\} \frac{\mathbb{F}_{0}(x, q)}{\mathbb{I}_{0}(q)} \\
\mathbb{I}_{1}(q)=\mathbb{F}_{1}(0, q), \quad \mathbb{F}_{2}(x, q)=\left\{1+\frac{q}{x} \frac{\partial}{\partial q}\right\} \frac{\mathbb{F}_{1}(x, q)}{\mathbb{I}_{1}(q)} \\
\mathbb{I}_{3}(q), \mathbb{I}_{4}(q), \ldots, \mathbb{I}_{n-1}(q) \in 1+q \cdot \mathbb{Q}[[q]] \\
\mathbb{I}_{r}(q)=\mathbb{I}_{n-1-r}(q), \quad r=0,1, \ldots, n-1 \\
\mathbb{I}_{0}(q) \mathbb{I}_{1}(q) \ldots \mathbb{I}_{n-1}(q)=\left(1-n^{n} q\right)^{-1}
\end{array}\right.
$$

Reality check, I

$$
\begin{aligned}
& n=1,2,4: \mathbb{B}_{1}^{X}(q)=0 \\
& n=1: X=\emptyset \subset \mathbb{P}^{1-1} \Longrightarrow N_{g, d}=0 \forall d \in \mathbb{Z}^{+} \Longrightarrow \mathbb{A}_{1}^{X}(Q)=0 \\
& n=2: X=2 p t s \subset \mathbb{P}^{1} \Longrightarrow N_{g, d}=0 \forall d \in \mathbb{Z}^{+} \Longrightarrow \mathbb{A}_{1}^{X}(Q)=0 \\
& n=4: X=K 3 \subset \mathbb{P}^{3} \Longrightarrow N_{g, d}=0 \forall d \in \mathbb{Z}^{+} \Longrightarrow \mathbb{A}_{1}^{X}(Q)=0
\end{aligned}
$$

Geometric reason (Junho Lee'03): there are no J-holomorphic curves on K3 for some almost complex structure J

Verification of physics predictions: $\mathbb{A}_{1}^{X}(Q) \stackrel{?}{=} \mathbb{B}_{1}^{X}(q)$

$n=5: X=X_{5} \subset \mathbb{P}^{4}$ quintic 3-fold

$$
\mathbb{B}_{1}^{X}(q)=\frac{25}{12} \mathbb{J}(q)-\frac{1}{12} \log \left(1-5^{5} q\right)-\frac{31}{3} \log \mathbb{I}_{0}(q)-\frac{1}{2} \log \mathbb{I}_{1}(q)
$$

Bershadsky-Cecotti-Ooguri-Vafa'93
$n=6: X=X_{6} \subset \mathbb{P}^{5}$ sextic 4-fold
$\mathbb{B}_{1}^{X}(q)=-\frac{35}{2} \mathbb{J}(q)-\frac{1}{24} \log \left(1-6^{6} q\right)-\frac{423}{4} \log \mathbb{I}_{0}(q)-\log \mathbb{I}_{1}(q)$
Klemm-Pandharipande'07

A mystery: BPS states in higher dimensions?

Gopakumar-Vafa'98, $\operatorname{dim} X=3: \exists$ "BPS states" $n_{g, d} \in \mathbb{Z}$ s.t.

$$
\left\{N_{g, d}\right\}=\text { Upper- } \Delta \text { Transform }\left(\left\{n_{g, d}\right\}\right)
$$

Klemm-Pand...'07, $\operatorname{dim} X=4: \exists$ "curve counts" $n_{g, d} \in \mathbb{Z}$ s.t.

$$
\left\{N_{g, d}\right\}=\text { Upper- } \Delta \text { Transform }\left(\left\{n_{g, d}\right\}\right)
$$

Pandharipande-Z.'08, $\operatorname{dim} X=5$: same
All conjectures: \quad true for $d \leq 100$ in $X_{7} \subset \mathbb{P}^{6}$ Klemm: no physical motivation if $\operatorname{dim} X \geq 5$

Reality check, II: A-side

$$
\begin{aligned}
& n=3: X \subset \mathbb{P}^{2} \text { cubic curve (2-torus) } \\
& N_{1, d}=\#\left\{(d / 3): 1 \text { covers } T^{2} \longrightarrow X\right\} / \mid \text { Aut } \mid \\
& \quad N_{1,3 d}=\frac{\sigma_{d}}{d}, \quad \sigma_{d}=\sum_{r \mid d} r \Longleftrightarrow \sum_{d=1}^{\infty} \sigma_{d} Q^{d}=\sum_{d=1}^{\infty} d \frac{Q^{d}}{1-Q^{d}} \\
& \mathbb{A}_{1}^{X}(Q)=\sum_{d=1}^{\infty} \frac{\sigma_{d}}{d} Q^{3 d}=-\sum_{d=1}^{\infty} \ln \left(1-Q^{3 d}\right)
\end{aligned}
$$

Reality check, II

$$
\begin{aligned}
\mathbb{I}_{0}(q) & \equiv \sum_{d=0}^{\infty} q^{d} \frac{(3 d)!}{(d!)^{3}}, \quad \mathbb{J}(q) \equiv \frac{1}{\mathbb{I}_{0}(q)} \sum_{d=1}^{\infty} q^{d}\left(\frac{(3 d)!}{(d!)^{3}} \sum_{r=d+1}^{3 d} \frac{3}{r}\right) \\
\mathbb{B}_{1}^{X}(q) & =\frac{1}{8} \mathbb{J}(q)-\frac{1}{24} \log \left(1-3^{3} q\right)-\frac{1}{2} \log \mathbb{I}_{0}(q), \quad Q=q \cdot e^{\mathbb{J}(q)}
\end{aligned}
$$

Mirror Symmetry:

$$
\mathbb{A}_{1}^{X}(Q)=\mathbb{B}_{1}^{X}(q) \Longleftrightarrow q^{3}(1-27 q) \mathbb{I}_{0}(q)^{12}=Q^{3} \prod_{d=1}^{\infty}\left(1-Q^{3 d}\right)^{24}
$$

Scheidegger'09: direct proof (modular forms)

Approach to verifying $\mathbb{A}_{g}^{X}=\mathbb{B}_{g}^{X}$ for $X \subset \mathbb{P}^{n-1}$ (works for $g=0,1$)

Need to compute each $N_{g, d}$ and all of them (for fixed g):
Step 1: relate $N_{g, d}$ to GWs of $\mathbb{P}^{n-1} \supset X$
Step 2: use $\left(\mathbb{C}^{*}\right)^{n}$-action on \mathbb{P}^{n-1} to compute each $N_{g, d}$ by localization
Step 3: find some recursive feature(s) to compute $N_{g, d} \forall d$ $\Longleftrightarrow \mathbb{A}_{g}^{X}$

GW-invariants of $X_{5} \subset \mathbb{P}^{4}$

$$
\begin{aligned}
\overline{\mathfrak{M}}_{g}\left(X_{5}, d\right) & =\left\{\left[u: \Sigma \longrightarrow X_{5}\right] \mid g(\Sigma)=g, \operatorname{deg} u=d, \bar{\partial} u=0\right\} \\
N_{g, d} & \equiv \operatorname{deg}\left[\overline{\mathcal{M}}_{g}\left(X_{5}, d\right)\right]^{\text {vir }} \\
& \equiv \#\left\{\left[u: \Sigma \longrightarrow X_{5}\right] \mid g(\Sigma)=g, \operatorname{deg} u=d, \bar{\partial} u=\nu(u)\right\}
\end{aligned}
$$

$\nu=$ small generic deformation of $\bar{\partial}$-equation

From $X_{5} \subset \mathbb{P}^{4}$ to \mathbb{P}^{4}

$$
\begin{gathered}
\underset{\sim}{\mathcal{L}} \equiv \mathcal{O}(5) \quad \mathcal{V}_{g, d} \equiv \overline{\mathfrak{M}}_{g}(\mathcal{L}, d) \\
X_{5} \equiv s^{-1}(0) \subset \mathbb{P}^{4} \quad \overline{\mathfrak{M}}_{g}\left(X_{5}, d\right) \equiv \tilde{s}^{-1}(0) \subset \overline{\mathfrak{M}}_{g}\left(\mathbb{P}^{4}, d\right) \\
\tilde{\pi}([\xi: \Sigma \longrightarrow \mathcal{L}])=\left[\pi \circ \xi: \Sigma \longrightarrow \mathbb{P}^{4}\right] \\
\tilde{s}\left(\left[u: \Sigma \longrightarrow \mathbb{P}^{4}\right]\right)=[s \circ u: \Sigma \longrightarrow \mathcal{L}]
\end{gathered}
$$

From $X_{5} \subset \mathbb{P}^{4}$ to \mathbb{P}^{4}

$$
\begin{aligned}
& s \nmid \mathcal{L} \equiv \mathcal{O}(5) \\
& X_{5} \equiv s^{-1}(0) \subset \mathbb{P}^{4} \quad \overline{\mathfrak{M}}_{g}\left(X_{5}, d\right) \equiv \tilde{s}^{-1}(0) \subset \overline{\mathfrak{M}}_{g}\left(\mathbb{P}^{4}, d\right)
\end{aligned}
$$

This suggests: Hyperplane Property

$$
\begin{aligned}
N_{g, d} & \equiv \operatorname{deg}\left[\overline{\mathfrak{M}}_{g}\left(X_{5}, d\right)\right]^{v i r} \equiv \pm\left|\tilde{s}^{-1}(0)\right| \\
& \stackrel{?}{=}\left\langle e\left(\mathcal{V}_{g, d}\right), \overline{\mathfrak{M}}_{g}\left(\mathbb{P}^{4}, d\right)\right\rangle
\end{aligned}
$$

Genus 0 vs. positive genus

$g=0$ everything is as expected:

- $\overline{\mathfrak{M}}_{g}\left(\mathbb{P}^{4}, d\right)$ is smooth
- $\left[\overline{\mathfrak{M}}_{g}\left(\mathbb{P}^{4}, d\right)\right]^{\text {vir }}=\left[\overline{\mathfrak{M}}_{g}\left(\mathbb{P}^{4}, d\right)\right]$
- $\mathcal{V}_{0, d} \longrightarrow \overline{\mathfrak{M}}_{g}\left(\mathbb{P}^{4}, d\right)$ is vector bundle
- hyperplane prop. makes sense and holds
$g \geq 1$ none of these holds

Genus 1 analogue

Thm. A: HP holds for reduced genus 1 GWs

$$
\left[\overline{\mathfrak{M}}_{1}^{0}\left(X_{5}, d\right)\right]^{\text {vir }}=e\left(\mathcal{V}_{1, d}\right) \cap \overline{\mathfrak{M}}_{1}^{0}\left(\mathbb{P}^{4}, d\right)
$$

This generalizes to complete intersections $X \subset \mathbb{P}^{n}$.

- $\overline{\mathfrak{M}}_{1}^{0}\left(\mathbb{P}^{4}, d\right) \subset \overline{\mathfrak{M}}_{1}\left(\mathbb{P}^{4}, d\right)$ main irred. component closure of $\left\{\left[u: \Sigma \longrightarrow \mathbb{P}^{4}\right] \in \overline{\mathfrak{M}}_{1}\left(\mathbb{P}^{4}, d\right): \Sigma\right.$ is smooth $\}$
- $\mathcal{V}_{1, d} \longrightarrow \overline{\mathfrak{M}}_{1}^{0}\left(\mathbb{P}^{4}, d\right)$ not vector bundle, but $e\left(\mathcal{V}_{1, d}\right)$ well-defined (0 -set of generic section)

Standard vs. reduced GWs

Thm. $\mathrm{A} \Longrightarrow N_{1, d}^{0} \equiv \operatorname{deg}\left[\overline{\mathfrak{M}}_{1}^{0}(X, d)\right]^{\mathrm{vir}}=\int_{\overline{\mathfrak{M}}_{1}^{0}\left(\mathbb{P}^{4}, d\right)} e\left(\mathcal{V}_{1, d}\right)$

$$
\overline{\mathfrak{M}}_{1}^{0}(X, d) \equiv \overline{\mathfrak{M}}_{1}^{0}\left(\mathbb{P}^{4}, d\right) \cap \overline{\mathfrak{M}}_{1}(X, d)
$$

Thm. B: $N_{1, d}-N_{1, d}=\frac{1}{12} N_{0, d}$
This generalizes to all symplectic manifolds:
[standard] - [reduced genus 1 GW] $=f$ (genus 0 GW)
\therefore to check BCOV, enough to compute $\int_{\overline{\mathfrak{M}_{1}^{0}\left(\mathbb{P}^{4}, d\right)}} e\left(\mathcal{V}_{1, d}\right)$

Torus actions

- $\left(\mathbb{C}^{*}\right)^{5}$ acts on \mathbb{P}^{4} (with 5 fixed pts)
- \Longrightarrow on $\overline{\mathfrak{M}}_{g}\left(\mathbb{P}^{4}, d\right)$ (with simple fixed loci) and on $\mathcal{V}_{g, d} \longrightarrow \overline{\mathfrak{M}}_{g}\left(\mathbb{P}^{4}, d\right)$
- $\int_{\overline{\mathfrak{M}}_{g}^{0}\left(\mathbb{P}^{4}, d\right)} e\left(\mathcal{V}_{g, d}\right)$ localizes to fixed loci
$g=0$: Atiyah-Bott Localization Thm reduces \int to $\sum_{\text {graphs }}$
$g=1: \overline{\mathfrak{M}}_{g}^{0}\left(\mathbb{P}^{4}, d\right), \mathcal{V}_{g, d}$ singular $\Longrightarrow \mathrm{AB}$ does not apply

Genus 1 bypass

Thm. C: $\mathcal{V}_{1, d} \longrightarrow \overline{\mathfrak{M}}_{1}\left(\mathbb{P}^{4}, d\right)$ admit natural desingularizations:

$$
\begin{gathered}
\widetilde{\mathcal{V}}_{1, d} \longrightarrow \stackrel{\mathcal{V}}{1, d}^{\downarrow}{ }_{\downarrow} \widetilde{\mathfrak{M}}_{1}^{0}\left(\mathbb{P}^{4}, d\right) \longrightarrow \overline{\mathfrak{M}}_{1}^{0}\left(\mathbb{P}^{4}, d\right)
\end{gathered}
$$

$$
\Longrightarrow \quad \int_{\overline{\mathfrak{M}}_{1}^{0}\left(\mathbb{P}^{4}, d\right)} e\left(\mathcal{V}_{1, d}\right)=\int_{\widetilde{\mathfrak{M}}_{1}^{0}\left(\mathbb{P}^{4}, d\right)} e\left(\widetilde{\mathcal{V}}_{1, d}\right)
$$

Computation of genus 1 GWs of Cls

Thm. C generalizes to all $\mathcal{V}_{1, d} \longrightarrow \overline{\mathfrak{M}}_{1, k}^{0}\left(\mathbb{P}^{n}, d\right)$:

\therefore Thms A,B,C provide an algorithm for computing genus 1 GWs of complete intersections $X \subset \mathbb{P}^{n}$

Computation of $N_{1, d}$ for all d

- split genus 1 graphs into many genus 0 graphs at special vertex
- make use of good properties of genus 0 numbers to eliminate infinite sums
- extract non-equivariant part of elements in $H_{\mathbb{T}}^{*}\left(\mathbb{P}^{4}\right)$

Key geometric foundation

A sharp Gromov's compactness thm in genus 1

- describes limits of sequences of pseudo-holomorphic maps
- describes limiting behavior for sequences of solutions of a $\bar{\partial}$-equation with limited perturbation
- allows use of topological techniques to study genus 1 GWs

Main tool

Analysis of local obstructions

- study obstructions to smoothing pseudo-holomorphic maps from singular domains
- not just potential existence of obstructions

