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Introduction

From string theory to enumerative geometry

A-Model partition function|_/FR9A_(B-Model partition function
for Calabi-Yau 3-fold X for mirror (family) of X

principle

generating function for GWs ? something about geometry
“counts of complex curves in" X | of moduli spaces of CYs
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Introduction

Basic notions

@ Calabi-Yau 3-fold X = (cmpt) complex manifold
dlm(cX =3, C1(TX) =0

@ Mirror family X = family of Calabi-Yau 3-folds
some singular
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Introduction

What is special about CY 3-folds X?

expected # of genus-g degree-d curves in X is finite, ng g € Z
e.g. g1 =2,875 # oflines on general Xs
Ng1=1"Ng2 = 0 vg > 1
genus g degree d GW of X: Ny 4 € Q
“linear combination” of ny ¢, 9’ < g, d' < d

More generally: ny 4 is finite if ¢1(7X) = 0 (any dim X)
—> genus 1 degree d GW of X: N; 4 € Q

Main example: X = X, c P"~! hypersurface of degree n
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Introduction

Mirror symmetry for X

IB%g((q) = explicit function determined by mirror family of X

Mathematical verifications

g = 0: Givental’96/Lian-Liu-Yau’97/... (Xp, etc.)
g = 1: '07 (hypersurfaces X, ¢ P"~1 only)
g>2:?
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Some Formulas

B-model PFs for X = X,

r= nd
fo(x. ) — Z gt L=t Xj)“ € 1+q-Q)l
- B q 0\ Fo(x,Qq)
Io(q) = Fo(0, q), Fi(x,q) = { + ;%} Io(q)
q 0\ Fi(x,9q)
]11((]) = I5‘1(07 q)? FZ(X’ q) - { * ;87(»7} H1(Q)

I3(q),14(q), - ... In-1(q) € 1 + q - Q[[q]]
Fo(x, q) = Io(q) (1 + J(g)x + O(x?)) = T1(q) =1+ qéfqﬂ(q)
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Some Formulas

Mirror symmetry in genus 1 for X = X
BX(q) = ((n—2)(n+1) 1= (1—n)”)J(q)

48 24n2

(3n—8)(n—1) n
T I log(1—n"q)

- N n—1
T ogta(@) - 3 (5 ) loati(a)

Mirror Symmetry in genus 1 for X = X, c P!

Af(Q) = ZM /Q° = BX(g, Q=gq @
a=1
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Some Formulas

Some properties of 1,(Qq)

Folx.q) = Y- =L ) e 4 4 g g(n)a])

Io(q) = Fo(0, q), Fi(x,q) = {1 4 QQ}FO(X, Q)

x90qJ To(q)
h@=Fi0.0),  Fana)= {1+ I2 IO

13(9),14(q), - .., In-1(q) € 1 + g - Q[[q]]

I(q9) =1,_1-1(q), r=0,1,...,n—1
To(@)1(q) - - - In—1(q) = (1 — n"q)~"
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Some Formulas

Reality check, |

n=1,2,4:B5(q)=0

n=1:X=0CcP'~" = Nyg=0vVdeZ* = A¥(Q)=0 V
n=2:X=2pts CP!' = Nyy=0vVdeZ* = Af(Q) =0 V

n=4:X=K3CP®= Nyy=0vdeZ" = Af(Q)=0 vV

Geometric reason (Junho Lee’03): there are no J-holomorphic
curves on K3 for some almost complex structure J
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Some Formulas

Verification of physics predictions: A¥(Q) i BX(q)

n=5: X = Xs c P* quintic 3-fold

25 1 31 1
Xy — 22 _ _B54)_ 2! __
B1(q) = 139(q) — 35 109(1-5°q) — Z-loglo(q) — 5 log ()
Bershadsky-Cecotti-Ooguri-Vafa'93 v
n=6: X = Xg C P sextic 4-fold
35 1 423
BY(q) = — 5 1(q) — 54 log(1-6°q) — == loglo(q) ~ log I+(q)

Klemm-Pandharipande’07 v
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Some Formulas

A mystery: BPS states in higher dimensions?

Gopakumar-Vafa'98, dim X = 3: 3 “BPS states" ny 4 € Z s.1.
{Ng.q} = Upper-A Transform({ny 4})

Klemm-Pand...07, dim X = 4: 3 “curve counts" ng 4 € Z s.t.
{Ng,q} = Upper-A Transform({ng 4})

Pandharipande-Z.'08, dim X = 5: same

All conjectures: true for d < 100 in X7 c P8
Klemm: no physical motivation if dim X > 5
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Some Formulas

Reality check, Il: A-side

n=3: X c P? cubic curve (2-torus)

Ni g =#{(d/3):1 covers T2 — X} /|Aut|

d
N13d—% O’d—Zf <~ ZO’de Zd‘]?od
rid d=1

[e.o]

A¥(@) =) oY = Z'” — Q%)

a=1
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Some Formulas

Reality check, I

(3 1 & 4 /(30)! 3
Z G 9= g ; 7 (e 2 ')
By (q) = g«U(Cl) 2l4 log(1 —3%q) — 5 logTo(q), Q=gq-e'@
Mirror Symmetry: 00
Af(Q) =Bf(q) < ¢°(1 -279)I(q)"* = Q* [J (1 — @*%)*
d=1

Scheidegger’09: direct proof (modular forms)
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Geometry

Approach to verifying Ay = By for X c P
(works for g=0, 1)

Need to compute each Ny 4 and all of them (for fixed g):
Step 1: relate Ny 4 to GWs of P"~1 5 X
Step 2: use (C*)"-action on P"~' to compute each Ny g
by localization
Step 3: find some recursive feature(s) to compute Ny 4 Vd
= Af
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Geometry

GW-invariants of X5 c P*

My(Xs, d) = {[u: T— Xs]| g(X)=g,degu=d, du = 0}

Ny = deg [Mg(Xs, d)]*" )
= #{[u: T — Xs]| g(X)=g,degu=d, du = v(u)}

v = small generic deformation of 9-equation
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Geometry

From X5 C P* to P*

71LE O(5) Vg.d = My(L, d)
s!;\ bl B f;[ilfr
Xs =s71(0) cp4 My(Xs,d) = §71(0) CMy(P*, d)

#([¢: T—L]) = [ro&: T—PY
$(lu: Z—P*) = [sou: T — L]
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Geometry

From X5 C P* to P*

L= 0O(5) Vg.d = My(L, d)
f 1
s{|m 8| |7
\ o R
Xs =s71(0) cp* Mg(Xs,d) = 571(0) c g(]P’4, d)

This suggests: Hyperplane Property

Nyg = deg [Mg(Xs, )] = #5(0)]
- (e(Vga). Mg(P*, 0))
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Geometry

Genus 0 vs. positive genus

g = 0 everything is as expected:

@ My(P*, d) is smooth

o [My(P*, )" = [My(P*, d)]

@ Vyg — img(]P’ d) is vector bundle

° hyperplane prop. makes sense and holds

g > 1 none of these holds
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Geometry

Genus 1 analogue

Thm. A: HP holds for genus 1 GWs
j =30
[ (X, )] " = e(V1,6) NI, (P4, ).
This generalizes to complete intersections X C P".
o M, (P, d) c Ty (P4, d) main irred. component
closure of {[u: £ — P4 €9 (P*, d): T is smooth}

o Vig— ﬁ?(}}”"’, d) not vector bundle, but
e(V1,q4) well-defined (0-set of generic section)
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Geometry

Standard vs. reduced GWs

e(V1q
€0, (P4,d) (V1.0

ML(X, d) = Ty (P, d) N (X, d)

Thm. A = N, = deg [0 (X, d)]“" /

Thm. B: Ny g — Ny 4 = 15No.g

This generalizes to all symplectic manifolds:

[standard] — [reduced genus 1 GW] = f(genus 0 GW)
.. to check BCOV, enough to compute fﬁo(ﬁm 9 e(V1.q)
1 )
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Geometry

Torus actions

@ (C*)° acts on P* (with 5 fixed pts)
® —> on My(P*, d) (with simple fixed loci)
and on Vg g — My(P*, d)
° fﬁg (#4.d) e(Vy,q) localizes to fixed loci
g = 0: Atiyah-Bott Localization Thm reduces [ 10 3_ s

g=1: ﬁg(P", d), Vg4 singular => AB does not apply
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Geometry

Genus 1 bypass

Thm. C: V4 g — 9, (P4, d) admit desingularizations:

Vg ——Vig

| |

MY(P*, d) —= 905 (P4, )

— 6V17d :/v 617170'
/93??(1?4,d) WVr.0) MO (P4, d) Mia)
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Geometry

Computation of genus 1 GWs of Cls

Thm. C generalizes to all Vy g — ﬁ?vk(}}”", d):

£=0(a) Vig = (L, d)
PN ﬁtk(]}m, d)

.. Thms A,B,C provide an algorithm for computing
of complete intersections X c P”
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Geometry

Computation of N; 4 for all d

@ split genus 1 graphs into many genus 0 graphs
at special vertex

@ make use of good properties of genus 0 numbers to
eliminate infinite sums

@ extract non-equivariant part of elements in H:(P*)
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Analysis

Key geometric foundation

A Gromov’s compactness thm in genus 1

@ describes limits of sequences of pseudo-holomorphic
maps

@ describes limiting behavior for sequences of solutions of
a 0-equation with limited perturbation

@ allows use of topological techniques to study genus 1 GWs
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Analysis

Main tool

Analysis of local obstructions

@ study obstructions to smoothing pseudo-holomorphic maps
from singular domains

@ not just potential existence of obstructions
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