
Math53: Ordinary Differential Equations
Winter 2004

Unit 4 Summary
Systems of Linear ODEs

Linear Algebra

Throughout this section A denotes an n×n matrix:

A =

 a11 . . . a1n
...

...
an1 . . . ann



(1) Matrix A is nonsingular if for every v∈Rn, there exists x∈Rn such that

Ax = v or

 a11 . . . a1n
...

...
an1 . . . ann


x1

...
xn

 =

 c1
...

cn

 if x =

x1
...

xn

 , v =

 c1
...

cn

 .

Matrix A is invertible if it has an inverse, i.e. there exists a matrix B such that AB = I = BA,
where I = In is the identity matrix. If AB = I, then BA = I, provided that A and B are square
matrices. If AB =I and AC =I, then B =C. Thus, if A has an inverse, it is unique, and denoted
by A−1. Furthermore,

A is nonsingular ⇐⇒ A is invertible ⇐⇒ det A 6= 0

If det A 6= 0, in the n=2 case A−1 is given by

A =
(

a b
c d

)
=⇒ A−1 = 1

det A

(
d −b
−c a

)
, det A = ad− bc

In general, there is a three-step procedure for computing A−1. The last step of this procedure
involves division by detA. If A and B are square matrices,

det (AB) = (det A) · (detB) = det (BA), but det (A+B) 6= (det A) + (det B)

(2) The set of vectors v1, . . . ,vk in Rn, or in any vector space, is linearly independent if

c1v1 + . . . + ckvk = 0, c1, . . . , ck ∈ R (or C) =⇒ c1, . . . , ck = 0.

In other words, no nontrivial linear combination of the vectors v1, . . . ,vk is the zero vector 0. The
set of vectors v1, . . . ,vn in Rn, or in any vector space V , is a basis for Rn, or for V , if for every v
in Rn, or in V , there exists a unique tuple (c1, . . . , cn) such that

v = c1v1 + . . . + cnvn.



Equivalently, the set of vectors v1, . . . ,vn is a basis for V if the vectors v1, . . . ,vn are linearly
independent and span V , i.e. for every v in V , there exists a tuple (c1, . . . , cn) such that

v = c1v1 + . . . + cnvn.

Can you show that these two definitions are equivalent? In the case of Rn:
(i) {v1, . . . ,vn} is a linearly independent set of vectors in Rn if and only if
(ii) {v1, . . . ,vn} is a basis for Rn if and only if

(iii) det

 | . . . |
v1 . . . vn

| . . . |

 6= 0.

(3) An eigenvector v for A with eigenvalue λ∈R is a nonzero column n-vector such that

Av = λv or

 a11 . . . a1n
...

...
an1 . . . ann


 c1

...
cn

 = λ

 c1
...

cn

 =

λc1
...

λcn

 if v =

 c1
...

cn


If v is an eigenvector for A with eigenvalue λ, so is cv for any number c. If v1 and v2 are eigen-
vectors for A with the same eigenvalue λ, so is v1+v2. If v1, . . . ,vk are eigenvectors for A with
distinct eigenvalues λ1, . . . , λk, i.e. λi 6= λj whenever i 6= j, the vectors v1, . . . ,vk are linearly in-
dependent. If some of these eigenvalues are the same, the vectors v1, . . . ,vk may or may not be
linearly independent.

(4) The eigenvalues of A are the roots of the characteristic polynomial for A:

det
(
A−λI) = det


a11−λ a12 . . . a1,n−1 a1n

a21 a22 − λ a2n
...

...
an1 an2 . . . an,n−1 ann−λ


However, repeated roots of the characteristic polynomial may or may not correspond to different
linearly independent eigenvectors. If the multiplicity of a root λ of the characteristic polynomial
is q, there exist q linearly independent generalized eigenvectors v1, . . . ,vq for A with eigenvalue
λ, i.e.

(A−λ)rvi = 0 for some r

In fact, r = q works in the given case. If vi is an actual eigenvector, r = 1 suffices, by definition.
Furthermore, v1, . . . ,vq can be chosen in such a way that

Av1 = λv1 and Avi+1 = vi + λvi+1 for i = 1, 2, . . . , q−1.

Thus, it is always possible to find a basis {v1, . . . ,vn} of generalized eigenvectors for A such that

Avi = λivi + aivi−1, where ai =0 or ai =1, ai =0 if i=1 or λi−1 6=λi,
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where λi is the eigenvalue corresponding to the generalized eigenvector vi. Then,

A = B−1DB, where D =


λ1 a2 0 . . .
0 λ2 a3 . . .
... . . .

. . . . . .
0 . . . 0 λn

 and B =

 | . . . |
v1 . . . vn

| . . . |

 . (1)

Can you check this? The above basis v1, . . . ,vn and matrix B, however, may be complex. In such
a case, v1, . . . ,vn is a C-basis for Cn, not an R-basis for Rn.

(5) If A is an n×n matrix, the exponential of A is the n×n matrix given by

eA = In + 1
1!A + 1

2!A
2 + 1

3!A
3 + . . . =

k=∞∑
k=0

1
k!A

k where A0 =In, A2 =AA, A3 =AAA, . . .

Note that this is the same power series as for ea, if a is a real or complex number. By definition,
if A is the zero matrix, eA =In. Another property of the matrix exponential is

If AB = BA, then eA+B = eAeB = eBeA (2)

Using this property, we can conclude that
(i) eA is an invertible matrix and (eA)−1 = e−A;
(ii) if H(t) = etA, then H ′(t)=AH(t)=H(t)A.

If A is a diagonal matrix, then eA is also a diagonal matrix, and the diagonal entires of eA are the
exponentials of the corresponding diagonal entries of A. For example,

A =

λ1 0 0
0 λ2 0
0 0 λ3

 =⇒ eA =

eλ1 0 0
0 eλ2 0
0 0 eλ3


However, if A is not a diagonal matrix, the entries of eA are not usually the exponentials of the
entries of A, and it may be very hard to determine them directly from the power series definition
of the exponential. On the other hand, it may be possible to find a basis {v1, . . . ,vn} for Rn, or
Cn, such that eAvi is easy to compute for each i. Since {v1, . . . ,vn} is a basis, an arbitrary vector
v has the form

v = C1v1 + . . . + Cnvn, C1, . . . , Cn ∈ C =⇒ eAv = C1e
Av1 + . . . + CneAvn.

This is usually sufficient for solving systems of linear ODEs with constant coefficients. The product
eAvi can be computed for generalized eigenvectors of A. For example,

Av1 = λv1, Av2 = av1 + λv2 =⇒ eAv1 = eλv1, eAv2 = aeλv1 + eλv2 (3)

These two relations are sufficient for the n=2 case.

(6) In order to compute eA for an arbitrary square matrix, one makes use of the relation

eB−1DB = B−1eDB
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and (eq1). The exponential of the matrix D as in (eq1) can be computed directly from the
definition. This approach is analogous to the one described in Section 9.8: if {v1(t), . . . ,vn(t)} is
a fundamental set of solutions for the ODE, then

Y (t) =

 | . . . |
v1(t) . . . vn(t)
| . . . |

 =⇒ etA = Y (t)Y (0)−1 (4)

On the other hand, if A has only one eigenvalue λ, (A−λI)n is the zero matrix, and the power
series for the exponential of A−λI quickly truncates. Since λI commutes with all matrices, one
can compute eA by using (eq2) with A=λI and B=A−λI.

Systems of Linear ODEs with Constant Coefficients

(1) A system of first-order linear ODEs with constant coefficients can be written as

y′ = Ay + f , y=y(t) =

 y1(t)
...

yn(t)

 , where A =

 a11 . . . a1n
...

...
an1 . . . ann

 , f = f(t) =

 f1(t)
...

fn(t)

 .

This system is called homogeneous if f = 0. A system of first-order linear ODEs with constant
coefficients can be solved by the integrating factor method for first-order linear ODEs:

y′ = Ay + f =⇒ y(t) = etAv + etA
∫ t
t0

e−sAf(s) ds, v ∈ Rn (5)

Note that the function yh =yh(t) defined by (eq5) with f =0, i.e. the first term on the right-hand
side, is the general solution of the corresponding homogeneous system of ODEs. Thus, the general
solution to an inhomogeneous system of ODEs is given by

y′ = Ay + f =⇒ y = yp + yh (6)

where yp is a solution to the inhomogeneous system, e.g. the function y corresponding to v = 0
to (eq5). The relation (eq6) is valid for any system of linear ODEs, with constant or non-constant
coefficients.

(2) The main difficulty in solving a system of linear ODEs with constant coefficients is dealing
with the terms in (eq5) involving etA. This is not difficult to do if there is a basis for Rn, or Cn,
of eigenvectors for A:

y′ = Ay =⇒ y(t) = C1e
λ1tv1 + . . . + Cneλntvn, C1, . . . , Cn ∈ R (or C)

if {v1, . . . ,vn} is a basis for R (or C) and Av1 = λ1v1, . . . , Avn = λnvn
(7)

(3) If we are looking for real solutions, we will need to rewrite (eq7) in a different way if some of
the eigenvalues λi are complex, and not real. If vi is an eigenvector for A with eigenvalue λi and
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λi is complex, v̄i is an eigenvector for A with eigenvalue λ̄i and the vectors vi and v̄i are linearly
independent. Thus, if n = 2 and A has an eigenvector v1 with a complex eigenvalue λ1, then
the two eigenvalues of A are complex conjugates, λ1, λ2 = a±ib, and C2 has a basis of conjugate
eigenvectors {v1,v2 =w1±iw2}. The general solution in this case can be written as

y′=Ay =⇒
y(t) =

(
A1 cos bt+A2 sin bt

)
eatw1 +

(
A2 cos bt−A1 sin bt

)
eatw2,

= eat(w1 w2)
(

cos bt sin bt
− sin bt cos bt

) (
A1

A2

)
A1, A2∈R (or C)

if λ1 =a+ib, b 6=0, v1 =w1+iw2 6= 0, and Av1 = λ1v1

This expression is obtained by setting C1, C2 =(A1∓iA2)/2 in (eq7). Note that if A1 and A2 are
arbitrary complex constants, so are C1 and C2. On the other hand, the solution corresponding to
A1 and A2 is real if and only if A1 and A2 are real.

(3) Another potential problem with (eq7) is that Rn, or Cn, may not have a basis of eigenvectors
for A. If so, we can use a basis of generalized eigenvectors. If n=2 and A has only one eigenvalue λ,
by (eq3),

y′ = Ay =⇒ y(t) =
(
C1e

λt+C2ateλt
)
v1 + C2e

λtv2, C1, C2 ∈ R (or C)
if v1,v2 are lin. indep., Av1 = λv1, and Av2 = av1+λv2

Once an eigenvector v1 for the eigenvalue λ is found, v2 can be taken to be any vector in R2 which
is not a multiple of v1, and the number a is determined by computing Av2.

(4) The general solution to an inhomogeneous system of linear first-order ODEs with constant-
coefficients is given by (eq5), or more generally by

y′ = Ay + f =⇒ y(t) = (etAB)v + (etAB)
∫ t
t0
(esAB)−1f(s) ds, v ∈ Rn (8)

for any invertible n×n-matrix B. For a good choice of B, the product etAB may be easier to
compute than etA. For example,

y′ = Ay + f =⇒ y(t) = Y (t)v + Y (t)
∫ t
t0

Y (s)−1f(s) ds, v ∈ Rn

if Y =Y (t) is a fundamental matrix for y′ = Ay as in (eq4)

(5) A solution to an initial value problem can be obtained directly by

y′ = Ay + f , y(t0) = y0 =⇒ y(t) = etA
(
e−t0Ay0 +

∫ t
t0

e−sAf(s) ds
)

More generally, if Y =Y (t) is any fundamental matrix for y′=Ay,

y′ = Ay + f , y(t0) = y0 =⇒ y(t) = Y (t)
(
Y (t0)−1y0 +

∫ t
t0

Y (s)−1f(s) ds
)
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Qualitative Descriptions

(1) As is the case for linear ODEs, every initial-value problem

y′ = Ay + f , y(t0) = y0, A = A(t), f = f(t), (9)

has a unique solution, provided the functions A and f are continuous near t0. Furthermore, the
interval of the existence of the solution to (eq9) is the largest interval on which A and f are defined.
If A is a constant matrix, it follows that the phase-space solution curves for the system y′=Ay do
not intersect. Can you explain why?

(2) Every homogeneous system of linear ODEs y′=Ay has an equilibrium solution, y(t)=0. This
solution can be asymptotically stable, stable, or unstable. If A is a constant matrix and the real
part of every eigenvalue of A is negative, all solutions y=y(t) approach 0 at t−→∞, and thus 0
is an asymptotically stable equilibrium point of the system. If the real parts of some eigenvalues of
A are negative and of some are zero, some solutions y=y(t) approach 0 at t−→∞, while others
approach closed orbits. In this case, 0 is a stable equilibrium point of the system, as every solution
starting near 0 stays near 0. Finally, if the real part of at least one eigenvalue of A is positive,
some solutions y =y(t) move away from 0 and approach ∞ at t−→ 0, and thus 0 is an unstable
equilibrium point of the system.

(3) If A is a constant matrix, the system y′ = Ay is autonomous, i.e. it does not involve t ex-
plicitly. Thus, if y = y(t) is a solution to this system, so is ỹ(t) = y(t−c). The latter solution
traces the same curve y(t) in Rn, but is delayed by time c. For this reason, the qualitative be-
havior of solutions of y′=Ay is well represented by the non-intersecting curves y(t) traced out in
the phase space, i.e. Rn. For some sketches in the n=2 case, see Figures 2-4 of the solutions to PS4.

(4) While systems of first-order ODEs arise in applications by themselves, they can also be used
to replace high-order ODEs. For example, the initial value problem

y′′′ + y′y′′ + ty = 0, y(t0) = y0, y′(t0) = y1, y′′(t0) = y2,

is equivalent to the initial value problemy
u
v

′

=

 u
v

−uv − ty

 , y(0) =

y(0)
u(0)
v(0)

 =

y0

y1

y2

 .

Can you explain why? Such replacements are often useful, because many numerical methods and
methods of qualitative analysis apply only to first-order ODEs and systems of first-order ODEs.
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