Math53: Ordinary Differential Equations Winter 2004

Unit 4 Summary

Systems of Linear ODEs

Linear Algebra

Throughout this section A denotes an $n \times n$ matrix:

$$
A=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & & \vdots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right)
$$

(1) Matrix A is nonsingular if for every $\mathbf{v} \in \mathbb{R}^{n}$, there exists $\mathbf{x} \in \mathbb{R}^{n}$ such that

$$
A \mathbf{x}=\mathbf{v} \quad \text { or } \quad\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & & \vdots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right) \quad \text { if } \quad \mathbf{x}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right), \quad \mathbf{v}=\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right) .
$$

Matrix A is invertible if it has an inverse, i.e. there exists a matrix B such that $A B=I=B A$, where $I=I_{n}$ is the identity matrix. If $A B=I$, then $B A=I$, provided that A and B are square matrices. If $A B=I$ and $A C=I$, then $B=C$. Thus, if A has an inverse, it is unique, and denoted by A^{-1}. Furthermore,

$$
A \text { is nonsingular } \Longleftrightarrow A \text { is invertible } \Longleftrightarrow \operatorname{det} A \neq 0
$$

If $\operatorname{det} A \neq 0$, in the $n=2$ case A^{-1} is given by

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad \Longrightarrow \quad A^{-1}=\frac{1}{\operatorname{det} A}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right), \quad \operatorname{det} A=a d-b c
$$

In general, there is a three-step procedure for computing A^{-1}. The last step of this procedure involves division by $\operatorname{det} A$. If A and B are square matrices,

$$
\operatorname{det}(A B)=(\operatorname{det} A) \cdot(\operatorname{det} B)=\operatorname{det}(B A), \quad \text { but } \quad \operatorname{det}(A+B) \neq(\operatorname{det} A)+(\operatorname{det} B)
$$

(2) The set of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ in \mathbb{R}^{n}, or in any vector space, is linearly independent if

$$
c_{1} \mathbf{v}_{1}+\ldots+c_{k} \mathbf{v}_{k}=\mathbf{0}, \quad c_{1}, \ldots, c_{k} \in \mathbb{R} \quad(\text { or } \mathbb{C}) \quad \Longrightarrow \quad c_{1}, \ldots, c_{k}=0 .
$$

In other words, no nontrivial linear combination of the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is the zero vector $\mathbf{0}$. The set of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ in \mathbb{R}^{n}, or in any vector space V, is a basis for \mathbb{R}^{n}, or for V, if for every \mathbf{v} in \mathbb{R}^{n}, or in V, there exists a unique tuple $\left(c_{1}, \ldots, c_{n}\right)$ such that

$$
\mathbf{v}=c_{1} \mathbf{v}_{1}+\ldots+c_{n} \mathbf{v}_{n} .
$$

Equivalently, the set of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is a basis for V if the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly independent and span V, i.e. for every \mathbf{v} in V, there exists a tuple $\left(c_{1}, \ldots, c_{n}\right)$ such that

$$
\mathbf{v}=c_{1} \mathbf{v}_{1}+\ldots+c_{n} \mathbf{v}_{n}
$$

Can you show that these two definitions are equivalent? In the case of \mathbb{R}^{n} :
(i) $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a linearly independent set of vectors in \mathbb{R}^{n} if and only if
(ii) $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for \mathbb{R}^{n} if and only if
(iii) $\operatorname{det}\left(\begin{array}{ccc}\mid & \ldots & \mid \\ \mathbf{v}_{1} & \ldots & \mathbf{v}_{n} \\ \mid & \ldots & \mid\end{array}\right) \neq 0$.
(3) An eigenvector \mathbf{v} for A with eigenvalue $\lambda \in \mathbb{R}$ is a nonzero column n-vector such that

$$
A \mathbf{v}=\lambda \mathbf{v} \quad \text { or } \quad\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & & \vdots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)=\lambda\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)=\left(\begin{array}{c}
\lambda c_{1} \\
\vdots \\
\lambda c_{n}
\end{array}\right) \quad \text { if } \quad \mathbf{v}=\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)
$$

If \mathbf{v} is an eigenvector for A with eigenvalue λ, so is $c \mathbf{v}$ for any number c. If \mathbf{v}_{1} and \mathbf{v}_{2} are eigenvectors for A with the same eigenvalue λ, so is $\mathbf{v}_{1}+\mathbf{v}_{2}$. If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are eigenvectors for A with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$, i.e. $\lambda_{i} \neq \lambda_{j}$ whenever $i \neq j$, the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are linearly independent. If some of these eigenvalues are the same, the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ may or may not be linearly independent.
(4) The eigenvalues of A are the roots of the characteristic polynomial for A :

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{ccccc}
a_{11}-\lambda & a_{12} & \ldots & a_{1, n-1} & a_{1 n} \\
a_{21} & a_{22}-\lambda & & & a_{2 n} \\
\vdots & & & & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n, n-1} & a_{n n}-\lambda
\end{array}\right)
$$

However, repeated roots of the characteristic polynomial may or may not correspond to different linearly independent eigenvectors. If the multiplicity of a root λ of the characteristic polynomial is q, there exist q linearly independent generalized eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{q}$ for A with eigenvalue λ, i.e.

$$
(A-\lambda)^{r} \mathbf{v}_{i}=\mathbf{0} \quad \text { for some } \quad \mathrm{r}
$$

In fact, $r=q$ works in the given case. If \mathbf{v}_{i} is an actual eigenvector, $r=1$ suffices, by definition. Furthermore, $\mathbf{v}_{1}, \ldots, \mathbf{v}_{q}$ can be chosen in such a way that

$$
A \mathbf{v}_{1}=\lambda \mathbf{v}_{1} \quad \text { and } \quad A \mathbf{v}_{i+1}=\mathbf{v}_{i}+\lambda \mathbf{v}_{i+1} \quad \text { for } \quad i=1,2, \ldots, q-1
$$

Thus, it is always possible to find a basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ of generalized eigenvectors for A such that

$$
A \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i}+a_{i} \mathbf{v}_{i-1}, \quad \text { where } \quad a_{i}=0 \text { or } a_{i}=1, \quad a_{i}=0 \text { if } i=1 \text { or } \lambda_{i-1} \neq \lambda_{i}
$$

where λ_{i} is the eigenvalue corresponding to the generalized eigenvector \mathbf{v}_{i}. Then,

$$
A=B^{-1} D B, \quad \text { where } \quad D=\left(\begin{array}{cccc}
\lambda_{1} & a_{2} & 0 & \ldots \tag{1}\\
0 & \lambda_{2} & a_{3} & \ldots \\
\vdots & \ldots & \ddots & \ddots \\
0 & \ldots & 0 & \lambda_{n}
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ccc}
\mid & \ldots & \mid \\
\mathbf{v}_{1} & \ldots & \mathbf{v}_{n} \\
\mid & \ldots & \mid
\end{array}\right)
$$

Can you check this? The above basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ and matrix B, however, may be complex. In such a case, $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is a \mathbb{C}-basis for \mathbb{C}^{n}, not an \mathbb{R}-basis for \mathbb{R}^{n}.
(5) If A is an $n \times n$ matrix, the exponential of A is the $n \times n$ matrix given by

$$
e^{A}=I_{n}+\frac{1}{1!} A+\frac{1}{2!} A^{2}+\frac{1}{3!} A^{3}+\ldots=\sum_{k=0}^{k=\infty} \frac{1}{k!} A^{k} \quad \text { where } \quad A^{0}=I_{n}, A^{2}=A A, A^{3}=A A A, \ldots
$$

Note that this is the same power series as for e^{a}, if a is a real or complex number. By definition, if A is the zero matrix, $e^{A}=I_{n}$. Another property of the matrix exponential is

$$
\begin{equation*}
\text { If } A B=B A, \quad \text { then } \quad e^{A+B}=e^{A} e^{B}=e^{B} e^{A} \tag{2}
\end{equation*}
$$

Using this property, we can conclude that
(i) e^{A} is an invertible matrix and $\left(e^{A}\right)^{-1}=e^{-A}$;
(ii) if $H(t)=e^{t A}$, then $H^{\prime}(t)=A H(t)=H(t) A$.

If A is a diagonal matrix, then e^{A} is also a diagonal matrix, and the diagonal entires of e^{A} are the exponentials of the corresponding diagonal entries of A. For example,

$$
A=\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right) \quad \Longrightarrow \quad e^{A}=\left(\begin{array}{ccc}
e^{\lambda_{1}} & 0 & 0 \\
0 & e^{\lambda_{2}} & 0 \\
0 & 0 & e^{\lambda_{3}}
\end{array}\right)
$$

However, if A is not a diagonal matrix, the entries of e^{A} are not usually the exponentials of the entries of A, and it may be very hard to determine them directly from the power series definition of the exponential. On the other hand, it may be possible to find a basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ for \mathbb{R}^{n}, or \mathbb{C}^{n}, such that $e^{A} \mathbf{v}_{i}$ is easy to compute for each i. Since $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a basis, an arbitrary vector \mathbf{v} has the form

$$
\mathbf{v}=C_{1} \mathbf{v}_{1}+\ldots+C_{n} \mathbf{v}_{n}, \quad C_{1}, \ldots, C_{n} \in \mathbb{C} \quad \Longrightarrow \quad e^{A} \mathbf{v}=C_{1} e^{A} \mathbf{v}_{1}+\ldots+C_{n} e^{A} \mathbf{v}_{n}
$$

This is usually sufficient for solving systems of linear ODEs with constant coefficients. The product $e^{A} \mathbf{v}_{i}$ can be computed for generalized eigenvectors of A. For example,

$$
\begin{equation*}
A \mathbf{v}_{1}=\lambda \mathbf{v}_{1}, \quad A \mathbf{v}_{2}=a \mathbf{v}_{1}+\lambda \mathbf{v}_{2} \quad \Longrightarrow \quad e^{A} \mathbf{v}_{1}=e^{\lambda} \mathbf{v}_{1}, \quad e^{A} \mathbf{v}_{2}=a e^{\lambda} \mathbf{v}_{1}+e^{\lambda} \mathbf{v}_{2} \tag{3}
\end{equation*}
$$

These two relations are sufficient for the $n=2$ case.
(6) In order to compute e^{A} for an arbitrary square matrix, one makes use of the relation

$$
e^{B^{-1} D B}=B^{-1} e^{D} B
$$

and (eq1). The exponential of the matrix D as in (eq1) can be computed directly from the definition. This approach is analogous to the one described in Section 9.8: if $\left\{\mathbf{v}_{1}(t), \ldots, \mathbf{v}_{n}(t)\right\}$ is a fundamental set of solutions for the ODE, then

$$
Y(t)=\left(\begin{array}{ccc}
\mid & \ldots & \mid \tag{4}\\
\mathbf{v}_{1}(t) & \ldots & \mathbf{v}_{n}(t) \\
\mid & \ldots & \mid
\end{array}\right) \quad \Longrightarrow \quad e^{t A}=Y(t) Y(0)^{-1}
$$

On the other hand, if A has only one eigenvalue $\lambda,(A-\lambda I)^{n}$ is the zero matrix, and the power series for the exponential of $A-\lambda I$ quickly truncates. Since λI commutes with all matrices, one can compute e^{A} by using (eq2) with $A=\lambda I$ and $B=A-\lambda I$.

Systems of Linear ODEs with Constant Coefficients

(1) A system of first-order linear ODEs with constant coefficients can be written as

$$
\mathbf{y}^{\prime}=A \mathbf{y}+\mathbf{f}, \quad \mathbf{y}=\mathbf{y}(t)=\left(\begin{array}{c}
y_{1}(t) \\
\vdots \\
y_{n}(t)
\end{array}\right), \quad \text { where } \quad A=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & & \vdots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right), \quad \mathbf{f}=\mathbf{f}(t)=\left(\begin{array}{c}
f_{1}(t) \\
\vdots \\
f_{n}(t)
\end{array}\right) .
$$

This system is called homogeneous if $\mathbf{f}=0$. A system of first-order linear ODEs with constant coefficients can be solved by the integrating factor method for first-order linear ODEs:

$$
\begin{equation*}
\mathbf{y}^{\prime}=A \mathbf{y}+\mathbf{f} \quad \Longrightarrow \quad \mathbf{y}(t)=e^{t A} \mathbf{v}+e^{t A} \int_{t_{0}}^{t} e^{-s A} \mathbf{f}(s) d s, \quad \mathbf{v} \in \mathbb{R}^{n} \tag{5}
\end{equation*}
$$

Note that the function $\mathbf{y}_{h}=\mathbf{y}_{h}(t)$ defined by (eq5) with $\mathbf{f}=\mathbf{0}$, i.e. the first term on the right-hand side, is the general solution of the corresponding homogeneous system of ODEs. Thus, the general solution to an inhomogeneous system of ODEs is given by

$$
\begin{equation*}
\mathbf{y}^{\prime}=A \mathbf{y}+\mathbf{f} \quad \Longrightarrow \quad \mathbf{y}=\mathbf{y}_{p}+\mathbf{y}_{h} \tag{6}
\end{equation*}
$$

where \mathbf{y}_{p} is a solution to the inhomogeneous system, e.g. the function \mathbf{y} corresponding to $\mathbf{v}=\mathbf{0}$ to (eq5). The relation (eq6) is valid for any system of linear ODEs, with constant or non-constant coefficients.
(2) The main difficulty in solving a system of linear ODEs with constant coefficients is dealing with the terms in (eq5) involving $e^{t A}$. This is not difficult to do if there is a basis for \mathbb{R}^{n}, or \mathbb{C}^{n}, of eigenvectors for A :

$$
\begin{align*}
& \mathbf{y}^{\prime}=A \mathbf{y} \quad \Longrightarrow \quad \mathbf{y}(t)=C_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+\ldots+C_{n} e^{\lambda_{n} t} \mathbf{v}_{n}, \quad C_{1}, \ldots, C_{n} \in \mathbb{R}(\text { or } \mathbb{C}) \tag{7}\\
& \text { if } \quad\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\} \text { is a basis for } \mathbb{R}(\text { or } \mathbb{C}) \text { and } \quad A \mathbf{v}_{1}=\lambda_{1} \mathbf{v}_{1}, \ldots, A \mathbf{v}_{n}=\lambda_{n} \mathbf{v}_{n}
\end{align*}
$$

(3) If we are looking for real solutions, we will need to rewrite (eq7) in a different way if some of the eigenvalues λ_{i} are complex, and not real. If \mathbf{v}_{i} is an eigenvector for A with eigenvalue λ_{i} and
λ_{i} is complex, $\overline{\mathbf{v}}_{i}$ is an eigenvector for A with eigenvalue $\bar{\lambda}_{i}$ and the vectors \mathbf{v}_{i} and $\overline{\mathbf{v}}_{i}$ are linearly independent. Thus, if $n=2$ and A has an eigenvector \mathbf{v}_{1} with a complex eigenvalue λ_{1}, then the two eigenvalues of A are complex conjugates, $\lambda_{1}, \lambda_{2}=a \pm i b$, and \mathbb{C}^{2} has a basis of conjugate eigenvectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}=\mathbf{w}_{1} \pm i \mathbf{w}_{2}\right\}$. The general solution in this case can be written as

$$
\begin{aligned}
\mathbf{y}^{\prime}=A \mathbf{y} \Longrightarrow \quad \begin{aligned}
& \mathbf{y}(t)=\left(A_{1} \cos b t+A_{2} \sin b t\right) e^{a t} \mathbf{w}_{1}+\left(A_{2} \cos b t-A_{1} \sin b t\right) e^{a t} \mathbf{w}_{2}, \\
&= e^{a t}\left(\mathbf{w}_{1} \mathbf{w}_{2}\right)\left(\begin{array}{cc}
\cos b t & \sin b t \\
-\sin b t & \cos b t
\end{array}\right)\binom{A_{1}}{A_{2}} \\
& \text { if } \quad \lambda_{1}=a+i b, \quad b \neq 0, \quad \mathbf{v}_{1}=\mathbf{w}_{1}+i \mathbf{w}_{2} \neq 0, \text { ond } A \mathbf{v}_{1}=\lambda_{1} \mathbf{v}_{1}
\end{aligned} .
\end{aligned}
$$

This expression is obtained by setting $C_{1}, C_{2}=\left(A_{1} \mp i A_{2}\right) / 2$ in (eq7). Note that if A_{1} and A_{2} are arbitrary complex constants, so are C_{1} and C_{2}. On the other hand, the solution corresponding to A_{1} and A_{2} is real if and only if A_{1} and A_{2} are real.
(3) Another potential problem with (eq7) is that \mathbb{R}^{n}, or \mathbb{C}^{n}, may not have a basis of eigenvectors for A. If so, we can use a basis of generalized eigenvectors. If $n=2$ and A has only one eigenvalue λ, by (eq3),

$$
\begin{aligned}
\mathbf{y}^{\prime}=A \mathbf{y} & \begin{array}{r}
\mathbf{y}(t)=\left(C_{1} e^{\lambda t}+C_{2} a t e^{\lambda t}\right) \mathbf{v}_{1}+C_{2} e^{\lambda t} \mathbf{v}_{2}, \quad C_{1}, C_{2} \in \mathbb{R}(\text { or } \mathbb{C}) \\
\\
\\
\\
\text { if } \\
\quad \mathbf{v}_{1}, \mathbf{v}_{2} \text { are lin. indep. }, A \mathbf{v}_{1}=\lambda \mathbf{v}_{1}, \text { and } A \mathbf{v}_{2}=a \mathbf{v}_{1}+\lambda \mathbf{v}_{2}
\end{array}
\end{aligned}
$$

Once an eigenvector \mathbf{v}_{1} for the eigenvalue λ is found, \mathbf{v}_{2} can be taken to be any vector in \mathbb{R}^{2} which is not a multiple of \mathbf{v}_{1}, and the number a is determined by computing $A \mathbf{v}_{2}$.
(4) The general solution to an inhomogeneous system of linear first-order ODEs with constantcoefficients is given by (eq5), or more generally by

$$
\begin{equation*}
\mathbf{y}^{\prime}=A \mathbf{y}+\mathbf{f} \quad \Longrightarrow \quad \mathbf{y}(t)=\left(e^{t A} B\right) \mathbf{v}+\left(e^{t A} B\right) \int_{t_{0}}^{t}\left(e^{s A} B\right)^{-1} \mathbf{f}(s) d s, \quad \mathbf{v} \in \mathbb{R}^{n} \tag{8}
\end{equation*}
$$

for any invertible $n \times n$-matrix B. For a good choice of B, the product $e^{t A} B$ may be easier to compute than $e^{t A}$. For example,

$$
\begin{gathered}
\mathbf{y}^{\prime}=A \mathbf{y}+\mathbf{f} \underset{\text { if }}{\Longrightarrow \quad Y=Y(t) \text { is a fundamental matrix for } \mathbf{y}^{\prime}=A \mathbf{y} \text { as in (eq4) }} \mathbf{} \quad \mathbf{y}(t)=Y(t) \mathbf{v}+Y(t) \int_{t^{t}}^{t} Y(s)^{-1} \mathbf{f}(s) d s, \quad \mathbf{v} \in \mathbb{R}^{n} \\
\end{gathered}
$$

(5) A solution to an initial value problem can be obtained directly by

$$
\mathbf{y}^{\prime}=A \mathbf{y}+\mathbf{f}, \quad \mathbf{y}\left(t_{0}\right)=\mathbf{y}_{0} \quad \Longrightarrow \quad \mathbf{y}(t)=e^{t A}\left(e^{-t_{0} A} \mathbf{y}_{0}+\int_{t_{0}}^{t} e^{-s A} \mathbf{f}(s) d s\right)
$$

More generally, if $Y=Y(t)$ is any fundamental matrix for $\mathbf{y}^{\prime}=A \mathbf{y}$,

$$
\mathbf{y}^{\prime}=A \mathbf{y}+\mathbf{f}, \quad \mathbf{y}\left(t_{0}\right)=\mathbf{y}_{0} \quad \Longrightarrow \quad \mathbf{y}(t)=Y(t)\left(Y\left(t_{0}\right)^{-1} \mathbf{y}_{0}+\int_{t_{0}}^{t} Y(s)^{-1} \mathbf{f}(s) d s\right)
$$

Qualitative Descriptions

(1) As is the case for linear ODEs, every initial-value problem

$$
\begin{equation*}
\mathbf{y}^{\prime}=A \mathbf{y}+\mathbf{f}, \quad \mathbf{y}\left(t_{0}\right)=\mathbf{y}_{0}, \quad A=A(t), \quad \mathbf{f}=\mathbf{f}(t) \tag{9}
\end{equation*}
$$

has a unique solution, provided the functions A and \mathbf{f} are continuous near t_{0}. Furthermore, the interval of the existence of the solution to (eq9) is the largest interval on which A and \mathbf{f} are defined. If A is a constant matrix, it follows that the phase-space solution curves for the system $\mathbf{y}^{\prime}=A \mathbf{y}$ do not intersect. Can you explain why?
(2) Every homogeneous system of linear ODEs $\mathbf{y}^{\prime}=A \mathbf{y}$ has an equilibrium solution, $\mathbf{y}(t)=\mathbf{0}$. This solution can be asymptotically stable, stable, or unstable. If A is a constant matrix and the real part of every eigenvalue of A is negative, all solutions $\mathbf{y}=\mathbf{y}(t)$ approach $\mathbf{0}$ at $t \longrightarrow \infty$, and thus $\mathbf{0}$ is an asymptotically stable equilibrium point of the system. If the real parts of some eigenvalues of A are negative and of some are zero, some solutions $\mathbf{y}=\mathbf{y}(t)$ approach $\mathbf{0}$ at $t \longrightarrow \infty$, while others approach closed orbits. In this case, $\mathbf{0}$ is a stable equilibrium point of the system, as every solution starting near $\mathbf{0}$ stays near $\mathbf{0}$. Finally, if the real part of at least one eigenvalue of A is positive, some solutions $\mathbf{y}=\mathbf{y}(t)$ move away from $\mathbf{0}$ and approach ∞ at $t \longrightarrow 0$, and thus $\mathbf{0}$ is an unstable equilibrium point of the system.
(3) If A is a constant matrix, the system $\mathbf{y}^{\prime}=A \mathbf{y}$ is autonomous, i.e. it does not involve t explicitly. Thus, if $\mathbf{y}=\mathbf{y}(t)$ is a solution to this system, so is $\tilde{\mathbf{y}}(t)=\mathbf{y}(t-c)$. The latter solution traces the same curve $\mathbf{y}(t)$ in \mathbb{R}^{n}, but is delayed by time c. For this reason, the qualitative behavior of solutions of $\mathbf{y}^{\prime}=A \mathbf{y}$ is well represented by the non-intersecting curves $\mathbf{y}(t)$ traced out in the phase space, i.e. \mathbb{R}^{n}. For some sketches in the $n=2$ case, see Figures 2-4 of the solutions to PS4.
(4) While systems of first-order ODEs arise in applications by themselves, they can also be used to replace high-order ODEs. For example, the initial value problem

$$
y^{\prime \prime \prime}+y^{\prime} y^{\prime \prime}+t y=0, \quad y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=y_{1}, \quad y^{\prime \prime}\left(t_{0}\right)=y_{2}
$$

is equivalent to the initial value problem

$$
\left(\begin{array}{c}
y \\
u \\
v
\end{array}\right)^{\prime}=\left(\begin{array}{c}
u \\
v \\
-u v-t y
\end{array}\right), \quad \mathbf{y}(0)=\left(\begin{array}{c}
y(0) \\
u(0) \\
v(0)
\end{array}\right)=\left(\begin{array}{l}
y_{0} \\
y_{1} \\
y_{2}
\end{array}\right)
$$

Can you explain why? Such replacements are often useful, because many numerical methods and methods of qualitative analysis apply only to first-order ODEs and systems of first-order ODEs.

