
Math53: Ordinary Differential Equations
Winter 2004

Problem Set 5 Solutions

Section 6.1: 2,18 (16pts)

6.1:2; 8pts: For the initial value problem

y′ = y, y(0) = 1,

compute the first five iterations of Euler’s method with step size h=0.1. Then solve the initial value
problem exactly and compare the obtained estimate for y(0.5) with its exact value.
We start with t0 =0, y0 =1 and f(t, y)=y.
In the first iteration, we get that t1 = t0 + h=0.1, y1 =y0 + y0h=1.1.
In the second iteration we get that y2 =y1 + y1h=1.21 and t2 = t1 + h=0.2 and so on.
The first five iterations are given in the following table:

k tk yk f(tk, yk)=yk f(tk, yk)h

0 0.0 1.0000 1.0000 0.1000

1 0.1 1.1000 1.1000 0.1100

2 0.2 1.2100 1.2100 0.1210

3 0.3 1.3310 1.3310 0.1331

4 0.4 1.4641 1.4641 0.1464

5 0.5 1.6105 − −

The exact value of the solution y(t)=et at .5 is e1/2≈1.6487.

6.1:18; 8pts: For the initial value problem

x′ = y, y′ = −x, x(0) = 1, y(0) = −1,

compute the first five iterations of Euler’s method with step size h=0.1.
We start with t0 =0, x0 =1, and y0 =−1. We also have that f(t, x, y)=y and g(t, x, y)=−x, so from
here, the iteration proceeds with

yk+1 = xk + ykh and xk+1 = yk − xkh.

The first five iterations are arranged in the following table:

tk xk yk f(tk, xk, yk)h = ykh g(tk, xk, yk)h = −xkh

0.0 1.0000 −1.0000 −0.1000 −0.1000

0.1 0.9000 −1.1000 −0.1100 −0.0900

0.2 0.7900 −1.1900 −0.1190 −0.0790

0.3 0.6710 −1.2690 −0.1269 −0.0671

0.4 0.5441 −1.3361 −0.1336 −0.0544

0.5 0.4105 −1.3905 − −



Unfortunately, I made the mistake of not asking you to solve the IVP exactly. This problem is another
example of how useful complex numbers can be. So here is the exact solution.
We re-write this IVP as

y′ =

(

0 1
−1 0

)

y, y(0) =

(

1
−1

)

.

The characteristic polynomial for this equation is λ2+1=0. Its roots are λ1, λ2 =±i. We first find an
eigenvector for λ1:

(

0 − i 1
−1 0 − i

) (

c1

c2

)

=

(

0
0

)

⇐⇒
{

−ic1 + c2 = 0

−c1 − ic2 = 0
⇐⇒ c2 = ic1 =⇒ v1 =

(

1
i

)

.

The complex conjugate of v1, v2 =

(

1
−i

)

, must then be an eigenvector with eigenvalue λ2 = λ̄1.

Thus, the general solution to the system of ODEs is

y(t) = C1e
λ1tv1 + C2e

λ2tv2 = C1e
it

(

1
i

)

+ C2e
−it

(

1
−i

)

.

Plugging in the initial condition, we obtain

y(0) = C1

(

1
i

)

+ C2

(

1
−i

)

=

(

1
−1

)

⇐⇒
{

C1 + C2 = 1

iC1 − iC2 = −1
⇐⇒

{

C1 + C2 = 1

C1 − C2 = i
⇐⇒

{

C1 = 1+i
2

C2 = 1−i
2

=⇒ y(t) =
1+i

2
eit

(

1
i

)

+
1−i

2
e−it

(

1
−i

)

=
eit+e−it

2

(

1
−1

)

+
eit−e−it

2
i

(

1
1

)

= cos t

(

1
−1

)

+ (i sin t)i

(

1
1

)

=

(

cos t − sin t
− cos t − sin t

)

.

The value of the last expression at .5 Radians is y(.5) ≈
(

.398
−1.357

)

.

Note that in the above IVP we never needed to use the real form of the general solution. We found
the two constants C1 and C2 for the complex form. With these constants, the corresponding complex
expression automatically reduces to a real one. The key formulas to remember are

cos θ =
eiθ + e−iθ

2
and sin θ =

eiθ − e−iθ

2i
;

they follow from e±iθ = cos θ ± i sin θ.

Section 6.2:2 (8pts)

For the initial value problem
y′ = y, y(0) = 1,

compute the first five iterations of the second-order Runge-Kutta method with step size h = 0.1 and
compare the obtained estimate for y(0.5) with its exact value.
We begin with t0 =0, y0 =1, and f(t, y)=y. Thus, the initial slopes are

s0,1 = f(0, 1) = 1 and s0,2 = f
(

t0+h, y0+s0,1h
)

= f(0.1, 1.1) = 1.1.
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From here, we iterate using:

sk,1 = f(tk, yk) = yk, sk,2 = f
(

tk+h, yk+sk,1h
)

= yk + sk,1h,

yk+1 = yk +
sk,1 + sk,2

2
h, tk+1 = tk + h.

The first five iterations are presented in the following table:

tk yk sk,1 sk,2
sk,1+sk,2

2 h

0.0 1.0000 1.0000 1.1000 0.1050

0.1 1.1050 1.1050 1.2155 0.1160

0.2 1.2210 1.2210 1.3431 0.1282

0.3 1.3492 1.3492 1.4842 0.1417

0.4 1.4909 1.4909 1.6400 0.1565

0.5 1.6474 − − −

Just as in 6.1:2, the exact value of y(.5) is e1/2 ≈ 1.6487. So, the approximation obtained after just
five iterations, 1.6474, is quite good. Compare this with Euler’s method!

PS5-Problem 4 (20pts)

(a; 7pts) Suppose y and ỹ are smooth functions on the interval [c, d] and M is a positive number such
that

∣

∣y′′(t)
∣

∣,
∣

∣ỹ′′(t)
∣

∣ ≤ M for all t ∈ [c, d].

Show that
∣

∣y(d) − ỹ(d)
∣

∣ ≤
∣

∣y(c) − ỹ(c)
∣

∣ +
∣

∣y′(c) − ỹ′(c)
∣

∣|d−c| + M |d−c|2.

We will apply FTC to the function
z(t) = y(t) − ỹ(t)

and its derivative to estimate the change in z(t) from t=c to t=d. We first note

|z′′(s)| =
∣

∣y′′(s) − ỹ′′(s)
∣

∣ ≤ |y′′(s)| + |ỹ′′(s)| ≤ M + M = 2M for all s ∈ [c, d],

by our assumption on y and ỹ. On the other hand, by FTC, for all t∈ [c, d].

z′(t) = z′(c) +

∫ t

c
z′′(s) ds =⇒

∣

∣z′(t)
∣

∣ ≤
∣

∣z′(c)
∣

∣ +
∣

∣

∣

∫ t

c
z′′(s) ds

∣

∣

∣
≤

∣

∣z′(c)
∣

∣ +

∫ t

c
|z′′(s)| ds

≤
∣

∣z′(c)
∣

∣ + 2M |t−c| =
∣

∣z′(c)
∣

∣ + 2M(t−c).

(1)

Similarly, by FTC,

z(d) = z(c) +

∫ d

c
z′(t) dt =⇒

|z(d)| ≤ |z(c)| +
∣

∣

∣

∫ d

c
z′(t) dt

∣

∣

∣
≤ |z(c)| +

∫ d

c
|z′(t)| dt

≤ |z(c)| +
∫ d

c

(

|z′(c)|+2M(t−c)
)

dt = |z(c)| + |z′(c)||d−c| + M |d−c|2,
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by (1). Since z(t)=y(t)−ỹ(t), we conclude that

∣

∣y(d) − ỹ(d)
∣

∣ ≤
∣

∣y(c) − ỹ(c)
∣

∣ +
∣

∣y′(c) − ỹ′(c)
∣

∣|d−c| + M |d−c|2.

Suppose now that f =f(t, y) is a smooth function and M0, Mt, and My are positive numbers such that

∣

∣f(t, y)
∣

∣ ≤ M0,
∣

∣ft(t, y)
∣

∣ ≤ Mt,
∣

∣fy(t, y)
∣

∣ ≤ My for all t ∈ [a, b], y ∈ (−∞,∞).

Let y=y(t) be the solution to the initial value problem

y′ = f(t, y), y(a) = y0. (2)

Given a positive integer N , let

h =
b−a

N
, t0 = a, ti+1 = ti + h = h · (i+1), si = f(ti, yi), yi+1 = yi + sih;

εi =
∣

∣y(ti) − yi

∣

∣, ỹi(t) = yi + si(t−ti).

Note that

ε0 = 0, εN = y(b) − yN , ỹi(ti) = yi, ỹi(ti+1) = yi+1, ỹ′i(ti) = si, ỹ′′i (t) = 0.

(b; 6pts) Use the ODE and the assumptions on f to show that

|y′′(t)| ≤ Mt + M0My and
∣

∣y′(ti) − ỹ′i(ti)
∣

∣ ≤ Myεi.

Since y′(t)=f(t, y(t)), by the chain rule

y′′(t) =
d

dt
f
(

t, y(t)
)

= ft

(

t, y(t)
)

+ fy

(

t, y(t)
)

· y′(t) = ft

(

t, y(t)
)

+ fy

(

t, y(t)
)

· f
(

t, y(t)
)

=⇒
∣

∣y′′(t)
∣

∣ ≤
∣

∣ft(t, y(t))
∣

∣ +
∣

∣f(t, y(t))
∣

∣

∣

∣fy(t, y(t))
∣

∣ ≤ Mt + M0My,

by our assumptions on f . On the other hand, by the same argument as in the first part of (a),

∣

∣y′(ti) − ỹ′i(ti)
∣

∣ =
∣

∣f(ti, y(ti)) − f(ti, yi)
∣

∣ ≤ My

∣

∣y(ti)−yi

∣

∣ = Myεi.

(c; 3pts) Use part (a) to show that

εi+1 ≤ εi + Myεih + (Mt+M0My)h
2.

By parts (a) and (b),

εi+1 =
∣

∣y(ti+1) − yi+1

∣

∣ =
∣

∣y(ti+1) − ỹi(ti+1)
∣

∣

≤
∣

∣y(ti) − ỹi(ti)
∣

∣ +
∣

∣y′(ti) − ỹ′i(ti)
∣

∣|ti+1−ti| + (Mt+M0My)|ti+1−ti|2

≤ εi + Myεih + (Mt+M0My)h
2.
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(d; 4pts) Conclude that

εN ≤
(

Mt+M0My

)(1 + Myh)N − 1

My
h ≤ Mt + M0My

My

(

eMy(b−a) − 1
)

h.

By part (c),

εN ≤ (Mt+M0My)h
2 + (1+Myh)εN−1

≤ (Mt+M0My)h
2 + (1+Myh)(Mt+M0My)h

2 + (1+Myh)2εN−2 ≤ . . .

≤ (Mt+M0My)h
2+(1+Myh)(Mt+M0My)h

2+. . .+(1+Myh)N−1(Mt+M0My)h
2+(1+Myh)N ε0.

Since ε0 =0, it follows that

εN ≤ (Mt+M0My)h
2
(

1 + (1+Myh) + . . . + (1+Myh)N−1
)

≤ (Mt+M0My)h
2 (1+Myh)N − 1

(1+Myh) − 1
= (Mt+M0My)

(1+Myh)N − 1

My
h.

(3)

In order to obtain the final statement, recall that one definition of the number e is

e = lim
N−→∞

(

1 +
1

N

)N
=⇒ lim

N−→∞

(

1 +
c

N

)N
= ec for all c.

Furthermore, the sequence (1 + c/N)N is increasing with N , if c > 0. Since h = (b−a)/N , it follows
from (3) that

εN ≤ Mt + M0My

My

(

(

1 +
My(b−a)

N

)N
− 1

)

h ≤ Mt + M0My

My

(

eMy(b−a) − 1
)

h.

Section 10.1: 2,8,19a,20 (38pts)

10.1:2; 10pts: Sketch the nullclines for the system
{

x′ = x(6 − 2x − 3y) = f(x, y)

y′ = y(1 − x − y) = g(x, y)

Find the equilibrium points for the system and label them on your sketch with their coordinates. Use
the Jacobian to classify each equilibrium point.
The x-nullcline is defined by the equation x′=0 or x(6−2x−3y)=0. It consists of the two lines x=0
and 2x+3y =6. The y-nullcline is defined by the equation y′ =0 or y(1−x−y)=0. It consists of the
two lines y =0 and x+y =1. The equilibrium points are the intersections of the x-nullcline with the
y-nullcline:

{

x′ = 0

y′ = 0
⇐⇒

{

x(6−2x−3y) = 0

y(1−x−y)=0
⇐⇒

{

x=0 or 2x+3y=6

y=0 or x+y=1

⇐⇒ (x, y) = (0, 0), (0, 1), (3, 0), or

{

2x+3y=6

x+y=1
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Thus, the equilibrium points are (0, 0), (0, 1), (3, 0) and (−3, 4); see the first sketch in Figure 1. The
Jacobian in this case is:

J(x, y) =
∂(f, g)

∂(x, y)
=

(

fx fy

gx gy

)

=

(

6 − 4x − 3y −3x
−y 1 − x − 2y

)

.

The type of each equilibrium point (xi, yi) is determined by the eigenvalues of the matrix J(xi, yi),
provided the eigenvalues are distinct and have nonzero real parts:

J(0, 0) =

(

6 0
0 1

)

=⇒ λ1 = 6, λ2 = 1 =⇒ (0, 0) is a nodal source

J(0, 1) =

(

3 0
−1 −1

)

=⇒ λ1 = 3, λ2 = −1 =⇒ (0, 1) is a saddle

J(3, 0) =

(

−6 −9
0 −2

)

=⇒ λ1 = −6, λ2 = −2 =⇒ (3, 0) is a nodal sink

J(−3, 4) =

(

6 9
−4 −4

)

=⇒ λ2 − 2λ + (−24 + 36) = 0 =⇒ λ1, λ2 = 1 ±
√

1 − 12 = 1 ± i
√

11

=⇒ (−3, 4) is a spiral source

10.1:8; 10pts: Sketch the nullclines for the system
{

x′ = y,

y′ = − cos x − 0.5y

Find the equilibrium points for the system and label them on your sketch with their coordinates. Use
the Jacobian to classify each equilibrium point.
The x-nullcline is defined by the equation x′ =0 or y =0. The y-nullcline is defined by the equation
y′=0 or −cos x −0.5y = 0. The equilibrium points are the points of intersection of the nullclines:

{

x′ = 0

y′ = 0
⇐⇒

{

y = 0

y = −2 cos x
⇐⇒

{

y = 0

cos x = 0

Thus, the equilibrium points are (π
2 +kπ, 0), where k is any integer; see the second sketch in Figure 1.

The Jacobian in this case is:

J(x, y) =
∂(f, g)

∂(x, y)
=

(

fx fy

gx gy

)

=

(

0 1
sin x −0.5

)

.

Thus,

k even =⇒ J
(π

2
+kπ, 0

)

=

(

0 1
1 −0.5

)

=⇒ λ2 + .5λ − 1 = 0 =⇒ λ1, λ2 =
−.5 ±

√
.25+4

2

=⇒ (π
2 +kπ, 0) is a saddle

k odd =⇒ J
(π

2
+kπ, 0

)

=

(

0 1
−1 −0.5

)

=⇒ λ2 + .5λ + 1 = 0 =⇒ λ1, λ2 =
−.5 ±

√
.25−4

2

=⇒ (π
2 +kπ, 0) is a spiral sink
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Figure 1: Phase-Plane Plot for Problems 10.1:2,8,20

10.1:19a; 4pts: The polar coordinates of a point P with Cartesian coordinates (x, y) are (r, θ), where
r is the radial length and θ is the angle with the positive x-axis. Using the relations:

x = r cos θ, y = r sin θ, and r2 = x2 + y2, tan θ =
y

x
,

prove that:

r
dr

dt
= x

dx

dt
+ y

dy

dt
,

dθ

dt
=

1

r2

(

x
dy

dt
− y

dx

dt

)

Differentiating both sides with respect to t, we get:

r2 = x2 + y2 =⇒ 2r
dr

dt
= 2x

dx

dt
+ 2y

dy

dt
=⇒ r

dr

dt
= x

dx

dt
+ y

dy

dt

tan θ =
y

x
=⇒ 1

cos2 θ

dθ

dt
=

1

x2
(x

dy

dt
− y

dx

dt
) =⇒ dθ

dt
=

1

r2

(

x
dy

dt
− y

dx

dt

)

.

10.1:20; 14pts: The origin is an isolated equilibrium point of the system

{

x′ = −y − x3,

y′ = x

(a; 6pts) Compute the linearization of the system near the origin. What kind of equilibrium point is
predicted by this linearization?
The linearization near the origin is y′ = J(0, 0)y. The Jacobian in this case is:

J(0, 0) =

(

−3x2 −1
1 0

)

=

(

0 −1
1 0

)

.

The characteristic polynomial for the matrix is λ2+1=0; its roots are λ1, λ2 =±i. Thus, the origin is
a center for the linearization of the system at the origin; the direction of rotation is counterclockwise.
This implies that the origin is either a center, a spiral source, or a spiral sink for the original system;
the direction of rotation has to be counterclockwise.
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(c; 2pts) Show that r′=−x4/r.
By 10.1:19a,

rr′ = xx′ + yy′ = x(−y − x3) + yx = −x4 =⇒ r′ = −x4

r

(d; 3pts) Show that θ′ = 1 + x3y/r2 and that x3y
r2 −→0 as r−→0.

By 10.1:19a,

r2θ′ = xy′ − yx′ = x2 − y(−y − x3) = r2 + x3y =⇒ θ′ = 1 +
x3y

r2
.

Since | cos θ|≤1 and | sin θ|≤1, by 10.1:19,

∣

∣

∣

x3y

r2

∣

∣

∣
=

∣

∣

∣

(r3 cos3 θ)(r sin θ)

r2

∣

∣

∣
≤ r2 =⇒ lim

r−→0

x3y

r2
= 0.

(e; 3pts) Use the above to explain the behavior of solution trajectories for the system near the origin.
By (c), r′(t)<0, unless θ= π

2 +πk for k∈Z. Thus, r is nonincreasing. By (d),

1 − r2 ≤ θ′(t) ≤ 1 + r2.

Thus, for r<1, θ is strictly increasing. It follows that for r<1, solution curves spiral toward the origin
counterclockwise; see the last sketch in Figure 1. In particular, the origin is a spiral sink. However,
the radius does not drop nearly as quickly with each period of rotation as it does for a planar system
with complex eigenvalues with negative real part.

Section 10.2:4 (8pts)

Find the equilibrium points of the system
{

x′ = x + y,

y′ = y(1 − x2)

and analyze their stability.
The coordinates (x, y) of each equilibrium point satisfy the system

{

x′ = 0

y′ = 0
⇐⇒

{

x + y = 0

y(1 − x2) = 0
⇐⇒

{

y = 0, or x = 1, or x = −1

y = −x.

Thus, there are three equilibrium points: (0, 0), (1,−1) and (−1, 1). The Jacobian in this case is

J(x, y) =
∂(f, g)

∂x, y
=

(

fx gx

gx gy

)

=

(

1 1
−2xy 1−x2

)

.

The equilibrium point (xi, yi) is unstable if the real part of an eigenvalue of J(xi, yi) is positive. It is
asymptotically stable if the real part of every eigenvalue of J(x,yi) is negative:

J(0, 0) =

(

1 1
0 1

)

=⇒ λ1 = λ2 = 1 > 0 =⇒ (0, 0) is unstable

J(1,−1) = J(−1, 1) =

(

1 1
2 0

)

=⇒ λ2 − λ − 2 = 0 =⇒ λ1 = −1, λ2 = 2

=⇒ (1,−1) and (−1, 1) are unstable/saddles
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