Math53: Ordinary Differential Equations Winter 2004

Solutions to Problem Set 2

PS2-Problem 1 (20pts)

(a; 10pts) Use the second-order integrating factor method to find the real general solution of

$$
\begin{equation*}
y^{\prime \prime}+4 y=4 \cos 2 t \tag{1}
\end{equation*}
$$

Here is one approach. The general real solution $y=y(t)$ of this equation is given by $y=\operatorname{Re} z$, where $z=z(t)$ is the complex general solution of

$$
\begin{equation*}
z^{\prime \prime}+4 z=4 e^{2 i t} \tag{2}
\end{equation*}
$$

The characteristic polynomial for this equation is

$$
\lambda^{2}+0 \cdot \lambda+4=(\lambda+2 i)(\lambda-2 i)
$$

Thus, the two characteristic roots are $\lambda_{1}=2 i$ and $\lambda_{2}=-2 i$, and

$$
\begin{equation*}
\left(e^{((-2 i)-(2 i)) t}\left(e^{-(-2 i) t} z\right)^{\prime}\right)^{\prime}=e^{-(2 i) t}\left(z^{\prime \prime}+4 z\right) \tag{3}
\end{equation*}
$$

Multiplying both sides of (2) by $e^{-2 i t}$ and using (3), we obtain

$$
z^{\prime \prime}+4 z=4 e^{2 i t} \quad \Longrightarrow \quad e^{-2 i t}\left(z^{\prime \prime}+4 z\right)=4 \quad \Longrightarrow \quad\left(e^{-4 i t}\left(e^{2 i t} z\right)^{\prime}\right)^{\prime}=4 .
$$

Integrating twice, we obtain

$$
\begin{aligned}
&\left(e^{-4 i t}\left(e^{2 i t} z\right)^{\prime}\right)^{\prime}=4 \Longrightarrow e^{-4 i t}\left(e^{2 i t} z\right)^{\prime}=4 t+C_{1} \quad \Longrightarrow \quad\left(e^{2 i t} z\right)^{\prime}=4 t e^{4 i t}+C_{1} e^{4 i t} \\
& \Longrightarrow e^{2 i t} z=\int\left(4 t e^{4 i t}+C_{1} e^{4 i t}\right) d t=\frac{4}{4 i}\left(t e^{4 i t}-\int e^{4 i t} d t\right)+\frac{C_{1}}{4 i} e^{4 i t} \\
&=\frac{1}{i} t e^{4 i t}+\frac{1}{4} e^{4 i t}+\frac{C_{1}}{4 i} e^{4 i t}+C_{2} .
\end{aligned}
$$

Since we can replace $(1 / 4)+\left(C_{1} / 4 i\right)$ with C_{1}, the general solution of (2) is

$$
z(t)=\frac{1}{i} t e^{2 i t}+C_{1} e^{2 i t}+C_{2} e^{-2 i t} .
$$

Taking the real part of this equation and modifying the constants, we obtain

$$
y(t)=\operatorname{Re} z(t)=t \sin 2 t+C_{1} \cos 2 t+C_{2} \sin 2 t
$$

Here is another approach. The characteristic polynomial and roots for the original equation are the same as for its complex version. Thus, (3) holds with z replaced by y, and

$$
y^{\prime \prime}+4 y=4 \cos 2 t \quad \Longrightarrow \quad e^{-2 i t}\left(y^{\prime \prime}+4 y\right)=4 e^{-2 i t} \cos 2 t \quad \Longrightarrow \quad\left(e^{-4 i t}\left(e^{2 i t} y\right)^{\prime}\right)^{\prime}=4 e^{-2 i t} \cos 2 t .
$$

Integrating the last expression once, we obtain

$$
\begin{aligned}
e^{-4 i t}\left(e^{2 i t} y\right)^{\prime} & =\int 4 e^{-2 i t} \cos 2 t d t=4 \int \cos ^{2} 2 t d t-4 i \int \cos 2 t \sin 2 t d t \\
& =2 \int(\cos 4 t+1) d t-2 i \int \sin 4 t d t=\frac{1}{2} \sin 2 t+2 t+\frac{i}{2} \cos 4 t+C_{1}=\frac{i}{2} e^{-4 i t}+2 t+C_{1} .
\end{aligned}
$$

The second and last equalities above follow from Euler's formula, applied in opposite directions. The third inequality uses the half-angle trigonometric formulas. Finally, proceeding as in the second integration step of the first approach, we obtain

$$
\begin{gathered}
e^{2 i t} y=\int\left(2 t e^{4 i t}+C_{1} e^{4 i t}+\frac{i}{2}\right) d t=\frac{1}{2 i} t e^{4 i t}+\frac{1}{8} e^{4 i t}+\frac{C_{1}}{4 i} e^{4 i t}+\frac{i t}{2}+C_{2} \\
\Longrightarrow \quad y(t)=\frac{t}{2 i}\left(e^{2 i t}-e^{-2 i t}\right)+C_{1} e^{2 i t}+C_{2} e^{-2 i t}=t \sin 2 t+C_{1} e^{2 i t}+C_{2} e^{-2 i t} .
\end{gathered}
$$

As before, the complex form $C_{1} e^{2 i t}+C_{2} e^{-2 i t}$ is equivalent to the real form $A_{1} \cos 2 t+A_{2} \sin 2 t$.
Remarks: (1) When the nonhomogeneous term, i.e. RHS in (1), is $\cos \omega t$ or $\sin \omega t$, the first approach, i.e. complexifying the ODE, is generally faster, but riskier if you are not used to complex numbers. This is the case whether you use the second-order integrating factor approach or the method of undetermined coefficients. Note that if the the forcing term is $\sin \omega t$, you would need to take the imaginary part of the complex solution.
(2) The complex form $C_{1} e^{a t+i b t}+C_{2} e^{a t-i b t}$ of the general solution of an ODE is always equivalent to the real form $A_{1} e^{a t} \cos b t+A_{2} e^{a t} \sin b t$.
(b; 10pts) Use the second-order integrating factor method to find the real general solution of

$$
\begin{equation*}
y^{\prime \prime}+5 y^{\prime}+4 y=t \cdot e^{-t} \tag{4}
\end{equation*}
$$

In this case, the characteristic polynomial is

$$
\lambda^{2}+5 \lambda+4=(\lambda+1)(\lambda+4) .
$$

Thus, the two characteristic roots are $\lambda_{1}=-1$ and $\lambda_{2}=-4$, and

$$
\begin{equation*}
\left(e^{((-4)-(-1)) t}\left(e^{-(-4) t} y\right)^{\prime}\right)^{\prime}=e^{-(-1) t}\left(y^{\prime \prime}+5 y^{\prime}+4 y\right) \tag{5}
\end{equation*}
$$

Multiplying both sides of (4) by e^{t} and using (5), we obtain

$$
y^{\prime \prime}+5 y^{\prime}+4 y=t \cdot e^{-t} \quad \Longrightarrow \quad e^{t}\left(y^{\prime \prime}+5 y^{\prime}+4 y\right)=t \quad \Longrightarrow \quad\left(e^{-3 t}\left(e^{4 t} y\right)^{\prime}\right)^{\prime}=t
$$

Integrating twice, we obtain

$$
\begin{aligned}
e^{-3 t}\left(e^{4 t} y\right)^{\prime} & =\int t d t=\frac{1}{2} t^{2}+C_{1} \quad \Longrightarrow \quad\left(e^{4 t} y\right)^{\prime}=\frac{1}{2} t^{2} e^{3 t}+C_{1} e^{3 t} \\
\Longrightarrow e^{4 t} y(t) & =\frac{1}{2} \int t^{2} e^{3 t} d t+C_{1} \int e^{3 t} d t=\frac{1}{6}\left(t^{2} e^{3 t}-\int 2 t e^{3 t} d t\right)+\frac{C_{1}}{3} e^{3 t} \\
& =\frac{1}{6} t^{2} e^{3 t}-\frac{1}{9}\left(t e^{3 t}-\int e^{3 t} d t\right)+\frac{C_{1}}{3} e^{3 t}=\frac{1}{6} t^{2} e^{3 t}-\frac{1}{9} t e^{3 t}+\frac{1}{27} e^{3 t}+\frac{C_{1}}{3} e^{3 t}+C_{2} .
\end{aligned}
$$

Since we can replace $(1 / 27)+\left(C_{1} / 3\right)$ with C_{1}, the general solution of (4) is

$$
y(t)=\frac{1}{6} t^{2} e^{-t}-\frac{1}{9} t e^{-t}+C_{1} e^{-t}+C_{2} e^{-4 t}
$$

Remark: In these two cases, the second-order integrating factor approach is not any easier and perhaps a bit harder than the method of undetermined coefficients. In general, the method of undetermined coefficients will be faster whenever it is applicable, i.e. you know what form a solution should have. On the other hand, the integrating factor approach works for all forcing terms.

Section 4.1, Problems 12,14 (18pts)

4.1:12; 8pts: Show that $y_{1}(t)=e^{-t} \cos 2 t$ and $y_{2}(t)=e^{-t} \sin 2 t$ form a fundamental set of solutions for

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0 .
$$

Find a solution satisfying $y(0)=-1$ and $y^{\prime}(0)=0$.
The functions $y_{1}(t)$ and $y_{2}(t)$ are linearly independent, since $\tan 2 t=y_{2}(t) / y_{1}(t)$ is not a constant function. Thus, in order to prove the first statement, we only need to check that $y_{1}(t)$ and $y_{2}(t)$ solve the ODE:

$$
\begin{aligned}
y_{1}^{\prime}(t)=e^{-t}(-2 \sin 2 t-\cos 2 t) \quad \Longrightarrow \quad y_{1}^{\prime \prime}(t) & =e^{-t}(-4 \cos 2 t+2 \sin 2 t+2 \sin 2 t+\cos 2 t) \\
& =e^{-t}(4 \sin 2 t-3 \cos 2 t) \\
y_{2}^{\prime}(t)=e^{-t}(2 \cos 2 t-\sin 2 t) \quad \Longrightarrow \quad y_{2}^{\prime \prime}(t) & =e^{-t}(-4 \sin 2 t-2 \cos 2 t-2 \cos 2 t+\sin 2 t) \\
& =-e^{-t}(4 \cos 2 t+3 \sin 2 t)
\end{aligned}
$$

Plugging these expressions into the ODE, we obtain

$$
\begin{aligned}
& y_{1}^{\prime \prime}+2 y_{1}^{\prime}+5 y_{1}=e^{-t}(4 \sin 2 t-3 \cos 2 t-4 \sin 2 t-2 \cos 2 t+5 \cos 2 t)=0 \\
& y_{1}^{\prime \prime}+2 y_{1}^{\prime}+5 y_{1}=e^{-t}(-4 \cos 2 t-3 \sin 2 t+4 \cos 2 t-2 \sin 2 t+5 \sin 2 t)=0
\end{aligned}
$$

as needed. For the initial-value problem, we need to find C_{1} and C_{2} such that $y(0)=-1$ and $y^{\prime}(0)=0$ if $y=C_{1} y_{1}+C_{2} y_{2}$. Using the above expressions for y_{1}^{\prime} and y_{2}^{\prime}, we find that

$$
y(0)=C_{1}=-1 \quad \text { and } \quad y^{\prime}(0)=-C_{1}+2 C_{2}=0 .
$$

Thus, $C_{2}=-1 / 2$, and the solution to the initial value problem is $y(t)=-e^{-t} \cos 2 t-\frac{1}{2} e^{-t} \sin 2 t$
4.1:14 (a; 2pts) Show that $y_{1}(t)=t^{2}$ is a solution of

$$
\begin{equation*}
t^{2} y^{\prime \prime}+t y^{\prime}-4 y=0 \tag{6}
\end{equation*}
$$

We need to plug in y_{1} into (6). Since $y_{1}^{\prime}=2 t$ and $y_{1}^{\prime \prime}=2$,

$$
t^{2} y_{1}^{\prime \prime}+t y_{1}^{\prime}-4 y_{1}=t^{2} \cdot 2+t \cdot 2 t-4 \cdot t^{2}=0
$$

as needed.
(b; 8pts) Let $y_{2}(t)=v(t) y_{1}(t)=v(t) t^{2}$. Show that y_{2} is a solution of (6) if and only if v satisfies

$$
\begin{equation*}
5 v^{\prime}+t v^{\prime \prime}=0 \tag{7}
\end{equation*}
$$

Solve this equation for v and describe the general solution of (6).
We need to plug in y_{2} into (6):

$$
\begin{gathered}
y_{2}^{\prime}(t)=t^{2} v^{\prime}(t)+2 t v(t) \Longrightarrow y_{2}^{\prime \prime}(t)=t^{2} v^{\prime \prime}(t)+2 t v^{\prime}(t)+2 t v^{\prime}(t)+2 v(t)=t^{2} v^{\prime \prime}+4 t v^{\prime}+2 v \\
\Longrightarrow 0=t^{2} y_{2}^{\prime \prime}+t y_{2}^{\prime}-4 y_{2}=\left(t^{4} v^{\prime \prime}+4 t^{3} v^{\prime}+2 t^{2} v\right)+\left(t^{3} v^{\prime}+2 t^{2} v\right)-4 t^{2} v=t^{4} v^{\prime \prime}+5 t^{3} v^{\prime}
\end{gathered}
$$

Dividing the last expression by t^{3}, we obtain (7). In order to solve (7), we first divide this equation by t and then multiply by the integrating factor $e^{\int(5 / t) d t}=|t|^{5}$, or just by t^{5} :

$$
\begin{aligned}
5 v^{\prime}+t v^{\prime \prime}=0 & \Longrightarrow t^{5} v^{\prime \prime}+5 t^{4} v^{\prime}=0 \\
& \left.\Longrightarrow v^{\prime}(t)=C_{1} t^{-5} \quad \Longrightarrow \quad t^{5} v^{\prime}\right)^{\prime}=0 \quad \Longrightarrow \quad t^{5} v^{\prime}(t)=C_{1} \\
& \Longrightarrow v(t)=-\frac{C_{1}}{4} t^{-4}+C_{2}
\end{aligned}
$$

Since we need to find a single non-constant solution of (7), we can take

$$
v(t)=t^{-4} \quad \text { and } \quad y_{2}(t)=v(t) y_{1}(t)=t^{-4} t^{2}=t^{-2}
$$

The general solution of (6) is thus given $y(t)=C_{1} t^{2}+C_{2} t^{-2}$

Section 4.2, Problems 4 (4pts)

Use the substitution $v=y^{\prime}$ to write the second-order $O D E$

$$
y^{\prime \prime}+2 y^{\prime}+2 y=\sin 2 \pi t
$$

as a system of two first-order equations.
Since $v=y^{\prime}$,

$$
v^{\prime}=y^{\prime \prime}=-2 y^{\prime}-2 y+\sin 2 \pi t=-2 v-2 y+\sin 2 \pi t
$$

Thus, the above second-order ODE is equivalent to the system

$$
\left\{\begin{array}{l}
y^{\prime}=v \\
v^{\prime}=-2 v-2 y+\sin 2 \pi t
\end{array}\right.
$$

Section 4.3, Problems 4,10,14,26 (26pts)

4.3:4; 5pts: Find the general solution of the $O D E$

$$
2 y^{\prime \prime}-y^{\prime}-y=0
$$

The characteristic polynomial for this equation is

$$
2 \lambda^{2}-\lambda-1=(2 \lambda+1)(\lambda-1)
$$

Thus, the two characteristic roots are $\lambda_{1}=-1 / 2$ and $\lambda_{2}=1$. Since they are real and distinct, and the general solution of the ODE is $y(t)=C_{1} e^{t}+C_{2} e^{-t / 2}$
4.3:10; 8pts: Find the general solution of the $O D E$

$$
y^{\prime \prime}+2 y^{\prime}+17 y=0
$$

The characteristic polynomial for this equation is

$$
\lambda^{2}+2 \lambda+17=\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right), \quad \lambda_{1}, \lambda_{2}=-1 \pm \sqrt{1-17}=-1 \pm 4 i
$$

Thus, the two characteristic roots are complex, and so is the general solution of the ODE

$$
y(t)=C_{1} e^{(-1+4 i) t}+C_{2} e^{(-1-4 i) t}
$$

The corresponding general real solution is given by $y(t)=C_{1} e^{-t} \cos 4 t+C_{2} e^{-t} \sin 4 t$
4.3:14; 5pts: Find the general solution of the $O D E$

$$
y^{\prime \prime}-6 y^{\prime}+9 y=0
$$

The characteristic polynomial for this equation is

$$
\lambda^{2}-6 \lambda+9=(\lambda-3)^{2}
$$

Thus, this equation has a repeated root, $\lambda=3$, and the general solution of the ODE is

$$
y(t)=C_{1} e^{3 t}+C_{2} t e^{3 t}
$$

4.3:26; 8pts: Find the solution to the initial value problem

$$
4 y^{\prime \prime}+y=0, \quad y(1)=0, \quad y^{\prime}(1)=-2
$$

The characteristic polynomial for this equation is

$$
4 \lambda^{2}+1=(2 \lambda+i)(2 \lambda-i)
$$

Thus, the two roots, $\lambda_{1}=i / 2$ and $\lambda=-i / 2$ are distinct, and the general (complex) solution is

$$
y(t)=C_{1} e^{i t / 2}+C_{2} e^{-i t / 2}
$$

The initial conditions $y(1)=0$ and $y^{\prime}(1)=-2$ give

$$
0=y(1)=C_{1} e^{i / 2}+C_{2} e^{-i / 2} \quad \text { and } \quad-2=y^{\prime}(1)=C_{1} \frac{i}{2} e^{i / 2}-C_{2} \frac{i}{2} e^{-i / 2}
$$

Thus, $C_{1}=2 i e^{-i / 2}$ and $C_{2}=-2 i e^{i / 2}$, and

$$
\begin{aligned}
y(t) & =2 i e^{-i / 2} e^{i t / 2}-2 i e^{i / 2} e^{-i t / 2}=2 i\left(e^{i(t-1) / 2}-e^{-i(t-1) / 2}\right) \\
& =2 i \cdot 2 i \sin ((t-1) / 2)=-4 \sin ((t-1) / 2)
\end{aligned}
$$

Thus, the solution to the initial value problem is $y(t)=-4 \sin ((t-1) / 2) \quad$ Please check that this function indeed satisfies the ODE and the initial conditions.

Section 4.4, Problem 17 (8pts)

Prove that an overdamped solution of $m y^{\prime \prime}+\mu y k y=0$ can cross the time axis no more than once. Rewrite the given equation as

$$
y^{\prime \prime}+\frac{\mu}{m} y^{\prime}+\frac{k}{m}=0 \quad \Longrightarrow \quad y^{\prime \prime}+2 c y^{\prime}+\omega_{0}^{2} y=0
$$

where $2 c=\mu / m$ and $\omega_{0}^{2}=k / m$. The characteristic equation is $\lambda^{2}+2 c \lambda+\omega_{0}^{2}=0$. Its roots are

$$
\lambda_{1}=-c-\sqrt{c^{2}-\omega_{0}^{2}} \quad \text { and } \quad \lambda_{2}=-c+\sqrt{c^{2}-\omega_{0}^{2}}
$$

Since the system is overdamped, $c^{2}-\omega_{0}^{2}>0$, and we have two distinct real roots $\lambda_{1} \neq \lambda_{2}<0$. The general solution is of the form

$$
y(t)=C_{1} e^{\lambda_{1} t}+C_{2}^{\lambda_{2} t}
$$

The number of times any such curve crosses the t-axis is the number of values of t for which

$$
C_{1} e^{\lambda_{1} t}+C_{2} e^{\lambda_{2} t}=e^{\lambda_{1} t}\left(C_{1}+C_{2} e^{\left(\lambda_{2}-\lambda_{1}\right) t}\right)=0
$$

Since $e^{\lambda_{1} t}$ is never zero, the point $(t, y(t))$ will lie on the t-axis if and only if

$$
C_{1}+C_{2} e^{\left(\lambda_{2}-\lambda_{1}\right) t}=0 \quad \Longrightarrow \quad e^{\left(\lambda_{2}-\lambda_{1}\right) t}=-\frac{C_{1}}{C_{2}}
$$

Now, if $C_{1} / C_{2} \geq 0$, the right hand side is negative or zero. It has no logarithm and hence there are no times t where $y(t)=0$. If $C_{1} / C_{2}<0$, the solution curve intersects the t-axis only at time

$$
t=\frac{1}{\lambda_{2}-\lambda_{1}} \ln \left(-\frac{C_{1}}{C_{2}}\right)
$$

Note that $\lambda_{1} \neq \lambda_{2}$ above. Thus, the solution curve never intersects the t-axis more than once.

Section 4.5, Problems 2,6,16,18,26,30,32,42 (74pts)

4.5:2; 6pts: Using an exponential forcing term, find a particular solution of the equation

$$
y^{\prime \prime}+6 y^{\prime}+8 y=-3 e^{-t}
$$

We look for the particular solution of the form $y_{p}(t)=A e^{-t}$. After making the substitutions:

$$
y_{p}(t)=A^{-t}, \quad y_{p}^{\prime}(t)=-A e^{-t}, \quad y_{p}^{\prime \prime}(t)=A e^{-t}
$$

the equation becomes:

$$
A e^{-t}-6 A e^{-t}+8 A e^{-t}=-3 e^{-t} \quad \Longrightarrow 3 A e^{-t}=-3 e^{-t} \quad \Longrightarrow \quad A=-1
$$

Thus, a particular solution is $\quad y(t)=-e^{-t}$
4.5:6; 8pts: Use the form $y=a \cos \omega t+b \sin \omega t$ to find a particular solution of the equation

$$
y^{\prime \prime}+9 y=\sin 2 t
$$

Let $y_{p}(t)=a \cos 2 t+b \sin 2 t$. After making the substitutions:

$$
y_{p}(t)=a \cos 2 t+b \sin 2 t, \quad y_{p}^{\prime}(t)=-2 a \sin 2 t+2 b \cos 2 t, \quad y_{p}^{\prime \prime}(t)=-4 a \cos 2 t-4 b \sin 2 t
$$

the equation $y^{\prime \prime}+9 y=\sin 2 t$ becomes:

$$
\begin{aligned}
&-4 a \cos 2 t-4 b \sin 2 t+9 a \cos 2 t+9 b \sin 2 t=\sin 2 t \\
& \Longrightarrow \quad 5 a \cos 2 t+5 b \sin 2 t=\sin 2 t \quad \Longrightarrow \quad a=0, b=\frac{1}{5}
\end{aligned}
$$

A particular solution is $\quad y(t)=\frac{1}{5} \sin 2 t$
4.5:16; 8pts: Find a particular solution of the equation

$$
y^{\prime \prime}+5 y^{\prime}+6 y=4-t^{2}
$$

The forcing term is a quadratic polynomial, so we look for a particular solution of the form

$$
y_{p}(t)=a t^{2}+b t+c, \quad \Longrightarrow \quad y_{p}^{\prime}(t)=2 a t+b, \quad \Longrightarrow \quad y_{p}^{\prime \prime}(t)=2 a
$$

The equation becomes:

$$
\begin{aligned}
y^{\prime \prime}+5 y^{\prime}+6 y=4-t^{2} & \Longrightarrow 2 a+5(2 a t+b)+6\left(a t^{2}+b t+c\right)=4-t^{2} \\
& \Longrightarrow 6 a t^{2}+(10 a+6 b) t+(2 a+5 b+6 c)=-t^{2}+4
\end{aligned}
$$

Thus, a, b, c must satisfy:

$$
6 a=-1, \quad 10 a+6 b=0, \quad 2 a+5 b+6 c=4 \quad \Longrightarrow \quad a=-\frac{1}{6}, b=\frac{5}{18}, c=\frac{53}{108} .
$$

So, a particular solution is

$$
y_{p}(t)=-\frac{1}{6} t^{2}+\frac{5}{18} t+\frac{53}{108}
$$

4.5:18; 12pts: For the equation

$$
y^{\prime \prime}+3 y^{\prime}+2 y=3 e^{-4 t}
$$

first solve the associated homogeneous equation, then find a particular solution. Using Theorem 5.2, form the general solution, and then find the solution satisfying initial conditions $y(0)=1, y^{\prime}(0)=0$. The homogeneous equation $y^{\prime \prime}+3 y^{\prime}+2=0$ has characteristic equation

$$
\lambda^{2}+3 \lambda+2=(\lambda+1)(\lambda+2)=0
$$

with zeros $\lambda_{1}=-1$ and $\lambda_{2}=-2$. Thus, the homogeneous solution is

$$
y_{h}(t)=C_{1} e^{-t}+C_{2} e^{-2 t} .
$$

For $y_{p}=A e^{-4 t}, y_{p}^{\prime}=-4 A e^{-4 t}$ and $y_{p}^{\prime \prime}=16 A e^{-4 t}$. Substituting into the inhomogeneous ODE, we get

$$
16 A e^{-4 t}+3\left(-4 A e^{-4 t}\right)+2 A e^{-4 t}=3 e^{-4 t} \quad \Longrightarrow \quad 6 A=3 \quad \Longrightarrow \quad A=\frac{1}{2}
$$

Thus, a particular solution is $y_{p}(t)=\frac{1}{2} e^{-4 t}$. By Theorem 5.2 , the general solution is

$$
y=C_{1} e^{-t}+C_{2} e^{-2 t}+\frac{1}{2} e^{-4 t}
$$

The given initial conditions imply:

$$
y(0)=C_{1}+C_{2}+\frac{1}{2}=1, \quad y^{\prime}(0)=-C_{1}-2 C_{2}-2=0 \quad \Longrightarrow \quad C_{1}=3, C_{2}=-5 / 2
$$

So, the solution to the initial value problem is

$$
y=3 e^{-t}-\frac{5}{2} e^{-2 t}+\frac{1}{2} e^{-4 t}
$$

4.5:26; 10pts: In the equation $y^{\prime \prime}+4 y=4 \cos 2 t$, the forcing term is also a solution of the associated homogeneous equation. Use this to find a particular solution.
Our strategy is to look at the equation $z^{\prime \prime}+4 z=e^{2 i t}$, of which the given equation is the real part. The characteristic equation of the homogeneous equation $z^{\prime \prime}+4 z=0$ is $\lambda^{2}+4=0$. Its roots are $\pm 2 i$. So, the homogeneous solution is:

$$
z_{h}=C_{1} e^{2 i t}+C_{2} e^{-2 i t}
$$

The forcing term of $z^{\prime \prime}+4 z=4 e^{2 i t}$ is also a solution of the homogeneous equation. Thus, we try to find a particular solution of the form $z_{p}=A t e^{2 i t}$:

$$
z_{p}=A t e^{2 i t} \quad \Longrightarrow \quad z_{p}^{\prime}=A e^{2 i t}(1+2 i t) \quad \Longrightarrow \quad z_{p}^{\prime \prime}=4 A e^{2 i t}(i-t)
$$

After substituting these into $z^{\prime \prime}+4 z=4 e^{2 i t}$, we get:

$$
\begin{gathered}
4 A e^{2 i t}(i-t)+4 A t e^{2 i t}=4 e^{2 i t} \Longrightarrow 4 i A=4 \quad \Longrightarrow \quad A=\frac{1}{i}=-i \\
\Longrightarrow \quad z_{p}=-i t e^{2 i t}=-i t(\cos 2 t+i \sin 2 t)=t \sin 2 t-i t \cos 2 t
\end{gathered}
$$

Its real part is a particular solution we are looking for:

$$
y_{p}=\operatorname{Re}\left(z_{p}\right)=t \sin 2 t
$$

4.5:30; 10pts: If $y_{f}(t)$ and $y_{g}(t)$ are solutions of

$$
y^{\prime \prime}+p y^{\prime}+q y=f(t) \quad \text { and } \quad y^{\prime \prime}+p y^{\prime}+q y=g(t)
$$

respectively, show that $z(t)=\alpha y_{f}(t)+\beta y_{g}(t)$ is a solution of

$$
y^{\prime \prime}+p y^{\prime}+q y=\alpha f(t)+\beta g(t)
$$

where α and β are any real numbers.
We are given that:

$$
y_{f}^{\prime \prime}+p y_{f}^{\prime}+q y_{f}=f(t) \quad \text { and } \quad y_{g}^{\prime \prime}+p y_{g}^{\prime}+q y_{g}=g(t)
$$

We plug in $z(t)$ into $y^{\prime \prime}+p y^{\prime}+q y=\alpha f(t)+\beta g(t)$ and use these two properties of y_{f} and y_{g} :

$$
\begin{aligned}
z^{\prime \prime}+p z^{\prime}+q z & =\left(\alpha y_{f}+\beta y_{g}\right)^{\prime \prime}+p\left(\alpha y_{f}+\beta y_{g}\right)^{\prime}+q\left(\alpha y_{f}+\beta y_{g}\right) \\
& =\left(\alpha y_{f}^{\prime \prime}+\beta y_{g}^{\prime \prime}\right)+p\left(\alpha y_{f}^{\prime}+\beta y_{g}^{\prime}\right)+q\left(\alpha y_{f}+\beta y_{g}\right) \\
& =\alpha\left(y_{f}^{\prime \prime}+p y_{f}^{\prime}+q y_{f}\right)+\beta\left(y_{g}^{\prime \prime}+p y_{g}^{\prime}+q y_{g}\right) \\
& =\alpha f(t)+\beta g(t)
\end{aligned}
$$

Thus, $z(t)=\alpha y_{f}(t)+\beta y_{g}(t)$ is a solution of $y^{\prime \prime}+p y^{\prime}+q y=\alpha f(t)+\beta g(t)$.
4.5:32; 12pts: Use the previous exercise to find a particular solution of the equation

$$
y^{\prime \prime}-y=t-e^{-t}
$$

The forcing term is the linear combination $t-e^{-t}=1 \cdot t+(-1) e^{-t}$. We first find a particular solution $y_{p_{1}}$ of $y^{\prime \prime}-y=t$, and then a particular solution $y_{p_{2}}$ of $y^{\prime \prime}-y=-e^{-t}$. By the previous exercise, $y_{p_{1}}-y_{p_{2}}$ will be a particular solution to our equation. To find $y_{p_{1}}$, substitute $y=a t+b$ into

$$
y^{\prime \prime}-y=t \quad \Longrightarrow \quad-a t-b=t \quad \Longrightarrow \quad a=-1, b=0, \quad \Longrightarrow \quad y_{p_{1}}(t)=-t
$$

To find $y_{p_{2}}$, note that the characteristic equation for the homogeneous equation $y^{\prime \prime}-y=0$ is $\lambda^{2}-1=0$. Its roots are $\lambda_{1}=-1$ and $\lambda_{2}=1$, giving the homogeneous solution

$$
y_{h}=C_{1} e^{-t}+C_{2} e^{t}
$$

It follows that the forcing term e^{-t} is a solution of the homogeneous equation. So we try to find $y_{p_{2}}$ of the form $y_{p_{2}}(t)=A t e^{-t}$:

$$
y_{p_{2}}=A t e^{-t} \quad \Longrightarrow \quad y_{p_{2}}^{\prime}=A e^{-t}(1-t) \quad \Longrightarrow \quad y_{p_{2}}^{\prime \prime}=A e^{-t}(t-2)
$$

The equation now becomes:

$$
e^{-t}=y_{p_{2}}^{\prime \prime}-y_{p_{2}}=A e^{-t}(t-2)-A t e^{-t} \Longrightarrow-2 A=1 \Longrightarrow A=-\frac{1}{2} \Longrightarrow y_{p_{2}}(t)=-\frac{1}{2} t e^{-t}
$$

So a particular solution of $y^{\prime \prime}-y=t-e^{-t}$ is

$$
y_{p}=y_{p_{1}}-y_{p_{2}}=-t+\frac{1}{2} t e^{-t}
$$

4.5:42; 12pts: Find a particular solution of the equation $\quad y^{\prime \prime}+5 y^{\prime}+4 y=t e^{-t}$.

The characteristic equation for the corresponding homogeneous equation $y^{\prime \prime}+5 y^{\prime}+4=0$ is

$$
\lambda^{2}+5 \lambda+4=(\lambda+1)(\lambda+4)=0
$$

Its are roots $\lambda_{1}=-1$ and $\lambda_{2}=-4$, and the homogeneous solution is

$$
y_{h}=C_{1} e^{-4 t}+C_{2} e^{-t}
$$

In particular, e^{-t} is a solution to the homogeneous equation. Thus, we modify the hint in Exercise 39, and look for a particular solution of the form $y_{p}=t(a t+b) e^{-t}$:

$$
\begin{aligned}
y_{p}(t)=t(a t+b) e^{-t} & \Longrightarrow y_{p}^{\prime}(t)=\left(-a t^{2}+(2 a-b) t+b\right) e^{-t} \\
& \Longrightarrow y_{p}^{\prime \prime}(t)=\left(a t^{2}+(-4 a+b) t+(2 a-2 b)\right) e^{-t}
\end{aligned}
$$

Substituting, we get:

$$
t e^{-t}=y^{\prime \prime}+5 y^{\prime}+4 y=(6 a t+(2 a+3 b)) e^{-t} \quad \Longrightarrow \quad 6 a=1,2 a+3 b=0, \quad \Longrightarrow \quad a=\frac{1}{6}, b=-\frac{1}{9} .
$$

Thus, a solution of $y^{\prime \prime}+5 y^{\prime}+4 y=t e^{-t}$ is $\quad y_{p}=\frac{1}{6} t^{2} e^{-t}-\frac{1}{9} t e^{-t}$

Section 4.6, Problem 13

Verify that $y_{1}(t)=t$ and $y_{2}(t)=t^{-3}$ are solutions to the homogeneous equation

$$
t^{2} y^{\prime \prime}+3 t y^{\prime}-3 y=0
$$

Use variation of parameters to find the general solution to

$$
t^{2} y^{\prime \prime}+3 t y^{\prime}-3 y=t^{-1}
$$

For the first part, plug in $y_{1}(t)=t$ and $y_{2}(t)=t^{-3}$ into the homogeneous equation:

$$
\begin{aligned}
y_{1}=t, \quad y_{1}^{\prime}=1, \quad y_{1}^{\prime \prime}=0 & \Longrightarrow t^{2} y_{1}^{\prime \prime}+3 t y_{1}^{\prime}-3 y_{1}=t^{2} \cdot 0+3 t \cdot 1-3 \cdot t=0 \\
y_{1}=t^{-3}, y_{1}^{\prime}=-3 t^{-4}, y_{1}^{\prime \prime}=12 t^{-5} & \Longrightarrow t^{2} y_{2}^{\prime \prime}+3 t y_{2}^{\prime}-3 y_{2}=t^{2} \cdot\left(12 t^{-5}\right)+3 t \cdot\left(-3 t^{-4}\right)-3 t^{-3}=0
\end{aligned}
$$

as needed. We look for a solution to the inhomogeneous equation of the form $y_{p}=v_{1} y_{1}+v_{2} y_{2}$.
Then,

$$
y_{p}^{\prime}=\left(y_{1} v_{1}^{\prime}+y_{2} v_{2}^{\prime}\right)+y_{1}^{\prime} v_{1}+y_{2}^{\prime} v_{2}=\left(t v_{1}^{\prime}+t^{-3} v_{2}^{\prime}\right)+v_{1}-3 t^{-4} v_{2}
$$

We set the expression in the parenthesis to zero. Thus,

$$
y_{p}^{\prime}=v_{1}-3 t^{-4} v_{2} \Longrightarrow y_{p}^{\prime \prime}=v_{1}^{\prime}+12 t^{-5} v_{2}-3 t^{-4} v_{2}^{\prime} \Longrightarrow t^{2} y_{p}^{\prime \prime}+3 t y_{p}^{\prime}-3 y_{p}=t^{2} v_{1}^{\prime}-3 t^{-2} v_{2}^{\prime}=t^{-1}
$$

Since we also assumed that $t v_{1}^{\prime}+t^{-3} v_{2}^{\prime}=0$, we need to solve the system

$$
\begin{gathered}
\left\{\begin{array}{l}
v_{1}^{\prime}+t^{-4} v_{2}^{\prime}=0 \\
v_{1}^{\prime}-3 t^{-4} v_{2}^{\prime}=t^{-3}
\end{array}\right. \\
\Longrightarrow \quad v_{1}^{\prime}=\frac{1}{4} t^{-3}, v_{2}^{\prime}=-\frac{1}{4} t \quad \Longrightarrow \quad v_{1}=-\frac{1}{8} t^{-2}, v_{2}=-\frac{1}{8} t^{2} \\
\Longrightarrow \quad y_{p}=v_{1} y_{1}+v_{2} y_{2}=-\frac{1}{8} t^{-2} \cdot t-\frac{1}{8} t^{2} \cdot t^{-3}=-\frac{1}{4} t^{-1} .
\end{gathered}
$$

Thus, the general solution is $\quad y(t)=C_{1} t+C_{2} t^{-3}-\frac{1}{4} t^{-1}$

