
Math53: Ordinary Differential Equations
Winter 2004

Solutions to Problem Set 2

PS2-Problem 1 (20pts)

(a; 10pts) Use the second-order integrating factor method to find the real general solution of

y′′ + 4y = 4 cos 2t. (1)

Here is one approach. The general real solution y=y(t) of this equation is given by y=Rez, where
z=z(t) is the complex general solution of

z′′ + 4z = 4e2it. (2)

The characteristic polynomial for this equation is

λ2 + 0 · λ + 4 = (λ + 2i)(λ− 2i).

Thus, the two characteristic roots are λ1 =2i and λ2 =−2i, and(
e((−2i)−(2i))t(e−(−2i)tz)′

)′ = e−(2i)t(z′′ + 4z). (3)

Multiplying both sides of (2) by e−2it and using (3), we obtain

z′′ + 4z = 4e2it =⇒ e−2it(z′′ + 4z) = 4 =⇒
(
e−4it(e2itz)′

)′ = 4.

Integrating twice, we obtain(
e−4it(e2itz)′

)′ = 4 =⇒ e−4it(e2itz)′ = 4t + C1 =⇒ (e2itz)′ = 4te4it + C1e
4it

=⇒ e2itz =
∫

(4te4it+C1e
4it)dt =

4
4i

(
te4it −

∫
e4itdt

)
+

C1

4i
e4it

=
1
i
te4it +

1
4
e4it +

C1

4i
e4it + C2.

Since we can replace (1/4)+(C1/4i) with C1, the general solution of (2) is

z(t) =
1
i
te2it + C1e

2it + C2e
−2it.

Taking the real part of this equation and modifying the constants, we obtain

y(t) = Re z(t) = t sin 2t + C1 cos 2t+C2 sin 2t



Here is another approach. The characteristic polynomial and roots for the original equation are
the same as for its complex version. Thus, (3) holds with z replaced by y, and

y′′ + 4y = 4 cos 2t =⇒ e−2it(y′′ + 4y) = 4e−2it cos 2t =⇒
(
e−4it(e2ity)′

)′ = 4e−2it cos 2t.

Integrating the last expression once, we obtain

e−4it(e2ity)′ =
∫

4e−2it cos 2t dt = 4
∫

cos2 2t dt− 4i

∫
cos 2t sin 2t dt

= 2
∫

(cos 4t +1)dt− 2i

∫
sin 4t dt =

1
2

sin 2t + 2t +
i

2
cos 4t + C1 =

i

2
e−4it + 2t+C1.

The second and last equalities above follow from Euler’s formula, applied in opposite directions.
The third inequality uses the half-angle trigonometric formulas. Finally, proceeding as in the second
integration step of the first approach, we obtain

e2ity =
∫ (

2te4it + C1e
4it +

i

2
)
dt =

1
2i

te4it +
1
8
e4it +

C1

4i
e4it +

it

2
+ C2

=⇒ y(t) =
t

2i

(
e2it − e−2it

)
+ C1e

2it + C2e
−2it = t sin 2t + C1e

2it + C2e
−2it.

As before, the complex form C1e
2it+C2e

−2it is equivalent to the real form A1 cos 2t+A2 sin 2t.

Remarks: (1) When the nonhomogeneous term, i.e. RHS in (1), is cos ωt or sinωt, the first ap-
proach, i.e. complexifying the ODE, is generally faster, but riskier if you are not used to complex
numbers. This is the case whether you use the second-order integrating factor approach or the
method of undetermined coefficients. Note that if the the forcing term is sin ωt, you would need to
take the imaginary part of the complex solution.
(2) The complex form C1e

at+ibt+C2e
at−ibt of the general solution of an ODE is always equivalent

to the real form A1e
at cos bt+A2e

at sin bt.

(b; 10pts) Use the second-order integrating factor method to find the real general solution of

y′′ + 5y′ + 4y = t · e−t. (4)

In this case, the characteristic polynomial is

λ2 + 5λ + 4 = (λ + 1)(λ + 4).

Thus, the two characteristic roots are λ1 =−1 and λ2 =−4, and(
e((−4)−(−1))t(e−(−4)ty)′

)′ = e−(−1)t(y′′ + 5y′ + 4y). (5)

Multiplying both sides of (4) by et and using (5), we obtain

y′′ + 5y′ + 4y = t · e−t =⇒ et(y′′ + 5y′ + 4y) = t =⇒
(
e−3t(e4ty)′

)′ = t.
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Integrating twice, we obtain

e−3t(e4ty)′ =
∫

t dt =
1
2
t2 + C1 =⇒ (e4ty)′ =

1
2
t2e3t + C1e

3t

=⇒ e4ty(t) =
1
2

∫
t2e3tdt + C1

∫
e3tdt =

1
6
(
t2e3t −

∫
2te3tdt

)
+

C1

3
e3t

=
1
6
t2e3t − 1

9
(
te3t −

∫
e3tdt

)
+

C1

3
e3t =

1
6
t2e3t − 1

9
te3t +

1
27

e3t +
C1

3
e3t + C2.

Since we can replace (1/27)+(C1/3) with C1, the general solution of (4) is

y(t) = 1
6 t2e−t − 1

9 te−t + C1e
−t + C2e

−4t

Remark: In these two cases, the second-order integrating factor approach is not any easier and
perhaps a bit harder than the method of undetermined coefficients. In general, the method of un-
determined coefficients will be faster whenever it is applicable, i.e. you know what form a solution
should have. On the other hand, the integrating factor approach works for all forcing terms.

Section 4.1, Problems 12,14 (18pts)

4.1:12; 8pts: Show that y1(t) = e−t cos 2t and y2(t) = e−t sin 2t form a fundamental set of solu-
tions for

y′′ + 2y′ + 5y = 0.

Find a solution satisfying y(0)=−1 and y′(0)=0.
The functions y1(t) and y2(t) are linearly independent, since tan 2t=y2(t)/y1(t) is not a constant
function. Thus, in order to prove the first statement, we only need to check that y1(t) and y2(t)
solve the ODE:

y′1(t) = e−t
(
− 2 sin 2t− cos 2t

)
=⇒ y′′1(t) = e−t

(
− 4 cos 2t + 2 sin 2t + 2 sin 2t + cos 2t

)
= e−t

(
4 sin 2t− 3 cos 2t

)
;

y′2(t) = e−t
(
2 cos 2t− sin 2t

)
=⇒ y′′2(t) = e−t

(
− 4 sin 2t− 2 cos 2t− 2 cos 2t + sin 2t

)
= −e−t

(
4 cos 2t + 3 sin 2t

)
.

Plugging these expressions into the ODE, we obtain

y′′1 + 2y′1 + 5y1 = e−t
(
4 sin 2t− 3 cos 2t− 4 sin 2t− 2 cos 2t + 5 cos 2t

)
= 0;

y′′1 + 2y′1 + 5y1 = e−t
(
− 4 cos 2t− 3 sin 2t + 4 cos 2t− 2 sin 2t + 5 sin 2t

)
= 0,

as needed. For the initial-value problem, we need to find C1 and C2 such that y(0) = −1 and
y′(0)=0 if y=C1y1+C2y2. Using the above expressions for y′1 and y′2, we find that

y(0) = C1 = −1 and y′(0) = −C1 + 2C2 = 0.
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Thus, C2 =−1/2, and the solution to the initial value problem is y(t) = −e−t cos 2t− 1
2e−t sin 2t

4.1:14 (a; 2pts) Show that y1(t)= t2 is a solution of

t2y′′ + ty′ − 4y = 0. (6)

We need to plug in y1 into (6). Since y′1 =2t and y′′1 =2,

t2y′′1 + ty′1 − 4y1 = t2 · 2 + t · 2t− 4 · t2 = 0,

as needed.
(b; 8pts) Let y2(t)=v(t)y1(t)=v(t)t2. Show that y2 is a solution of (6) if and only if v satisfies

5v′ + tv′′ = 0. (7)

Solve this equation for v and describe the general solution of (6).
We need to plug in y2 into (6):

y′2(t) = t2v′(t) + 2tv(t) =⇒ y′′2(t) = t2v′′(t) + 2tv′(t) + 2tv′(t) + 2v(t) = t2v′′ + 4tv′ + 2v

=⇒ 0 = t2y′′2 + ty′2 − 4y2 =
(
t4v′′ + 4t3v′ + 2t2v

)
+

(
t3v′ + 2t2v

)
− 4t2v = t4v′′ + 5t3v′.

Dividing the last expression by t3, we obtain (7). In order to solve (7), we first divide this equation
by t and then multiply by the integrating factor e

∫
(5/t)dt = |t|5, or just by t5:

5v′ + tv′′ = 0 =⇒ t5v′′ + 5t4v′ = 0 =⇒ (t5v′)′ = 0 =⇒ t5v′(t) = C1

=⇒ v′(t) = C1t
−5 =⇒ v(t) = −C1

4
t−4 + C2.

Since we need to find a single non-constant solution of (7), we can take

v(t) = t−4 and y2(t) = v(t)y1(t) = t−4t2 = t−2.

The general solution of (6) is thus given y(t) = C1t
2 + C2t

−2

Section 4.2, Problems 4 (4pts)

Use the substitution v=y′ to write the second-order ODE

y′′ + 2y′ + 2y = sin 2πt

as a system of two first-order equations.
Since v = y′,

v′ = y′′ = −2y′ − 2y + sin 2πt = −2v − 2y + sin 2πt.

Thus, the above second-order ODE is equivalent to the system{
y′ = v

v′ = −2v − 2y + sin 2πt.
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Section 4.3, Problems 4,10,14,26 (26pts)

4.3:4; 5pts: Find the general solution of the ODE

2y′′ − y′ − y = 0.

The characteristic polynomial for this equation is

2λ2 − λ− 1 = (2λ + 1)(λ− 1).

Thus, the two characteristic roots are λ1 =−1/2 and λ2 =1. Since they are real and distinct, and

the general solution of the ODE is y(t) = C1e
t + C2e

−t/2

4.3:10; 8pts: Find the general solution of the ODE

y′′ + 2y′ + 17y = 0.

The characteristic polynomial for this equation is

λ2 + 2λ + 17 = (λ− λ1)(λ− λ2), λ1, λ2 = −1±
√

1−17 = −1± 4i.

Thus, the two characteristic roots are complex, and so is the general solution of the ODE

y(t) = C1e
(−1+4i)t + C2e

(−1−4i)t.

The corresponding general real solution is given by y(t) = C1e
−t cos 4t + C2e

−t sin 4t

4.3:14; 5pts: Find the general solution of the ODE

y′′ − 6y′ + 9y = 0.

The characteristic polynomial for this equation is

λ2 − 6λ + 9 = (λ− 3)2.

Thus, this equation has a repeated root, λ=3, and the general solution of the ODE is

y(t) = C1e
3t + C2te

3t

4.3:26; 8pts: Find the solution to the initial value problem

4y′′ + y = 0, y(1) = 0, y′(1) = −2.

The characteristic polynomial for this equation is

4λ2 + 1 = (2λ + i)(2λ− i).
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Thus, the two roots, λ1 = i/2 and λ=−i/2 are distinct, and the general (complex) solution is

y(t) = C1e
it/2 + C2e

−it/2.

The initial conditions y(1)=0 and y′(1)= −2 give

0 = y(1) = C1e
i/2 + C2e

−i/2 and − 2 = y′(1) = C1
i

2
ei/2 − C2

i

2
e−i/2.

Thus, C1 =2ie−i/2 and C2 =−2iei/2, and

y(t) = 2ie−i/2eit/2 − 2iei/2e−it/2 = 2i
(
ei(t−1)/2 − e−i(t−1)/2

)
= 2i · 2i sin((t−1)/2) = −4 sin((t−1)/2).

Thus, the solution to the initial value problem is y(t) = −4 sin((t−1)/2) Please check that this
function indeed satisfies the ODE and the initial conditions.

Section 4.4, Problem 17 (8pts)

Prove that an overdamped solution of my′′+µy′ky=0 can cross the time axis no more than once.
Rewrite the given equation as

y′′ +
µ

m
y′ +

k

m
= 0 =⇒ y′′ + 2cy′ + ω2

0y = 0,

where 2c=µ/m and ω2
0 = k/m. The characteristic equation is λ2+2cλ+ω2

0 =0. Its roots are

λ1 = −c−
√

c2 − ω2
0 and λ2 = −c +

√
c2 − ω2

0

Since the system is overdamped, c2−ω2
0 >0, and we have two distinct real roots λ1 6=λ2 <0. The

general solution is of the form
y(t)=C1e

λ1t + Cλ2t
2 .

The number of times any such curve crosses the t-axis is the number of values of t for which

C1e
λ1t + C2e

λ2t = eλ1t(C1 + C2e
(λ2−λ1)t) = 0.

Since eλ1t is never zero, the point (t, y(t)) will lie on the t-axis if and only if

C1 + C2e
(λ2−λ1)t = 0 =⇒ e(λ2−λ1)t = −C1

C2

Now, if C1/C2 ≥ 0, the right hand side is negative or zero. It has no logarithm and hence there
are no times t where y(t)=0. If C1/C2 < 0, the solution curve intersects the t-axis only at time

t =
1

λ2 − λ1
ln

(
−C1

C2

)
Note that λ1 6=λ2 above. Thus, the solution curve never intersects the t-axis more than once.
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Section 4.5, Problems 2,6,16,18,26,30,32,42 (74pts)

4.5:2; 6pts: Using an exponential forcing term, find a particular solution of the equation

y′′ + 6y′ + 8y = −3e−t.

We look for the particular solution of the form yp(t) = Ae−t. After making the substitutions:

yp(t) = A−t, y′p(t) = −Ae−t, y′′p(t) = Ae−t,

the equation becomes:

Ae−t − 6Ae−t + 8Ae−t = −3e−t =⇒ 3Ae−t =−3e−t =⇒ A = −1.

Thus, a particular solution is y(t) = −e−t

4.5:6; 8pts: Use the form y = a cos ωt + b sinωt to find a particular solution of the equation

y′′ + 9y = sin 2t

Let yp(t) = a cos 2t + b sin 2t. After making the substitutions:

yp(t) = a cos 2t + b sin 2t, y′p(t) = −2a sin 2t + 2b cos 2t, y′′p(t) = −4a cos 2t− 4b sin 2t,

the equation y′′ + 9y = sin 2t becomes:

− 4a cos 2t− 4b sin 2t + 9a cos 2t + 9b sin 2t = sin 2t

=⇒ 5a cos 2t + 5b sin 2t = sin 2t =⇒ a = 0, b =
1
5

A particular solution is y(t) = 1
5 sin 2t

4.5:16; 8pts: Find a particular solution of the equation

y′′ + 5y′ + 6y = 4− t2

The forcing term is a quadratic polynomial, so we look for a particular solution of the form

yp(t) = at2 + bt + c, =⇒ y′p(t) = 2at + b, =⇒ y′′p(t) = 2a.

The equation becomes:

y′′ + 5y′ + 6y = 4− t2 =⇒ 2a + 5(2at + b) + 6(at2 + bt + c) = 4− t2

=⇒ 6at2 + (10a + 6b)t + (2a + 5b + 6c) = −t2 + 4.

Thus, a, b, c must satisfy:

6a = −1, 10a + 6b = 0, 2a + 5b + 6c = 4 =⇒ a = −1
6
, b =

5
18

, c =
53
108

.
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So, a particular solution is yp(t) = −1
6 t2 + 5

18 t + 53
108

4.5:18; 12pts: For the equation
y′′ + 3y′ + 2y = 3e−4t,

first solve the associated homogeneous equation, then find a particular solution. Using Theorem 5.2,
form the general solution, and then find the solution satisfying initial conditions y(0)=1, y′(0)=0.
The homogeneous equation y′′ + 3y′ + 2 = 0 has characteristic equation

λ2 + 3λ + 2 = (λ + 1)(λ + 2) = 0,

with zeros λ1 = −1 and λ2 = −2. Thus, the homogeneous solution is

yh(t)=C1e
−t + C2e

−2t.

For yp =Ae−4t, y′p = −4Ae−4t and y′′p =16Ae−4t. Substituting into the inhomogeneous ODE, we get

16Ae−4t + 3(−4Ae−4t) + 2Ae−4t = 3e−4t =⇒ 6A = 3 =⇒ A =
1
2

Thus, a particular solution is yp(t)= 1
2e−4t. By Theorem 5.2, the general solution is

y = C1e
−t + C2e

−2t + 1
2e−4t

The given initial conditions imply:

y(0) = C1 + C2 +
1
2

= 1, y′(0) = −C1 − 2C2 − 2 = 0 =⇒ C1 =3, C2 = −5/2.

So, the solution to the initial value problem is y = 3e−t − 5
2e−2t + 1

2e−4t

4.5:26; 10pts: In the equation y′′+4y=4 cos 2t, the forcing term is also a solution of the associated
homogeneous equation. Use this to find a particular solution.
Our strategy is to look at the equation z′′+4z =e2it, of which the given equation is the real part.
The characteristic equation of the homogeneous equation z′′+4z=0 is λ2+4=0. Its roots are ±2i.
So, the homogeneous solution is:

zh = C1e
2it + C2e

−2it

The forcing term of z′′+4z=4e2it is also a solution of the homogeneous equation. Thus, we try to
find a particular solution of the form zp =Ate2it:

zp = Ate2it =⇒ z′p = Ae2it(1 + 2it) =⇒ z′′p = 4Ae2it(i− t).

After substituting these into z′′ + 4z = 4e2it, we get:

4Ae2it(i− t) + 4Ate2it = 4e2it =⇒ 4iA = 4 =⇒ A =
1
i

= −i

=⇒ zp = −ite2it = −it(cos 2t + i sin 2t) = t sin 2t− it cos 2t.
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Its real part is a particular solution we are looking for: yp = Re(zp) = t sin 2t

4.5:30; 10pts: If yf (t) and yg(t) are solutions of

y′′ + py′ + qy = f(t) and y′′ + py′ + qy = g(t),

respectively, show that z(t) = αyf (t) + βyg(t) is a solution of

y′′ + py′ + qy = αf(t) + βg(t),

where α and β are any real numbers.
We are given that:

y′′f + py′f + qyf = f(t) and y′′g + py′g + qyg = g(t)

We plug in z(t) into y′′+py′+qy=αf(t)+βg(t) and use these two properties of yf and yg:

z′′ + pz′ + qz = (αyf + βyg)′′ + p(αyf + βyg)′ + q(αyf + βyg)
= (αy′′f + βy′′g ) + p(αy′f + βy′g) + q(αyf + βyg)

= α(y′′f + py′f + qyf ) + β(y′′g + py′g + qyg)

= αf(t) + βg(t).

Thus, z(t)=αyf (t)+βyg(t) is a solution of y′′+py′+qy=αf(t)+βg(t).

4.5:32; 12pts: Use the previous exercise to find a particular solution of the equation

y′′ − y = t− e−t.

The forcing term is the linear combination t−e−t = 1 · t + (−1)e−t. We first find a particular
solution yp1 of y′′−y = t, and then a particular solution yp2 of y′′−y = −e−t. By the previous
exercise, yp1−yp2 will be a particular solution to our equation. To find yp1 , substitute y=at+b into

y′′ − y = t =⇒ − at− b = t =⇒ a = −1, b = 0, =⇒ yp1(t) = −t.

To find yp2 , note that the characteristic equation for the homogeneous equation y′′−y=0 is λ2−1=0.
Its roots are λ1 = −1 and λ2 =1, giving the homogeneous solution

yh = C1e
−t + C2e

t.

It follows that the forcing term e−t is a solution of the homogeneous equation. So we try to find
yp2 of the form yp2(t)=Ate−t:

yp2 = Ate−t =⇒ y′p2
= Ae−t(1− t) =⇒ y′′p2

= Ae−t(t− 2).

The equation now becomes:

e−t = y′′p2
− yp2 = Ae−t(t− 2)−Ate−t =⇒ − 2A = 1 =⇒ A = −1

2
=⇒ yp2(t) = −1

2
te−t.
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So a particular solution of y′′−y= t−e−t is yp = yp1−yp2 = −t + 1
2 te−t

4.5:42; 12pts: Find a particular solution of the equation y′′ + 5y′ + 4y = te−t.
The characteristic equation for the corresponding homogeneous equation y′′+5y′+4=0 is

λ2 + 5λ + 4 = (λ + 1)(λ + 4) = 0.

Its are roots λ1 = −1 and λ2 = −4, and the homogeneous solution is

yh = C1e
−4t + C2e

−t.

In particular, e−t is a solution to the homogeneous equation. Thus, we modify the hint in Exer-
cise 39, and look for a particular solution of the form yp = t(at+b)e−t:

yp(t) = t(at + b)e−t =⇒ y′p(t)=(−at2 + (2a− b)t + b)e−t

=⇒ y′′p(t) = (at2 + (−4a+b)t + (2a−2b))e−t

Substituting, we get:

te−t = y′′ + 5y′ + 4y = (6at + (2a + 3b))e−t =⇒ 6a = 1, 2a + 3b = 0, =⇒ a =
1
6
, b = −1

9
.

Thus, a solution of y′′+5y′+4y= te−t is yp = 1
6 t2e−t − 1

9 te−t

Section 4.6, Problem 13

Verify that y1(t)= t and y2(t)= t−3 are solutions to the homogeneous equation

t2y′′ + 3ty′ − 3y = 0.

Use variation of parameters to find the general solution to

t2y′′ + 3ty′ − 3y = t−1.

For the first part, plug in y1(t)= t and y2(t)= t−3 into the homogeneous equation:

y1 = t, y′1 =1, y′′1 =0 =⇒ t2y′′1 + 3ty′1 − 3y1 = t2 · 0 + 3t · 1− 3 · t = 0;

y1 = t−3, y′1 = −3t−4, y′′1 =12t−5 =⇒ t2y′′2 +3ty′2−3y2 = t2 · (12t−5) + 3t · (−3t−4)− 3t−3 = 0,

as needed. We look for a solution to the inhomogeneous equation of the form yp = v1y1 +v2y2.
Then,

y′p = (y1v
′
1 + y2v

′
2) + y′1v1 + y′2v2 = (tv′1 + t−3v′2) + v1 − 3t−4v2.

We set the expression in the parenthesis to zero. Thus,

y′p = v1 − 3t−4v2 =⇒ y′′p = v′1 + 12t−5v2 − 3t−4v′2 =⇒ t2y′′p +3ty′p−3yp = t2v′1 − 3t−2v′2 = t−1.

Since we also assumed that tv′1+t−3v′2 =0, we need to solve the system{
v′1 + t−4v′2 = 0
v′1 − 3t−4v′2 = t−3

=⇒ v′1 =
1
4
t−3, v′2 = −1

4
t =⇒ v1 = −1

8
t−2, v2 = −1

8
t2

=⇒ yp = v1y1 + v2y2 = −1
8
t−2 · t− 1

8
t2 · t−3 = −1

4
t−1.

Thus, the general solution is y(t) = C1t + C2t
−3 − 1

4 t−1
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