Math53: Ordinary Differential Equations Winter 2004

Homework Assignment 4

Problem Set 4 is due by 2:15p.m. on Monday, 2/23, in 380Y

Problem Set 4:

7.2: 8,14; 7.4: 16,$20 ; 7.5: 14,26 ; \quad 7.6: 14,28,44 ; \quad 8.1: 10 ; \quad 8.2: 13^{*} ; \quad 9.1: 6,54 ;$
9.2: $1^{*}, 4^{*}, 10,24^{*}, 26^{*}, 30,38^{*}, 40^{*}, 44 ; \quad 9.4: 14 ; ~ 9.5: ~ 8,12,14 ; ~ 9.8: ~ 6,18,29 ;$

PS4-Problem 30 (see next page)
*Note 1: In 8.2:13, justify your answers. In 9.2:1,4,24,26,38,40, sketch phase-plane portraits, as in Section 9.3.

Note 2: Since this problem set is due on a Monday, I will have office hours 4-6p.m. on Sunday, 2/22.

Daily Assignments:

Date	Read	Exercises
$2 / 9 \mathrm{M}$	$7.1-7.4,7.6$	$7.2: 8,14 ; 7.4: 16,20 ; 7.6: 14,28,44$
$2 / 10 \mathrm{~T}$	$7.5,9.1$	$7.5: 14,26 ; 9.1: 6,54$
$2 / 11 \mathrm{~W}$	$9.5(\mathrm{pp492-500top})$	$9.5: 8,12,14$
$2 / 12 \mathrm{R}$	$8.1,8.2$	$8.1: 10 ; 8.2: 13^{*}$
$2 / 13 \mathrm{~F}$	$9.2($ pp452-454), 9.3 (pp466-473top)	$9.2: 1^{*}, 4^{*}, 10$
$2 / 17 \mathrm{~T}$	9.2 (pp454-459mid), $9.3($ pp473-479)	$9.2: 24^{*}, 26^{*}, 30$
$2 / 18 \mathrm{~W}$	9.2 (pp459-463), 9.5	$9.2: 38^{*}, 40^{*}, 44$
$2 / 19 \mathrm{R}$	9.4	$9.4: 14$
$2 / 20 \mathrm{~F}$	9.8	$9.8: 6,18,29$
$2 / 23 \mathrm{M}$	$8.4,9.6,9.7$	$9.6: 7,9 ; 9.7: 17$

*Note 1: In 8.2:13, justify your answers. In 9.2:1,4,24,26,38,40, sketch phase-plane portraits, as in Section 9.3.

Note 2: Problems 9.6:7,9 and 9.7:17 are not part of Problem Set 4.

PS4-Problem 30

Recall that we are able to reduce the general first-order linear ODE

$$
y^{\prime}+a(t) y=f(t), \quad y=y(t)
$$

to a ready-to-integrate equation $(P y)^{\prime}=P f$ by finding an integrating factor $P=P(t)$ such that

$$
P^{\prime}=a P \quad \Longrightarrow \quad(P y)=P y^{\prime}+a P y
$$

Similarly, we can reduce a second-order linear ODE with constant coefficients

$$
y^{\prime \prime}+p y^{\prime}+q y=f, \quad y=y(t), \quad p, q=\mathrm{const}
$$

to a first-order linear ODE by multiplying by an integrating factor such that

$$
\left(P\left(y^{\prime}+a y\right)\right)^{\prime}=P\left(y^{\prime \prime}+p y^{\prime}+q\right)
$$

for some function $a=a(t)$. This integrating factor is $P(t)=e^{-\lambda_{1} t}$, where λ_{1} is one of the roots of the corresponding characteristic polynomial $\lambda^{2}+p \lambda+q=0$. We cannot adapt this approach to an arbitrary second-order linear ODE. Here is why.
(a) Suppose we would like to find smooth nonzero functions $P=P(t)$ and $Q=Q(t)$ such that

$$
\begin{equation*}
\left(Q\left(y^{\prime}+a y\right)\right)^{\prime}=P\left(y^{\prime \prime}+p y^{\prime}+q y\right), \quad p=p(t), q=q(t) \tag{1}
\end{equation*}
$$

for some smooth function $a=a(t)$ and for every smooth function $y=y(t)$. Show that we must have

$$
P=Q, \quad P^{\prime}+P a=P p, \quad \text { and } \quad(P a)^{\prime}=q P
$$

(b) Thus, the functions P and a can be found by finding a nonzero solution to

$$
\binom{P}{(P a)}^{\prime}=\left(\begin{array}{cc}
p & -1 \\
q & 0
\end{array}\right)\binom{P}{(P a)} \quad P=P(t), a=a(t)
$$

Find a nonzero solution to this ODE if p and q are constant, obtaining an integrating factor for second-order ODEs with constant coefficients. Use it to find $R=R(t)$ such that

$$
\left(P(R y)^{\prime}\right)^{\prime}=P\left(y^{\prime \prime}+p y^{\prime}+q y\right), \quad p, q=\text { const }
$$

(c) Apply the same approach to third-order ODEs. In other words, if $p, q, r=$ const, find functions $P=P(t) \neq 0, Q=Q(t)$, and $R=R(t)$, such that

$$
\left(P\left(Q(R y)^{\prime}\right)^{\prime}\right)^{\prime}=P\left(y^{\prime \prime \prime}+p y^{\prime \prime}+q y^{\prime}+r y\right)
$$

