
Math53: Ordinary Differential Equations
Winter 2004

Midterm I Solutions

Problem 1 (20pts)

(a; 15pts) Find the general solution y=y(t) to the ODE

y′ = cos t − y cos t.

Sketch three solution curves.

This ODE, which is as in 2.4:13, can be treated as either linear or separable. If treated as linear:

y′+(cos t)y = cos t =⇒ P (t) = e
∫

cos tdt = esin t; esin t
(

y′ + (cos t)y
)

= esin t cos t

=⇒ (esin ty)′ = esin t cos t =⇒ esin ty =

∫

esin t cos t dt

=⇒ esin ty = esin t + C =⇒ y(t) = 1 + Ce− sin t

If treated as separable:

dy

dt
= (1−y) cos t =⇒ dy

1−y
= cos t dt =⇒

∫

dy

1−y
=

∫

cos t dt =⇒ − ln |1−y| = sin t + C

=⇒ |1−y| = e− sin t−C =⇒ 1−y = ±e−Ce− sin t =⇒ y(t) = 1 + Ae− sin t
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(b; 5pts) Find the solution y=y(t), including the interval of existence, to the initial value problem

y′ = cos t − y cos t, y(π) = 3.

We need to find C (or A) such that y(π)= 1+Ce−0 =3. The corresponding (as well as any other)

solution of the ODE is defined for all t. Thus, y(t) = 1+2e− sin t, t∈(−∞,∞)



Problem 2 (25pts)

(a; 15pts) Show that the ODE

2t − y2 + (y3−2ty)y′ = 0

is exact and solve it for y=y(t), implicitly or explicitly.

Since (2t−y2)y =−2y and (y3−2ty)t =−2y, these two partial derivatives are equal. Since 2t−y2

and y3−2ty are defined for all t and y, it follows that the ODE is exact. In order to solve it, we
need to find H =H(t, y) such that Ht =(2t−y2) and Hy =(y3−2ty):

Ht(t, y) = 2t−y2 =⇒ H(t, y) =

∫

(2t−y2) dt = t2 − ty2 + φ(y)

Hy(t, y) = y3−2ty =⇒ 0 − 2ty + φ′(y) = y3−2ty =⇒ φ′(y) = y3

=⇒ φ(y) =

∫

y3dy =
1

4
y4 =⇒ H(t, y) =

1

4
y4 − ty2 + t2.

Thus, the general solution y=y(t) of the above ODE is implicitly defined by

1

4
y4 − ty2 + t2 = C or y4 − 4ty2 + 4t2 = C

(b; 10pts) Find an explicit solution y=y(t), including the interval of existence, to the initial value

problem

2t − y2 + (y3−2ty)y′ = 0, y(1) = 1.

We first need to find C such that (t, y)=(1, 1) solves y4−4ty2+4t2 =C:

C = 14 − 4 · 1 · 12 + 4 · 12 = 1.

We next solve the resulting equation for y:

y4 − 4ty2 + 4t2 = 1 =⇒ (y2−2t)2 = 1 =⇒ y2−2t = −1 =⇒ y(t) =
√

2t−1.

Note that at the first stage we need to take the negative square root of RHS, since 12−2 · 1=−1,
while at the second stage we need to take the positive square root. Since y = y(t) is defined for
t≥1/2, we conclude that

y(t) =
√

2t−1, t ∈ (1/2,∞)
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Problem 3 (30pts)

(a; 7pts) Find the general solution y=y(t) to the ODE

y′′ − 4y′ + 4y = 0.

The characteristic polynomial for this ODE is

λ2 − 4λ + 4 = (λ − 2)2.

Since the two roots λ1, λ2 =2, the general solution of this ODE is given by

y(t) = C1e
2t + C2te

2t

(b; 15pts) Find a solution y=y(t) to the ODE

y′′ − 4y′ + 4y = 16 sin 2t.

One way to find a solution yp for this ODE is to find a solution zp of

z′′ − 4z′ + 4z = 16e2it

and then take yp =Im zp. We try zp =ae2it:

z′p = 2iae2it, z′′p = (2i)2ae2it = −4ae2it =⇒ − 4ae2it − 4 · 2iae2it + 4 · ae2it = 16e2it

=⇒ − 8ia = 16 =⇒ a = 2i =⇒ zp = 2ie2it = 2i
(

cos 2t+i sin 2t
)

= −2 sin 2t + 2i cos 2t

=⇒ yp = Im zp = 2cos 2t

Another way is to try yp =a cos 2t+b sin 2t:

y′p = −2a sin 2t + 2b cos 2t, y′′p = −4a cos 2t − 4b sin 2t

=⇒
(

−4a cos 2t−4b sin 2t
)

− 4
(

−2a sin 2t+2b cos 2t
)

+ 4
(

a cos 2t+b sin 2t
)

= 16 sin 2t

=⇒ 8a = 16, − 8b = 0 =⇒ a = 2, b = 0 =⇒ yp = 2cos 2t

Yet another way is to observe that

(cos 2t)′′−4(cos 2t)′+4cos 2t = 8 sin 2t, (sin 2t)′′−4(sin 2t)′+4 sin 2t = −8 cos 2t =⇒ yp = 2cos 2t

(c; 8pts) Find the solution y=y(t) to the initial value problem

y′′ − 4y′ + 4y = 24 sin 2t, y(0) = 0, y′(0) = 0.

Since y=2cos 2t is a solution of y′′−4y′+4y=16 sin 2t, a solution of

y′′ − 4y′ + 4y = 24 sin 2t

is given by yp = 24

16
· 2 cos 2t = 3cos 2t. Thus, the general solution of y′′−4y′+4y=24 sin 2t is

y = C1e
2t + C2te

2t + 3cos 2t,

using part (a). We need to find C1 and C2 such that

y(0) = C1 + 0 + 3 = 0, y′(0) = 2C1 + C2 − 6 · 0 = 0 =⇒ C1 = −3, C2 = 6

=⇒ y(t) = −3e2t + 6te2t + 3cos 2t, t∈(−∞,∞)
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Figure 1: Plots for Problem 4

Problem 4 (25pts)

(a; 5pts) Sketch the graph of the function

f(y) = −(y + 1)(y − 2)2.

Label all its intercepts with the y-axis and the f(y)-axis.
See the first plot in Figure 1.

(b; 5pts) Find the equilibrium solutions of the ODE

y′ = −(y + 1)(y − 2)2

and sketch their graphs in the ty-plane.
The equilibrium, or constant solutions, are y=y∗ such that f(y∗)=0. In this case, the equilibrium
solutions are y=−1, y=2 Their graphs are the horizontal lines y =−1 and y =2, shown in
the last plot of Figure 1.

(c; 15pts) On the same plot, sketch at least one solution curve of the ODE

y′ = −(y + 1)(y − 2)2

in each region of the ty-plane cut out by the graphs of the equilibrium solutions. Indicate their

asymptotic behavior, i.e. as t −→±∞. Explain your reasoning. Determine whether each of the

equilibrium solutions is asymptotically stable or unstable. Draw the phase line.

Since no two solution curves can cross, no solution curve can cross the horizontal lines y=−1 and
y = 2. Thus, if y(t0)<−1 for some t0, y(t)<−1 for all t. It follows that in this case y′(t)> 0 for
all t, as can be seen either from the graph of f or directly from its definition. Thus, the solution
curves in the bottom region ascend and approach the horizontal line y=−1 as t−→∞ and drop to
−∞ as t−→−∞. By the same reasoning, if −1<y(t0)<2 for some t0, −1<y(t)<2 and y′(t)<0
for all t, and the solution curves in the middle region descend. They approach the horizontal lines
y =−1 and y = 2 as t−→∞ and t−→−∞, respectively. Finally, if y(t0) > 2 for some t0, y(t) > 2
and y′(t)< 0 for all t, and the solution curves in the top region also descend. They approach the
horizontal line y=2 as t−→∞ and rise to ∞ as t−→−∞; see the third plot of Figure 1. The phase
line, i.e. the middle plot of Figure 1, encodes what happens to the solution curves in each region
by arrows. The equilibrium solution y=−1 is stable since both arrows around the point y=−1
on the phase line point toward it. Since this is not the case for y = 2, the equilibrium solution
y=2 is unstable
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