MAT 615: Complex Curves and Surfaces Spring 2009

Problem Set 2
Due on Tuesday, 03/03, at 12:40pm

Please write up concise solutions to 3 problems; about half a page for each problem should do.

Problem 1 (5 pts)
Let S be a compact connected surface of genus g and $p_{0} \in S$. By the Jacobi inversion theorem, the map

$$
S^{(g)} \longrightarrow J a c(S) \equiv H^{0}\left(S ; \mathcal{K}_{S}\right)^{*} / \Lambda_{S}, \quad\left[p_{1}, \ldots, p_{d}\right] \longrightarrow \sum_{i=1}^{i=g} \int_{p_{0}}^{p_{i}}
$$

is onto and generically one-to-one; see p 236 for notation. If $g=1$, it is a biholomorphism (presenting every genus 1 curve as \mathbb{C} / Λ). Describe this map in the case $g=2$.

Problem 2 (5 pts)

Describe all special divisors on a smooth compact Riemann surface of genus 0,1 and 2 .

Problem 3 (5 pts)
Let $C, D_{1}, D_{2} \subset \mathbb{P}^{2}$ be smooth cubics. If

$$
C \cdot D_{1}=\sum_{i=1}^{i=9} p_{i}
$$

as divisors on C and D_{2} passes through p_{1}, \ldots, p_{8}, then $p_{9} \in D_{2}$.

Problem 4 (5 pts)

Let $C \subset \mathbb{P}^{n}$ with $n \geq 3$ be a smooth (connected) curve of genus 1 and degree 4 . Show that C is contained in some linearly embedded $\mathbb{P}^{3} \subset \mathbb{P}^{n}$ and is the intersection of two quadric (degree 2) surfaces in that \mathbb{P}^{3}.

