# MAT 566: Differential Topology Fall 2006 

Problem Set 5

Due on Thursday, 11/16, by 5pm in Math 3-117
Please do Problem (v). Problem (iv) is 10 bonus pts; 14-B and $14-\mathrm{E}$ are 5 bonus pts each.
Problem (iv): Suppose $f: M \longrightarrow M$ is a diffeomorphism. A fixed point $x$ of $f$ (i.e. $f(x)=x$ ) is called nondegenerate if the isomorphism $\left.d f\right|_{x}: T_{x} M \longrightarrow T_{x} M$ has no eigenvalues equal to 1 .
(a) Show that a nondegenerate fixed point is necessarily isolated (in the set of fixed points).
(b) Suppose $M$ is compact and $f$ is homotopic to the identity.
(b-i) If $M$ is oriented and the euler characteristic is non-zero, show that $f$ has at least one fixed point. If in addition all fixed points are nondegenerate, show that their number is at least $|\chi(M)|$.
(b-ii) If the euler characteristic of $M$ is odd, show that $f$ has at least one fixed point. Hint: This is a sequel to Problem (iii).

Problem (v): A homogeneous cubic polynomial in four variables,

$$
f\left(X_{0}, X_{1}, X_{2}, X_{3}\right)=\sum_{i+j+k+l=3} a_{i j k l} X_{0}^{i} X_{1}^{j} X_{2}^{k} X_{3}^{l}
$$

naturally corresponds to an element

$$
\tilde{f} \in\left(\operatorname{Sym}^{3}\left(\left(\mathbb{C}^{4}\right)\right)^{*} \approx \operatorname{Sym}^{3}\left(\left(\mathbb{C}^{4}\right)^{*}\right) \equiv\left(\mathbb{C}^{4}\right)^{*} \otimes\left(\mathbb{C}^{4}\right)^{*} \otimes\left(\mathbb{C}^{4}\right)^{*} / \sim, \quad \alpha \otimes \beta \otimes \gamma \sim \beta \otimes \alpha \otimes \gamma \sim \alpha \otimes \gamma \otimes \beta\right.
$$

This is because each $X_{i}$ defines a linear map $X_{i}: \mathbb{C}^{4} \longrightarrow \mathbb{C}$, i.e. the projection onto the $i$ th coordinate. Since every fiber of the tautological 2-plane bundle $\gamma_{2} \longrightarrow \mathrm{Gr}_{2} \mathbb{C}^{4}$ is a linear subspace of $\mathbb{C}^{4}$, by restriction $f$ induces a section

$$
s_{f} \in \Gamma\left(\operatorname{Gr}_{2} \mathbb{C}^{4} ; \operatorname{Sym}^{3}\left(\gamma_{2}^{*}\right)\right)
$$

Note that the complex rank of the bundle $\operatorname{Sym}^{3}\left(\gamma_{2}^{*}\right) \longrightarrow \operatorname{Gr}_{2} \mathbb{C}^{4}$ equals to the dimension of $\mathrm{Gr}_{2} \mathbb{C}^{4}$. Thus, if $s_{f}$ is transverse to the zero set (as is the case for a generic $f$ ), the set $s_{f}^{-1}(0)$ is finite and its signed cardinality is

$$
\pm\left|s_{f}^{-1}(0)\right|=\left\langle e\left(\operatorname{Sym}^{3}\left(\gamma_{2}^{*}\right)\right), \operatorname{Gr}_{2} \mathbb{C}^{4}\right\rangle \in \mathbb{Z} .
$$

In fact, $s_{f}$ is a holomorphic section of a holomorphic vector bundle and thus all its zeros are positive.
A cubic surface $Y$ in $\mathbb{C} P^{3}$ is the zero set of a homogeneous cubic polynomial in four variables, i.e.

$$
Y \equiv Y_{f}=\left\{\left[X_{0}, X_{1}, X_{2}, X_{3}\right] \in \mathbb{C} P^{3}: \sum_{i+j+k+l=3} a_{i j k l} X_{0}^{i} X_{1}^{j} X_{2}^{k} X_{3}^{l}=0\right\}=\left(f^{-1}(0)-0\right) / \mathbb{C}^{*}
$$

A projective line $\ell$ in $\mathbb{C} P^{3}$ corresponds to a 2-plane $P$ in $\mathbb{C}^{4}$, i.e. an element of $\mathrm{Gr}_{2} \mathbb{C}^{4}$. Such a line $\ell$ lies in $Y_{f}$ if and only if $\left.f\right|_{P}$ vanishes identically, i.e. $P \in s_{f}^{-1}(0)$. Thus, if $f$ is generic, the number of lines in $Y_{f}$ is finite and is given by the euler class of $\operatorname{Sym}^{3}\left(\gamma_{2}^{*}\right)$.
(a) Formulate and prove a splitting principle for chern classes.
(b) Use it to determine the number of lines that lie on a generic cubic surface in $\mathbb{C} P^{3}$.
(c) Determine the number of lines that lie on a generic quintic threefold in $\mathbb{C} P^{4}$.

