MAT 566: Differential Topology Spring 2018

Problem Set 7 Due on Monday, 04/30, by 5pm in Math 3-111

Please do either Problem x or two of the following problems: ix, xi, 19-A, 19-B.

Problem (ix): For this problem, assume Hurewicz Theorem (standard and torsion versions), homotopy l.e.s. for fibration, and that $\pi_i(S^{2n-1})$ is finite unless i=2n-1. Let

$$W^{2n-1} = \{ (v, w) \in \mathbb{R}^{n+1} \colon |v|, |w| = 1, \ v \perp w \}.$$

(a) If n is odd, to what simpler space is W^{2n-1} diffeomorphic to? What is its homology?

(b) Suppose n is even. Determine the cohomology and homology of W^{2n-1} , at least mod torsion. Determine $\pi_i(W^{2n-1})$ for $i \leq 2n-1$, at least mod torsion. Determine $\pi_i(S^n)$ for $i \leq 2n-1$, at least mod torsion.

Problem (x): Suppose $n \ge 2$, $\pi_i(X) = 0$ and $\pi_i(Y) = 0$ for all i < n, and the Hurewicz homomorphisms

 $h_i: \pi_i(X) \longrightarrow H_i(X; \mathbb{Z})$ and $\pi_i(Y) \longrightarrow H_i(Y; \mathbb{Z})$

are isomorphisms mod torsion for all i < 2n-1. Show that

$$h_i: \pi_i(X \vee Y) \longrightarrow H_i(X \vee Y; \mathbb{Z})$$

is also an isomorphism mod torsion for all i < 2n-1.

Note: This is part of the proof of Theorem 18.3, but the book's proof is rather sketchy.

Problem (xi): Show that $\pi_n(S^1 \vee S^n)$ is not finitely generated for all $n \ge 2$.