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1 Definitions and Examples

A (smooth) real vector bundle V of rank k over a smooth manifold M is a smoothly varying family
of k-dimensional real vector spaces which is locally trivial. More formally, a real vector bundle is
a triple (M,V, π), where M and V are smooth manifolds and

π : V −→M

is a smooth map. For each m ∈M , the fiber Vm ≡ π−1(m) of V over m is a real k-dimensional
vector space:

m

Vm

V

M

π

The vector-space structures vary smoothly with m. This means that the scalar multiplication map

R × V −→ V, (c, v) −→ c · v,

and the addition map

V ×M V ≡
{

(v1, v2)∈V ×V : π(v1)=π(v2) ∈M
}

−→ V, (v1, v2) −→ v1+v2,

are smooth. Note that we can add v1, v2∈V only if they lie in the same fiber over M , i.e.

π(v1)=π(v2) ⇐⇒ (v1, v2) ∈ V ×M V.

The space V ×M V is a smooth submanifold of V ×V , as follows immediately from the Implicit
Function Theorem or can be seen directly. The local triviality condition means that for every point
m∈M there exist a neighborhood U of m in M and a diffeomorphism

h : V |U ≡ π−1(U) −→ U×R
k,

such that h takes every fiber of π to the corresponding fiber of the projection map π1 : U×R
k−→U ,

i.e. π1◦h=π on V |U so that the diagram
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V |U

U

π

U×R
kh

≈

π1

commutes, and the restriction of hU to each fiber is linear:

h(c1v1+c2v2) = c1h(v1) + c2h(v2) ∈ x× R
k ∀ c1, c2∈R, v1, v2∈Vx, x∈U .

These conditions imply that the restriction of h to each fiber Vx of π is an isomorphism of vector
spaces. In summary, V locally (and not just pointwise) looks like bundles of R

k’s over open sets in
M glued together. This is in a sense analogous to an n-manifold being open subsets of R

n glued
together in a nice way. Here is a formal definition.

Definition 1.1. A real vector bundle of rank k is a tuple (M,V, π, ·,+) such that
(1) M and V are smooth manifolds and π : V −→M is a smooth map;
(2) · : R×V −→V is a map s.t. π(c·v)=π(v) for all (c, v)∈R×V ;
(3) +: V ×M V −→V is a map s.t. π(v1+v2)=π(v1)=π(v2) for all (v1, v2)∈V ×M V ;
(4) for every m∈M there exist a neighborhood U of m in M and a diffeomorphism

h : V |U −→U×R
k such that

(4a) π1◦h=π on V |U and
(4b) the map h|Vx

: Vx−→x×R
k is an isomorphism of vector spaces for all x∈U .

Remark: Condition (4) implies that the vector space structures in the fibers of π vary smoothly
over M , i.e. the maps · and + in (2) and (3) of Definition 1.1 are smooth.

The spaces M and V are called the base and the total space of the vector bundle (M,V, π). It is
customary to call π : V −→M a vector bundle and V a vector bundle over M . If M is an n-manifold
and V −→M is a real vector bundle of rank k, then V is an (n+k)-manifold. Its local coordinate
charts are obtained by restricting the trivialization maps h for V , as above, to small coordinate
charts in M .

Example 1.2. If M is a smooth manifold and k is a nonnegative integer, then

π1 : M×R
k −→M

is a real vector bundle of rank k over M . It is called the trivial rank-k real vector bundle over M .

Example 1.3. Let M be the circle S1; it can be written as the quotient

S1 = I/ ∼, where I = [0, 1], 0 ∼ 1.

Let V be the infinite Mobius band:

V = (I×R)
/

∼, where (0, v) ∼ (1,−v) ∀ v∈R.

Then, the projection π : V −→S1 onto the first coordinate is well-defined and is a real line bundle

(i.e. rank-one bundle) over S1.
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Example 1.4. The real projective space of dimension n, denoted RPn, is the space of real one-
dimensional subspaces of R

n+1 (or lines through the origin in R
n+1) in the natural quotient topol-

ogy. In other words, a one-dimensional subspace of R
n+1 is determined by a nonzero vector in

R
n+1, i.e. an element of R

n+1−0. Two such vectors determine the same one-dimensional subspace
in R

n+1 and the same element of RPn if and only if they differ by a non-zero scalar. Thus, as sets

RPn =
(

R
n+1−0

)/

R
∗ ≡

(

R
n+1−0

)/

∼, where

R
∗ = R−0, c · v = cv ∈ R

n+1−0 ∀ c∈R
∗, v∈R

n+1−0, v ∼ cv ∀ c∈R
∗, v∈R

n+1−0.

Alternatively, a one-dimensional subspace of R
n+1 is determined by a unit vector in R

n+1, i.e. an
element of Sn. Two such vectors determine the same element of RPn if and only if they differ by
a non-zero scalar, which in this case must necessarily be ±1. Thus, as sets

RPn = Sn
/

Z2 ≡ Sn
/

∼, where

Z2 = {±1}, c · v = cv ∈ Sn ∀ c∈Z2, v∈S
n, v ∼ cv ∀ c∈Z2, v∈S

2.

Thus, as sets,
RPn =

(

R
n+1−0

)/

R
∗ = Sn

/

Z2.

It follows that RPn has two natural quotient topologies; these two topologies are the same, however.
The space RPn has a natural smooth structure, induced from that of R

n+1−0 and Sn. Let

γn =
{

(ℓ, v)∈RPn×R
n+1 : v∈ℓ

}

.

The projection π : γn −→RPn defines a smooth real line bundle. The fiber over a point ℓ∈RPn

is the one-dimensional subspace ℓ of R
n+1! For this reason, γn is called the tautological line bundle

over RPn. Note that RP 1 =S1 and γ1−→S1 is the infinite Mobius band of Example 1.3.

Example 1.5. If M is a smooth n-manifold, the tangent and cotangent bundles of M , TM and
T ∗M , are real vector bundles of rank n over M .

Please check all statements made above.

Definition 1.6. A complex vector bundle of rank k is a tuple (M,V, π, ·,+) such that
(1) M and V are smooth manifolds and π : V −→M is a smooth map;
(2) · : C×V −→V is a map s.t. π(c·v)=π(v) for all (c, v)∈C×V ;
(3) +: V ×M V −→V is a map s.t. π(v1+v2)=π(v1)=π(v2) for all (v1, v2)∈V ×M V ;
(4) for every m∈M there exists a neighborhood U of m in M and a diffeomorphism

h : V |U −→U×C
k such that

(4a) π1◦h=π on V |U and
(4b) the map h|Vx

: Vx−→x×C
k is an isomorphism of complex vector spaces for all x∈U .

Similarly to a real vector bundle, a complex vector bundle over M locally looks like bundles of
C

k’s over open sets in M glued together. If M is an n-manifold and V −→M is a complex vector
bundle of rank k, then V is an (n+2k)-manifold. A complex vector bundle of rank k is also a real
vector bundle of rank 2k, but a real vector bundle of rank 2k need not in general admit a complex
structure.

Example 1.7. If M is a smooth manifold and k is a nonnegative integer, then

π1 : M×C
k −→M

is a complex vector bundle of rank k over M . It is called the trivial rank-k complex vector bundle

over M .
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Example 1.8. The complex projective space of dimension n, denoted CPn, is the space of complex
one-dimensional subspaces of C

n+1 (or lines through the origin in C
n+1) in the natural quotient

topology. Similarly to the real case of Example 1.4,

CPn =
(

C
n+1−0

)/

C
∗ = S2n+1

/

S1, where

S1 =
{

c∈C
∗ : |c|=1

}

, S2n+1 =
{

v∈C
n+1−0: |v|=1

}

,

c · v = cv ∈ C
n+1−0 ∀ c∈C

∗, v∈C
n+1−0.

The two quotient topologies on CPn arising from these quotients are again the same. The space
CPn has a natural complex structure, induced from that of C

n+1−0. Let

γn =
{

(ℓ, v)∈CPn×C
n+1 : v∈ℓ

}

.

The projection π : γn−→CPn defines a smooth complex line bundle. The fiber over a point ℓ∈CPn

is the one-dimensional complex subspace ℓ of C
n+1. For this reason, γn is called the tautological

line bundle over CPn.

Example 1.9. If M is a complex n-manifold, the tangent and cotangent bundles of M , TM and
T ∗M , are complex vector bundles of rank n over M

Please check all statements made above.

2 Vector Bundle Sections and Homomorphisms

If π : V −→M is a vector bundle (real or complex), a section of π or V is a smooth map s : M−→V
such that π◦s = idM , i.e. s(x) ∈ Vx for all x ∈M . If s is a section, then s(M) is an embedded
submanifold of V : the injectivity of s and ds is immediate from π◦s= idM , while the embedding
property follows from the continuity of π. Every fiber Vx of V is a vector space and thus has a
distinguished element, the zero-vector in Vx, which we denote by 0x. It follows that every vector
bundle admits a section:

s0(x) = (x, 0x) ∈ Vx.

This map is smooth, since on a trivialization of V over an open subset U of M it is given by the
inclusion of U as U×0 into U×R

k or U×C
k. Thus, M can be thought of as sitting inside of V as

the zero section; it is a deformation retract of V :

V

s0(M)≈M

s(M)≈M

Definition 2.1. (1) Suppose π : V −→M and π′ : V ′−→N are real (or complex) vector bundles.
A smooth map f̃ : V −→V ′ is a vector bundle homomorphism if f̃ descends to a map f : M −→N ,
i.e. the diagram
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V

M

π

V ′

N

π′

f̃

f

commutes, and the restriction f̃ : Vx−→Vf(x) is linear (or C-linear, respectively) for all x∈M .

(2) If π : V −→M and π′ : V ′−→M are vector bundles, a vector bundle homomorphism f̃ : V −→V ′

is an isomorphism of vector bundles if π′◦f̃=π, i.e. the diagram

V V ′

M

f̃

π π′

commutes, and f̃ is a diffeomorphism (or equivalently, its restriction to each fiber is an isomorphism
of vector spaces). If such an isomorphism exists, then V and V ′ are said to be isomorphic vector

bundles.

Note that the two conditions above on f̃ are equivalent due to the local structures of V and V ′.

Lemma 2.2. The real line bundle V −→S1 given by the infinite Mobius band of Example 1.3 is
not isomorphic to the trivial line bundle S1×R−→S1.

Proof: In fact, (V, S1) is not even homeomorphic to (S1×R, S1). Since

S1×R − s0(S
1) ≡ S1×R − S1×0 = S1×R

− ⊔ S1×R
+,

the space S1×R − S1 is not connected. On the other hand, V −s0(S
1) is connected. If MB is

the standard Mobius Band and S1⊂MB is the central circle, MB−S1 is a deformation retract of
V −S1. On the other hand, the boundary of MB has only one connected component (this is the
primary feature of MB) and is a deformation retract of MB−S1. Thus, V −S1 is connected as
well.

Lemma 2.3. If π : V −→M is a real (or complex) vector bundle of rank k, V is isomorphic to
the trivial real (or complex) vector bundle of rank k over M if and only if V admits k sections
s1, . . . , sk such that the vectors s1(x), . . . , sk(x) are linearly independent (over C, respectively) in
Vx for all x∈M .

Proof: We consider the real case; the proof in the complex case is nearly identical.
(1) Suppose h : M×R

k −→ V is an isomorphism of vector bundles over M . Let e1, . . . , ek be the
standard coordinate vectors in R

k. Define sections s1, . . . , sk of V over M by

sl(x) = h
(

x, el
)

∀ l = 1, . . . , k, x ∈M.

Since the maps x−→ (x, el) are sections of M×R
k over M and h is a bundle homomorphism, the

maps sl are sections of V . Since the vectors (x, el) are linearly independent in x×R
k and h is

an isomorphism on every fiber, the vectors s1(x), . . . , sk(x) are linearly independent in Vx for all
x∈M , as needed.
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(2) Suppose s1, . . . , sk are sections of V such that the vectors s1(x), . . . , sk(x) are linearly indepen-
dent in Vx for all x∈M . Define the map

h : M×R
k −→ V by h(x, c1, . . . , ck) = c1s1(x) + . . .+ cksk(x) ∈ Vx.

Since the sections s1, . . . , sk and the vector space operations on V are smooth, the map h is
smooth. It is immediate that π(h(x, c))=x and the restriction of h to x×R

k is linear; thus, h is
a vector bundle homomorphism. Since the vectors s1(x), . . . , sk(x) are linearly independent in Vx,
the homomorphism h is injective and thus an isomorphism on every fiber. We conclude that h is
an isomorphism between vector bundles over M .

3 Transition Data for Vector Bundles

Suppose π : V −→M is a real vector bundle of rank k. By Definition 1.1, there exists a collection
{(Uα, hα)}α∈A of trivializations for V such that

⋃

α∈A Uα =M . Since (Uα, hα) is a trivialization
for V ,

hα : V |Uα
−→ Uα×R

k

is a diffeomorphism such that π1◦hα =π and the restriction hα : Vx−→x×R
k is linear for all x∈Uα.

Thus, for all α, β∈A,

hαβ ≡hα◦h
−1
β :

(

Uα∩Uβ

)

× R
k −→

(

Uα∩Uβ

)

× R
k

is a diffeomorphism such that π1◦hαβ =π1, i.e. hαβ maps x×R
k to x×R

k, and the restriction of
hαβ to x×R

k defines an isomorphism of x×R
k with itself. Such an isomorphism must be given by

(x, v) −→
(

x, gαβ(x)v
)

∀ v ∈ R
k,

for a unique element gαβ(x)∈GLkR (the general linear group of R
k). The map hαβ is then given by

hαβ(x, v) =
(

x, gαβ(x)v
)

∀x ∈ Uα∩Uβ , v∈R
k,

and is completely determined by the map gαβ : Uα∩Uβ −→GLkR (and gαβ is determined by hαβ).
Since hαβ is smooth, so is gαβ .

By the previous paragraph, starting with a real rank-k vector bundle π : V −→M , we can obtain
an open cover {Uα}α∈A of M and a collection of smooth transition maps

{

gαβ : Uα∩Uβ −→ GLkR
}

α,β∈A
.

Let Ik denote the identity element in GLkR. These transition maps satisfy:
(i) gαα ≡ Ik, since hαα≡hα◦h

−1
α =id;

(ii) gαβgβα ≡ Ik, since hαβhβα =id;
(iii) gαβgβγgγα ≡ Ik, since hαβhβγhγα =id.

The last condition is known as the (Čech) cocycle condition (more details in Chapter 5 of Warner).
It is sometimes written as

gα1α2
g−1
α0α2

gα0α1
≡ Ik ∀α0, α1, α2 ∈ A.

In light of (ii), the two versions of the cocycle condition are equivalent.
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Conversely, given an open cover {Uα}α∈A of M and a collection of smooth maps

{

gαβ : Uα∩Uβ −→ GLkR
}

α,β∈A

that satisfy (i), (ii), and (iii), we can assemble a rank-k vector bundle π′ : V ′−→M as follows. Let

V ′ =

(

⊔

α∈A

α×Uα×R
k

)

/

∼, where

(β, x, v) ∼
(

α, x, gαβ(x)v
)

∀ α, β ∈ A, x∈Uα∩Uβ, v∈R
k.

The relation ∼ is reflexive by (i), symmetric by (ii), and transitive by (iii) and (ii). Thus, ∼ is an
equivalence relation, and V ′ carries the quotient topology. Let

q :
⊔

α∈A

α×Uα×R
k −→ V ′ and π′ : V ′ −→M, [α, x, v] −→ x,

be the quotient map and the natural projection map (which is well-defined). If β∈A and W is a
subset of Uβ×R

k, then

q−1
(

q(β×W )
)

=
⊔

α∈A

α×hαβ(W ), where

hαβ :
(

Uα∩Uβ

)

× R
k −→

(

Uα∩Uβ

)

× R
k, hαβ(x, v) =

(

x, gαβ(x)v
)

.

In particular, if β×W is an open subset of β×Uβ×R
k, then q−1

(

q(β×W )
)

is an open subset of
⊔

α∈A α×Uα×R
k. Thus, q is an open continuous map. Since its restriction

qα ≡ q|α×Uα×Rk

is injective, (qα(α×Uα×R
k), q−1

α ) is a coordinate chart on V ′.1 The overlap maps between these
charts are the maps hαβ .2 Thus, V ′ carries a smooth structure. The projection map π′ : V ′−→M
is smooth with respect to this smooth structure, since it induces projection maps on the charts.
Since

π1 = π′ ◦ qα : α×Uα×R
k −→ Uα ⊂M,

the diffeomorphism qα induces a vector space structure in V ′
x for each x∈Uα such that the restric-

tion of qα to each fiber is a vector space isomorphism. Since the restriction of the overlap map hαβ

to x×R
k, with x∈Uα∩Uβ, is a vector space isomorphism, the vector space structures defined on

V ′
x via the maps qα and qβ are the same. We conclude that π′ : V ′−→M is a real vector bundle of

rank k.

If {Uα}α∈A and
{

gαβ : Uα∩Uβ −→ GLkR
}

α,β∈A
are transition data arising from a vector bundle

π : V −→M , then the vector bundle V ′ constructed in the previous paragraph is isomorphic to V .
Let {(Uα, hα)} be the trivializations as above, giving rise to the transition functions gαβ . We define

f̃ : V −→ V ′ by f̃(v) =
[

α, hα(v)
]

if π(v) ∈ Uα.

1Strictly speaking, this is not a chart, since its image is a smooth manifold and not necessarily an open subspace
of a Euclidean space. However, such generalized charts are sufficient for verifying that a space is a smooth manifold.

2Formally, the overlap map is (β−→α)×hαβ .
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If π(v)∈Uα∩Uβ , then
[

β, hβ(v)
]

=
[

α, hαβ(hβ(v))
]

=
[

α, hα(v)
]

∈ V ′,

i.e. the map f̃ is well-defined (depends only on v and not on α). It is immediate that π′◦ f̃ = π.
Since the map

q−1
α ◦ f̃ ◦ h−1

α : Uα×R
k −→ Uα×R

k

is the identity (and thus smooth), f̃ is a smooth map. Since the restrictions of qα and hα to every
fiber are vector space isomorphisms, it follows that so is f̃ . We conclude that f̃ is a vector bundle
isomorphism.

In summary, a real rank-k vector bundle over M determines a set of transition data with values in
GLkR satisfying (i)-(iii) above (many such sets, of course) and a set of transition data satisfying
(i)-(iii) determines a real rank-k vector bundle over M . These two processes are well-defined and
are inverses of each other when applied to the set of equivalence classes of vector bundles and the
set of equivalence classes of transition data satisfying (i)-(iii). Two vector bundles over M are
defined to be equivalent if they are isomorphic as vector bundles over M . Two sets of transition
data

{

gαβ

}

α,β∈A
and

{

g′αβ

}

α,β∈A
,

with A consisting of all sufficiently small open subsets of M , are said to be equivalent if there exists
a collection of smooth functions {fα : Uα−→GLkR}α∈A such that

g′αβ = fαgαβf
−1
β , ∀α, β ∈ A, 3

i.e. the two sets of transition data differ by a Čech boundary (more in Chapter 5 of Warner). Along
with the cocycle condition on the gluing data, this means that isomorphism classes of real rank-k
vector bundles over M can be identified with Ȟ1(M ; GLkR), the quotient of the space of Čech
cocycles of degree one by the subspace of Čech boundaries.

Remark: In Chapter 5 of Warner, Čech cohomology groups, Ȟm, are defined for (sheafs of) abelian
groups. However, the first two groups, Ȟ0 and Ȟ1 easily generalize to non-abelian groups as well.

If π : V −→M is a complex rank-k vector bundle over M , we can similarly obtain transition data
for V consisting of an open cover {Uα}α∈A of M and a collection of smooth maps

{

gαβ : Uα∩Uβ −→GLkC
}

α,β∈A

that satisfies (i)-(iii). Conversely, given such transition data, we can construct a complex rank-k
vector bundle over M . The set of isomorphism classes of complex rank-k vector bundles over M
can be identified with Ȟ1(M ; GLkC).

4 Operations on Vector Bundles

Vector bundles can be restricted to smooth submanifolds and pulled back by smooth maps. All
natural operations on vector spaces, such as taking quotient vector space, dual vector space, direct
sum of vector spaces, tensor product of vector spaces, and exterior powers also carry over to vector
bundles via transition functions.

3Such a collection {fα}α∈A corresponds, via trivializations, to an isomorphism between the vector bundles deter-
mined by {gαβ}α,β∈A and {g′

αβ}α,β∈A.
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4.1 Restrictions and Pullbacks

If N is a smooth manifold, M⊂N is an embedded submanifold, and π : V −→N is a vector bundle
of rank k (real or complex) over N , then its restriction to M ,

π : V |M ≡π−1(M) −→M,

is a vector bundle of rank k over N . It inherits smooth structure from V by the Slice Lemma or
the Implicit Function Theorem. If {(Uα, hα)} is a collection of trivializations for V −→N , then
{(Uα∩M,hα|π−1(U∩M))} is a collection of trivializations for V |M −→ M . Similarly, if {gαβ} is
transition data for V −→N , then {gαβ |Uα∩Uβ∩M} is transition data for V |M −→M .

More generally, if f : M−→N is a smooth map and π : V −→N is a vector bundle of rank k, there
is a pullback bundle over M :

f∗V ≡M ×N V ≡
{

(m, v)∈M×V : f(m)=π(v)
} π1−→M.

Note that f∗V is the maximal subspace of M×V so that the diagram

f∗V

M

π1

V

N

π

π2

f

commutes. By the Implicit Function Theorem, f∗V is a smooth submanifold of M×V . By con-
struction, the fiber of π1 over m∈M is Vf(m), i.e. the fiber of π over f(m)∈N . If {(Uα, hα)} is
a collection of trivializations for V −→N , then {(f−1(Uα), hα◦f)} is a collection of trivializations
for f∗V −→M . Similarly, if {gαβ} is transition data for V −→N , then {gαβ◦ f} is transition data
for f∗V −→M . The case discussed in the previous paragraph corresponds to f being the inclusion
map. If f : M−→N is a smooth map, then df defines a bundle homomorphism from TM to f∗TN :

TM f∗TN

M

df

π π′

The smooth map f is an immersion if the restriction of df to every fiber of π is injective.

4.2 Quotient Bundles

If V is a vector space (over R or C) and V ′⊂V is a linear subspace, then we can form the quotient
vector space, V/V ′. If W is another vector space, W ′⊂W is a linear subspace, and g : V −→W is
a linear map such that g(V ′)=W ′, then g descends to a linear map between the quotient spaces:

ḡ : V/V ′ −→W/W ′.

If we choose bases for V and W such that the first few vectors in each basis form bases for V ′

and W ′, then the matrix for g with respect to these bases is of the form:

g =

(

A B
0 D

)

.

9



The matrix for ḡ is then D. If g is an isomorphism from V to W that restricts to an isomorphism
from V ′ to W ′, then ḡ is an isomorphism from V/V ′ to W/W ′.

Suppose π : V −→M is a smooth vector bundle of rank k (say, over R). A subbundle of V of rank k′

is a smooth submanifold V ′ of V such that

π|V ′ : V ′ −→M

is a vector bundle of rank k′. Of course, k′≤k. If V ′⊂V is a subbundle, we can form a quotient
bundle, V/V ′−→M , such that

(V/V ′)m = Vm/V
′
m ∀m∈M.

The topology and smooth structure on V/V ′ are determined from those of V and V ′ by requiring
that if s is a smooth section of V , then the induced section of V/V ′ is also smooth. More explicitly,
we can choose a system of trivializations {(Uα, hα)} such that

hα(V ′) = Uα × (Rk′

×0) ⊂ Uα×R
k ∀α.

Let qk′ : R
k−→R

k−k′

be the projection onto the last (k−k′) coordinates. Then, the trivializations
for V/V ′ are given by {(Uα, {id×qk′}◦hα)}. Alternatively, if {gαβ} is transition data for V such that
the upper-left k′×k′-submatrices of gαβ correspond to V ′ (as is the case for the above trivializations
hα) and ḡαβ is the lower-right (k−k′)×(k−k′) matrix of gαβ , then {ḡαβ} is transition data for V/V ′.

For example, if N is a k-manifold and M ⊂N is a k′-submanifold, then TN |M −→M is a vector
bundle of rank k containing the subbundle TM−→M . The quotient bundle in this case,

NM ≡ TN |M
/

TM,

is called the normal bundle of M in N . It describes a neighborhood of M in N . More generally, if
f : M−→N is an immersion, the image of df is a subbundle of f∗TN ; see above. In this case, the
quotient bundle,

Nf ≡ f∗TN
/

Im df,

is called the normal bundle for the immersion f . It is a vector bundle over M .

4.3 Dual Bundles

If V is a vector space (over R or C), the dual vector space is the space of the linear homomorphisms
to the field (R or C, respectively):

V ∗ = Hom
(

V,R) or V ∗ = Hom
(

V,C).

A linear map g : V −→ W between two vector spaces, induces a dual map in the “opposite”
direction:

g∗ : W ∗ −→ V ∗,
{

g∗(L)
}

(v) = L
(

g(v)
)

∀ L ∈W ∗, v ∈ V.

If V =R
k and W =R

n, then g is given by an n×k-matrix, and its dual is given by the transposed
k×n-matrix.
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If π : V −→M is a smooth vector bundle of rank k (say, over R), the dual bundle of V is a vector
bundle V ∗−→M such that

(V ∗)m = V ∗
m ∀m∈M.

The topology and smooth structure on V ∗ are determined from those of V by requiring that if s
and ψ are smooth sections of V and V ∗, then ψ(s) is a smooth function on M . More explicitly,
suppose {gαβ} is transition data for V , i.e. the transitions between charts are given by

hα◦h
−1
β : Uα∩Uβ × R

k −→ Uα∩Uβ × R
k, (m, v) −→

(

m, gαβ(m)v
)

.

The dual transition maps are then given by

Uα∩Uβ × R
k −→ Uα∩Uβ × R

k, (m, v) −→
(

m, gαβ(m)tv
)

.

However, these maps reverse the direction, i.e. they go from the α-side to the β-side. To fix this
problem, we simply take the inverse of gαβ(m)t:

Uα∩Uβ × R
k −→ Uα∩Uβ × R

k, (m, v) −→
(

m, {gαβ(m)t}−1v
)

.

So, transition data for V ∗ is {(gt
αβ)−1}. As an example, if V is a line bundle, then gαβ is a smooth

nowhere-zero function on Uα∩Uβ and (g∗)αβ is the smooth function given by 1/gαβ .

4.4 Direct Sums

If V and V ′ are two vector spaces, we can form a new vector space, V ⊕V ′, the direct sum of V
and V ′. If g : V −→W and g′ : V ′−→W ′ are linear maps, they induce a linear map

g⊕g′ : V ⊕V ′ −→W⊕W ′.

If we choose bases for V , V ′, W , and W ′ so that g and g′ correspond to some matrices A and D,
then in the induced bases for V ⊕V ′ and W⊕W ′,

g ⊕ g′ =

(

A 0
0 D

)

.

If π : V −→M and π′ : V ′−→M are smooth vector bundles, we can form their direct sum, V ⊕V ′,
so that

(V ⊕V ′)m = Vm⊕V ′
m ∀m∈M.

The topology and smooth structure on V ⊕V ′ are determined from those of V and V ′ by requiring
that if s and s′ are smooth sections of V and V ′, then s ⊕ s′ is a smooth section of V ⊕V ′. More
explicitly, suppose {gαβ} and {g′αβ} are transition data for V and V ′. Then, transition data for
V ⊕V ′ is given by {gαβ⊕g

′
αβ}, i.e. we put the first matrix in the top left corner and the second

matrix in the bottom right corner. Alternatively, let

d : M −→M×M, d(m) = (m,m),

be the diagonal embedding. Then,

π×π′ : V ×V ′ −→M×M ′

11



is a smooth vector bundle (with the product structure), and

V ⊕ V ′ = d∗(V ×V ′).

Please check that the two definitions of V ⊕V ′ agree!

If V, V ′−→M are vector bundles, then V and V ′ are vector subbundles of V ⊕V ′. It is immediate
from the previous subsection that

(

V ⊕V ′
)

/V = V ′ and
(

V ⊕V ′
)

/V ′ = V.

These equalities hold in the holomorphic category as well (i.e. when the bundles and the base
manifold carry complex structures and all trivializations and transition maps are holomorphic).
Conversely, if W is a subbundle of V , by Section 5 below

V ≈ (V/W ) ⊕W

as smooth vector bundles, real or complex (more later). However, if V and W are holomorphic
bundles, V may not have the same holomorphic structure as (V/W )⊕W (i.e. the two bundles are
isomorphic as smooth vector bundles, but not as holomorphic ones).

4.5 Tensor Products

If V and V ′ are two vector spaces, we can form a new vector space, V ⊗V ′, the tensor product of
V and V ′. If g : V −→W and g′ : V ′−→W ′ are linear maps, they induce a linear map

g⊗g′ : V ⊗V ′ −→W⊗W ′.

If we choose bases {ej}, {e
′
n}, {fi}, and {f ′m} for V , V ′, W , and W ′, respectively, then {ej⊗e

′
n}(j,n)

and {fi⊗f ′m}(i,m) are bases for V⊗V ′ and W ⊗W ′. If the matrices for g and g′ with respect to the
chosen bases for V , V ′, W , and W ′ are (gij)i,j and (g′mn)m,n, then the matrix for g⊗g′ with respect
to the induced bases for V⊗V ′ and W⊗W ′ is (gijg

′
mn)(i,m),(j,n). The rows of this matrix are indexed

by the pairs (i,m) and the columns by the pairs (j, n). In order to actually write down the matrix,
we need to order all pairs (i,m) and (j, n). If all four vector spaces are one-dimensional, g and g′

correspond to single numbers gij and g′mn, while g⊗g′ corresponds to the single number gijg
′
mn.

If π : V −→M and π′ : V ′ −→M are smooth vector bundles, we can form their tensor product,
V ⊗V ′, so that

(V ⊗V ′)m = Vm⊗V ′
m ∀m∈M.

The topology and smooth structure on V ⊗V ′ are determined from those of V and V ′ by requiring
that if s and s′ are smooth sections of V and V ′, then s ⊗ s′ is a smooth section of V ⊗V ′. More
explicitly, suppose {gαβ} and {g′αβ} are transition data for V and V ′. Then, transition data for
V ⊗V ′ is given by {gαβ ⊗g

′
αβ}, i.e. we construct a matrix-valued function gαβ ⊗g

′
αβ from {gαβ}

and {g′αβ} as in the previous paragraph. As an example, if V and V ′ are line bundles, then gαβ

and g′αβ are smooth nowhere-zero functions on Uα∩Uβ and (g⊗g′)αβ is the smooth function given
by gαβg

′
αβ .
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4.6 Exterior Products

If V is a vector space and k is a nonnegative integer, we can form the k-th exterior power, ΛkV ,
of V . A linear map g : V −→W induces a linear map

Λkg : ΛkV −→ ΛkW.

If n is a nonnegative integer, let Sk(n) be the set of increasing k-tuples of integers between 1 and n:

Sk(n) =
{

(i1, . . . , ik)∈Z
k : 1≤ i1<i2<. . .< ik≤n

}

.

If {ej}j=1,...,n and {fi}i=1,...,m are bases for V and W , then {eη}η∈Sk(n) and {fµ}µ∈Sk(m) are bases

for ΛkV and ΛkW , where

e(η1,...,ηk) = eη1
∧ . . . ∧ eηk

and f(µ1,...,µk) = fµ1
∧ . . . ∧ fµk

.

If (gij)i=1,...,m,j=1,...,n is the matrix for g with respect to the chosen bases for V and W , then

(

det
(

(gµrηs)r,s=1,...,k

))

(µ,η)∈Ik(m)×Ik(n)

is the matrix for Λkg with respect to the induced bases for ΛkV and ΛkW . The rows and columns of
this matrix are indexed by the sets Sk(m) and Sk(n), respectively. The (µ, η)-entry of the matrix
is the determinant of the k×k-submatrix of (gij)i,j with the rows and columns indexed by the
entries of µ and η, respectively. In order to actually write down the matrix, we need to order the
sets Sk(m) and Sk(n). If k=m=n, then ΛkV and ΛkW are one-dimensional vector spaces, called
the top exterior power of V and W , with bases

{

e1 ∧ . . . ∧ ek
}

and
{

f1 ∧ . . . ∧ fk

}

.

With respect to these bases, the homomorphism Λkg corresponds to the number det(gij)i,j . If k>n
(or k>m), then ΛkV (or ΛkW ) is the zero vector space and the corresponding matrix is empty.

If π : V −→M is a smooth vector bundle, we can form its k-th exterior power, ΛkV, so that

(ΛkV )m = ΛkVm ∀m∈M.

The topology and smooth structure on ΛkV are determined from those of ΛkV by requiring that if
s1, . . . , sk are smooth sections of V , then s1 ∧ . . .∧ sk is a smooth section of ΛkV . More explicitly,
suppose {gαβ} is transition data for V . Then, transition data for ΛkV is given by {Λkgαβ}, i.e. we
construct a matrix-valued function Λkgαβ from each matrix gαβ as in the previous paragraph. As
an example, if the rank of V is k, then the transition data for the line bundle ΛkV , called the top

exterior power of V , is {det gαβ}.

It follows directly from the definitions that if V −→M is a vector bundle of rank k and L−→M is
a line bundle (vector bundle of rank one), then

Λtop(V ⊕L) ≡ Λk+1(V ⊕L) = ΛkV ⊗ L ≡ ΛtopV ⊗ L.

More generally, if V,W −→M are any two vector bundles, then

Λtop(V ⊕W ) = (ΛtopV ) ⊗ (ΛtopW ) and Λk(V ⊕W ) =
⊕

i+j=k

(ΛiV )⊗(ΛjW ).
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Remark: For complex vector bundles, the above constructions (exterior power, tensor product,
direct sum, etc.) are always done over C, unless specified otherwise. So if V is a complex vector
bundle of rank k over M , the top exterior power of V is the complex line bundle ΛkV over M
(could also be denoted as Λk

C
V ). In contrast, if we forget the complex structure of V (so that it

becomes a real vector bundle of rank 2k), then its top exterior power is the real line bundle Λ2kV
(could also be denoted as Λ2k

R
V ).

5 Metrics on Fibers

If V is a vector space over R, a positive-definite inner-product on V is a symmetric bilinear map

〈·, ·〉 : V ×V −→ R, (v, w) −→ 〈v, w〉, s.t. 〈v, v〉 > 0 ∀ v ∈ V −0.

If 〈, 〉 and 〈, 〉′ are positive-definite inner-products on V and a, a′∈ R̄
+ are not both zero, then

a〈, 〉+a′〈, 〉′ : V ×V −→ R,
{

a〈, 〉+a′〈, 〉′
}

(v, w) = a〈v, w〉 + a′〈v, w〉′,

is also a positive-definite inner-product. If W is a subspace of V and 〈, 〉 is a positive-definite
inner-product on V , let

W⊥ =
{

v∈V : 〈v, w〉=0 ∀w∈W
}

be the orthogonal complement of W in V . In particular,

V = W ⊕W⊥.

Furthermore, the quotient projection map

π : V −→ V/W

induces an isomorphism from W⊥ to V/W so that

V ≈W ⊕ (V/W ).

IfM is a smooth manifold and V −→M is a smooth real vector bundle of rank k, a Riemannian metric

on V is a positive-definite inner-product in each fiber Vx≈R
k of V that varies smoothly with x∈M .

More formally, the smoothness requirement is one of the following equivalent conditions:
(a) the map 〈, 〉 : V ×MV −→R is smooth;
(b) the section 〈, 〉 of the vector bundle (V ⊗V )∗−→M is smooth;
(c) if s1, s2 are smooth sections of the vector bundle V −→M , then the map

〈

s1, s2
〉

: M −→ R, m −→
〈

s1(m), s2(m)
〉

,

is smooth;
(d) if h : V |U −→U×R

k is a trivialization of V , then the matrix-valued function,

B : U −→ MatkR s.t.
〈

h−1(m, v), h−1(m,w)
〉

= vtB(m)w ∀ m∈U , v, w∈R
k,

14



is smooth.
Every real vector bundle admits a Riemannian metric. Such a metric can be constructed by
covering M by a locally finite collection of trivializations for V and patching together positive-
definite inner-products on each trivialization using a partition of unity. If W is a subspace of V
and 〈, 〉 is a Riemannian metric on V , let

W⊥ =
{

v∈V : 〈v, w〉=0 ∀w∈W
}

be the orthogonal complement of W in V . Then W⊥−→M is a vector subbundle of V and

V = W ⊕W⊥.

Furthermore, the quotient projection map

π : V −→ V/W

induces a vector bundle isomorphism from W⊥ to V/W so that

V ≈W ⊕ (V/W ).

If V is a vector space over C, a nondegenerate Hermitian inner-product on V is a map

〈·, ·〉 : V ×V −→ C, (v, w) −→ 〈v, w〉,

which is C-antilinear in the first input, C-linear in the second input,

〈w, v〉 = 〈v, w〉 and 〈v, v〉 > 0 ∀ v ∈ V −0.

If 〈, 〉 and 〈, 〉′ are nondegenerate Hermitian inner-products on V and a, a′∈ R̄
+ are not both zero,

then a〈, 〉+a′〈, 〉′ is also a nondegenerate Hermitian inner-product on V . If W is a complex subspace
of V and 〈, 〉 is a nondegenerate Hermitian inner-product on V , let

W⊥ =
{

v∈V : 〈v, w〉=0 ∀w∈W
}

be the orthogonal complement of W in V . In particular,

V = W ⊕W⊥.

Furthermore, the quotient projection map

π : V −→ V/W

induces an isomorphism from W⊥ to V/W so that

V ≈W ⊕ (V/W ).

If M is a smooth manifold and V −→M is a smooth complex vector bundle of rank k, a Hermitian

metric on V is a nondegenerate Hermitian inner-product in each fiber Vx ≈ C
k of V that varies
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smoothly with x∈M . More formally, the smoothness requirement is one of the following equivalent
conditions:

(a) the map 〈, 〉 : V ×MV −→C is smooth;
(b) the section 〈, 〉 of the vector bundle (V ⊗RV )∗−→M is smooth;
(c) if s1, s2 are smooth sections of the vector bundle V −→M , then the function

〈

s1, s2
〉

on M is smooth;
(d) if h : V |U −→U×C

k is a trivialization of V , then the matrix-valued function,

B : U −→ MatkC s.t.
〈

h−1(m, v), h−1(m,w)
〉

= v̄tB(m)w ∀ m∈M, v,w∈C
k,

is smooth.
Similarly to the real case, every complex vector bundle admits a Hermitian metric. If W is a
subspace of V and 〈, 〉 is a Hermitian metric on V , let

W⊥ =
{

v∈V : 〈v, w〉=0 ∀w∈W
}

be the orthogonal complement of W in V . Then W⊥ −→M is a complex vector subbundle of V
and

V = W ⊕W⊥.

Furthermore, the quotient projection map

π : V −→ V/W

induces an isomorphism of complex vector bundles over M so that

V ≈W ⊕ (V/W ).

If V −→M is a real vector bundle of rank k with a Riemannian metric 〈, 〉 or a complex vector
bundle of rank k with a Hermitian metric 〈, 〉, let

SV ≡
{

v∈V : 〈v, v〉=1
}

−→M

be the sphere bundle of V . In the real case, the fiber of SV over every point of M is Sk−1.
Furthermore, if U is a small open subset of M , then SV |U ≈U×Sk−1 as bundles over U , i.e. SV is
an Sk−1-fiber bundle over M . In the complex case, SV is an S2k−1-fiber bundle over M . If V −→M
is a real line bundle (vector bundle of rank one) with a Riemannian metric 〈, 〉, then SV −→M
is an S0-fiber bundle. In particular, if U is a small open subset of M , SV |U is diffeomorphic to
U×{±1}. Thus, SV −→M is a 2 : 1-covering map. If M is connected, the covering space SV is
connected if and only if V is not orientable; see Section 6 below.

6 Orientations

If V is a real vector space of dimension k, the top exterior power of V , i.e.

ΛtopV ≡ ΛkV
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is a one-dimensional vector space. Thus, ΛtopV −0 has exactly two connected components. An
orientation on V is a component C of V . If C is an orientation on V , then a basis {ei} for V is
called oriented (with respect to C) if

e1 ∧ . . . ∧ ek ∈ C.

If {fj} is another basis for V and A is the change-of-basis matrix from {ei} to {fj}, i.e.

(

f1, . . . , fk

)

=
(

e1, . . . , ek
)

A ⇐⇒ fj =
i=k
∑

i=1

Aijei,

then
f1 ∧ . . . ∧ fk = (detA)e1 ∧ . . . ∧ ek.

Thus, two different bases for V belong to the same orientation on V if and only of the determinant
of the corresponding change-of-basis matrix is positive.

Suppose V −→M is a real vector bundle of rank k. An orientation for V is an orientation for each
fiber Vx ≈ R

k, which varies smoothly (or continuously, or is locally constant) with x ∈M . This
means that if

h : V |U −→ U×R
k

is a trivialization of V and U is connected, then h is either orientation-preserving or orientation-
reversing (with respect to the standard orientation of R

k) on every fiber. If V admits an orientation,
V is called orientable.

Lemma 6.1. Suppose V −→M is a smooth real vector bundle.
(1) V is orientable if and only if there exists a collection {Uα, hα} of trivializations that covers M
such that

det gαβ : Uα∩Uβ −→ R
+,

where {gαβ} is the corresponding transition data.
(2) V is orientable if and only if the line bundle ΛtopV −→M is orientable.
(3) If V is a line bundle, V is orientable if and only if V is (isomorphic to) the trivial line
bundle M×R.
(4) If V is a line bundle with a Riemannian metric 〈, 〉, V is orientable if and only if SV is not
connected.

Proof: (1) If V has an orientation, we can choose a collection {Uα, hα} of trivializations that
covers M such that the restriction of hα to each fiber is orientation-preserving (if it is orientation-
preserving, simply multiply its first component by −1). Then, the corresponding transition data
{gαβ} is orientation-preserving, i.e.

det gαβ : Uα∩Uβ −→ R
+.

Conversely, suppose {Uα, hα} is a collection of trivializations that covers M such that

det gαβ : Uα∩Uβ −→ R
+.

Then, if x∈Uα for some α, define an orientation on Vx by requiring that

hα : Vx −→ x×R
k
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is orientation-preserving. Since det gαβ is R
+-valued, the orientation on Vx is independent of α

such that x∈Uα. Each of the trivializations hα is then orientation-preserving on each fiber.
(2) An orientation for V is the same as an orientation for Λtop, since

ΛtopV = Λtop
(

ΛtopV
)

.

Furthermore, if {(Uα, hα} is a collection of trivializations for V such that the corresponding tran-
sition functions gαβ have positive determinant, then {(Uα,Λ

tophα} is a collection of trivializations
for ΛtopV such that the corresponding transition functions Λtopgαβ = det(gαβ) have positive de-
terminant as well.
(3) The trivial line bundle M×R is orientable, with an orientation determined by the standard ori-
entation on R. Thus, if V is isomorphic to the trivial line bundle, then V is orientable. Conversely,
suppose V is an oriented line bundle. For each x∈M , let

Cx ⊂ ΛtopV = V

be the chosen orientation of the fiber. Choose a Riemannian metric on V and define a section s of
V by requiring that for all x∈M

〈

s(x), s(x)
〉

= 1 and s(x) ∈ Cx.

This section is well-defined and smooth (as can be seen by looking on a trivialization). Since it
does not vanish, the line bundle V is trivial by Lemma 2.3.
(4) If V is orientable, then V is isomorphic to M×R, and thus

SV = S(M×R) = M×S0 = M⊔M

is not connected. Conversely, if M is connected and SV is not connected, let SV + be one of the
components of V . Since SV −→M is a covering projection, so is SV + −→M . Since the latter is
one-to-one, it is a diffeomorphism, and its inverse determines a nowhere-zero section of V . Thus,
V is isomorphic to the trivial line bundle by Lemma 2.3.

If V is a complex vector space of dimension k, V has a canonical orientation as a real vector space
of dimension 2k. If {ei} is a basis for V over C, then

{

e1, ie1, . . . , ek, iek
}

is a basis for V over R. The orientation determined by such a basis is the canonical orientation
for the underlying real vector space V . If {fj} is another basis for V over C, B is the complex
change-of-basis matrix from {ei} to {fj}, A is the real change-of-basis matrix from

{

e1, ie1, . . . , ek, iek
}

to
{

f1, if1, . . . , fk, ifk

}

,

then
detA = (detB)detB ∈ R

+.

Thus, the two bases over R induced by complex bases for V determine the same orientation for V .
This implies that every complex vector bundle V −→M is orientable as a real vector bundle.
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