MAT 545: Complex Geometry Fall 2008

Problem Set 7

Due on Monday, 12/15, at 2:20pm in Math P-131
(or by 2 pm on $12 / 15$ in Math $3-111$)

Please write up clear and concise solutions to problems worth 20 pts.

Problem 1 (10 pts)

(a) Let $X_{a} \subset \mathbb{P}^{n}$ be a smooth degree a hypersurface with $n \geq 3$ and $a \geq 1$. Show that

$$
\operatorname{dim}_{\mathbb{C}} H_{\bar{\partial}}^{0}\left(X_{a} ; \mathcal{K}_{X_{a}}\right)= \begin{cases}0, & \text { if } a \leq n ; \\ \binom{a-1}{n}, & \text { if } a>n\end{cases}
$$

(b) Determine the Hodge diamond for a smooth degree a hypersurface $X_{a} \subset \mathbb{P}^{3}$;
(c) Determine the Hodge diamond for a smooth degree a hypersurface $X_{a} \subset \mathbb{P}^{4}$.
(d) Determine the Hodge diamond for a smooth degree 2 hypersurface $X_{2} \subset \mathbb{P}^{5}$.

Note: the quartic surface $X_{4} \subset \mathbb{P}^{3}$ is a K 3 surface; the quintic $Y_{5} \subset \mathbb{P}^{4}$ is a Calabi-Yau threefold, popular in string theory.

Problem 2 (5 pts)

Let $u: \mathbb{P}^{1} \longrightarrow \mathbb{P}^{n}$ be a holomorphic map of degree d (thus, $u_{*}\left[\mathbb{P}^{1}\right]=d\left[\mathbb{P}^{1}\right] \in H_{2}\left(\mathbb{P}^{n}\right)$). If $d \leq n$, show that $u\left(\mathbb{P}^{1}\right)$ is contained in some linearly embedded \mathbb{P}^{d} in \mathbb{P}^{n}.
Note: this is a special case of the Castenuovo bound. It implies for example that every degree 2 (rational) curve in \mathbb{P}^{3} is in fact contained in some hyperplane $\mathbb{P}^{2} \subset \mathbb{P}^{3}$. This makes it possible to use classical Schubert calculus (homology intersections on $G(k, n)$) to determine the number of such conics in \mathbb{P}^{3} that pass through a points and $8-2 a$ lines in general position.

Problem 3 (5 pts)

Let Σ be a compact connected Riemann surface (complex one-dimensional manifold). Show that Σ can be holomorphically embedded into \mathbb{P}^{N} for some N.

Problem 4 (5 pts)

Let M be a complex manifold of dimension at least 2 and $x \in M$. Show that the sheaf \mathfrak{I}_{x} of \mathcal{O}-modules is not isomorphic to the sheaf of holomorphic sections of any line bundle $L \longrightarrow M$.
Note: Recall that for any open subset $U \subset M$,

$$
\mathfrak{I}_{x}(U)=\{f \in \mathcal{O}(U): f(x)=0 \text { if } x \in U\} ;
$$

this is a module over the $\operatorname{ring} \mathcal{O}(U)$.

Problem 5 (10 pts)
Let Γ be a complete lattice in \mathbb{C}^{2} (i.e. the \mathbb{Z}-span of $4 \mathbb{R}$-linearly independent vectors $v_{1}, \ldots, v_{4} \in \mathbb{C}^{2}$). Thus, $M \equiv \mathbb{C}^{2} / \Gamma$ is diffeomorphic to $\left(S^{1}\right)^{4}$.
(a) Show that the Kahler structure (complex structure and symplectic form) on \mathbb{C}^{4} induce a Kahler structure on M. Describe a basis for $H_{2}(M ; \mathbb{Z})$.
(b) Find a lattice Γ so that $H^{1,1}(M ; \mathbb{Z})=\{0\}$ and thus M is not projective (cannot be embedded into \mathbb{P}^{N} for any N).
Hint: Find Γ so that $\alpha\left(H_{2}(M ; \mathbb{Z})\right) \not \subset \mathbb{Z}$ for every $\alpha \in H^{1,1}(M ; \mathbb{C})$.
(c) With M as in (b), find a holomorphic line bundle $L \longrightarrow M$ so that $L \neq[D]$ for any divisor D on M.

Problem 6 (10 pts)

(a) Let $C \subset \mathbb{P}^{3}$ be a complete intersection of bi-degree (a, b) (so $C=s^{-1}(0)$, where s is a holomorphic section of the bundle $\mathcal{O}(a) \oplus \mathcal{O}(b) \longrightarrow \mathbb{P}^{3}$ which is transverse to the zero set). Determine the degree of C in \mathbb{P}^{3} and the genus of C.
(b) If $C \subset \mathbb{P}^{3}$ is a smooth rational curve of degree 3 (thus, $C \approx \mathbb{P}^{1}$ and $[C]=3\left[\mathbb{P}^{1}\right] \in H_{2}\left(\mathbb{P}^{3}\right)$) and C is not contained in any hyperplane \mathbb{P}^{2} of \mathbb{P}^{3}, then C is not a complete intersection in \mathbb{P}^{3}. Show that such a curve C actually exists.

