MAT 545: Complex Geometry Fall 2008

Problem Set 6
Due on Tuesday, 12/2, at 2:20pm in Math P-131
(or by 2 pm on $12 / 2$ in Math $3-111$)

Please write up clear and concise solutions to problems worth 20 pts, including exactly one of the last two problems.

Problem 1 (10 pts)
(a) For each $z \in \mathbb{C}^{n}$, let \mathcal{O}_{z} be the ring of germs at z of holomorphic functions on \mathbb{C}^{n}. If $f, g: \mathbb{C}^{n} \longrightarrow \mathbb{C}$ are holomorphic functions and $p \in \mathbb{C}^{n}$ are such that $f(p)=0$, let

$$
\operatorname{ord}_{f^{-1}(0), p} g=\max \left\{a \in \mathbb{Z}:[g] /\left[f^{a}\right] \in \mathcal{O}_{p}\right\} .
$$

Show that for any $p \in f^{-1}(0)$ such that $[f] \in \mathcal{O}_{p}$ is irreducible, there exists a neighborhood $U_{p}(f, g)$ of p in \mathbb{C}^{n} with the property such that

$$
\operatorname{ord}_{f^{-1}(0), z} g=\operatorname{ord}_{f^{-1}(0), p} g \quad \forall z \in f^{-1}(0) \cap U_{p}(f, g) .
$$

(b) Let M be a complex manifold and $V \subset M$ be an irreducible analytic hypersurface; thus, $V^{*} \subset M$ is connected. Suppose $s \equiv\left\{s_{\alpha}^{+}, s_{\alpha}^{-} \in \mathcal{O}\left(U_{\alpha}\right)\right\}_{\alpha \in \mathcal{A}}$ is a meromorphic section of a holomorphic line bundle $L \longrightarrow M$. Show that the number

$$
\operatorname{ord}_{V, p} s \equiv \operatorname{ord}_{V, p} s_{\alpha}^{+}-\operatorname{ord}_{V, p} s_{\alpha}^{-}
$$

is independent of the choice of $\alpha \in \mathcal{A}$ and $p \in V^{*} \cap U_{\alpha}$.

Problem 2 (5 pts)

Let Σ be a compact connected Riemann surface (complex one-dimensional manifold) and $p, q \in \Sigma$ be any two distinct points. Show that
(a) if $\Sigma=\mathbb{P}^{1}$, then $[p]=[q]$.
(b) if $[p]=[q]$, then $\Sigma=\mathbb{P}^{1}$ (up to bi-holomorphism).

Problem 3 (10 pts)

Let Σ be a compact connected Riemann surface and $V \longrightarrow \Sigma$ be a holomorphic line bundle.
(a) Give a necessary and sufficient condition on V so that there exists a holomorphic line bundle $L \longrightarrow \Sigma$ such that $L^{\otimes 2}=V$.
(b) If this condition holds, how many "square roots" L does V have?
(c) If M is a complex surface $\left(\operatorname{dim}_{\mathbb{C}} M=2\right)$ and $\Sigma \subset M$ is a smooth canonical divisor with normal bundle N, show that $N^{\otimes 2}=\mathcal{K}_{\Sigma}$.
Note: a pair (Σ, L) such that $L^{\otimes 2}=\mathcal{K}_{\Sigma}$ is called a spin curve.

Let M be a complex manifold. Show that every C^{∞} complex line bundle $L \longrightarrow M$ admits
(a) at most one holomorphic structure if and only if $H_{\bar{\partial}}^{0,1}(M)=0$.
(b) at least one holomorphic structure if and only if $H_{\bar{\partial}}^{0,2}(M)=0$.

Problem 5 (10 pts)
Show that
(a) there exists a short exact sequence of sheaves on \mathbb{P}^{n} :

$$
0 \longrightarrow \mathcal{O}_{\mathbb{P}^{n}} \longrightarrow(n+1) \mathcal{O}_{\mathbb{P}^{n}}(1) \longrightarrow \mathcal{O}\left(T \mathbb{P}^{n}\right) \longrightarrow 0 ;
$$

(b) $H_{\bar{\partial}}^{q}\left(\mathbb{P}^{n} ; \mathcal{O}\left(T \mathbb{P}^{n}\right)\right)=0$ for all $q>0$;
(c) $H_{\bar{\partial}}^{q}\left(\Sigma ; \mathcal{O}\left(u^{*} T \mathbb{P}^{n}\right)\right)=0$ for all $q>0$ for every compact connected Riemann surface Σ of genus g and holomorphic map $u: \Sigma \longrightarrow \mathbb{P}^{n}$ of degree $d \geq 2 g-1$;
(d) the homomorphism

$$
H_{\bar{\partial}}^{0}\left(\Sigma ; \mathcal{O}\left(u^{*} T \mathbb{P}^{n}\right)\right) \longrightarrow \bigoplus_{i=1}^{i=k} a_{i} T_{u\left(z_{i}\right)} \mathbb{P}^{n}, \quad s \longrightarrow\left(\nabla_{e_{i}}^{j-1} s\right)_{1 \leq j \leq a_{i}, 1 \leq i \leq k}
$$

is surjective for every (Σ, u) as in (c), every choice of distinct points $z_{1}, \ldots, z_{k} \in \Sigma, e_{i} \in T_{z_{i}} \Sigma$ with $e_{i} \neq 0$, and $a_{1}, \ldots, a_{k} \in \mathbb{Z}^{+}$with $d \geq 2 g-1+\sum_{i=1}^{i=k} a_{i}$.
Note: $\nabla_{e_{i}}^{j} s$ denotes the j-th vertical derivative of the section s with respect to a connection ∇ evaluated at e_{j}; thus,

$$
\nabla_{e_{j}}^{0}(s)=s\left(z_{j}\right), \quad \nabla_{e_{j}}^{1}(s)=\left.\{\nabla s\}\right|_{z_{j}}\left(e_{j}\right), \quad \nabla_{e_{j}}^{2}(s)=\left.\{\nabla(\nabla s)\}\right|_{z_{j}}\left(e_{j}, e_{j}\right)
$$

Problem 6 (10 pts)

Let $\gamma \longrightarrow \mathbb{P}^{1}$ be the tautological line bundle, $\mathcal{O}_{\mathbb{P}^{1}}(-1)$, and $E \longrightarrow \mathbb{P}^{1}$ be any holomorphic vector bundle. Show that
(a) $H_{\bar{\partial}}^{1}\left(\mathbb{P}^{1} ; \gamma\right)=0$;
(b) $H_{\bar{\partial}}^{0}\left(\mathbb{P}^{1} ; E \otimes \gamma^{* a}\right) \neq 0$ for for some $a \in \mathbb{Z}$;
(c) if $a_{E}=\min \left\{a \in \mathbb{Z}: H_{\bar{\partial}}^{0}\left(\mathbb{P}^{1} ; E \otimes \gamma^{* a}\right) \neq 0\right\}$, then $E \otimes \gamma^{* a_{E}}$ admits a nowhere zero holomorphic section and E contains a holomorphic subbundle isomorphic to $\gamma^{a_{E}}$;
(d) if $F \equiv E / \gamma^{a_{E}} \approx \gamma^{a_{1}} \oplus \ldots \oplus \gamma^{a_{k}}$, then $a_{E} \leq a_{i}$ for all $i=1, \ldots, k$;
(e) $H \frac{1}{\bar{\partial}}\left(\mathbb{P}^{1} ; F^{*} \otimes \gamma^{a_{E}}\right)=0$ and the exact sequences of holomorphic vector bundles

$$
0 \longrightarrow F^{*} \otimes \gamma^{a_{E}} \longrightarrow E^{*} \otimes \gamma^{a_{E}} \longrightarrow \tau_{1} \longrightarrow 0, \quad 0 \longrightarrow \gamma^{a_{E}} \longrightarrow E \longrightarrow F \longrightarrow 0
$$

split;
(f) E is isomorphic to a unique vector bundle

$$
\bigoplus_{i=0}^{i=k} \mathcal{O}_{\mathbb{P}^{1}}\left(b_{i}\right) \equiv \bigoplus_{i=0}^{i=k} \gamma^{* b_{i}}
$$

with $b_{0} \geq b_{1} \geq \ldots \geq b_{k}$.
Note: the last statement is Grothendieck's theorem.

