MAT 545: Complex Geometry Fall 2008

Problem Set 3

Due on Tuesday, 10/21, at 2:20pm in Math P-131

(or by 2pm on 10/21 in Math 3-111)

Please write up concise solutions to 2 of the 3 problems below.

Problem 1 (10 pts)

Let $\gamma \longrightarrow \mathbb{P}^n$ be the tautological line bundle. Show that

- (a) $\gamma^{\otimes a} \longrightarrow \mathbb{P}^n$ admits no nonzero holomorphic section for any $a \in \mathbb{Z}^+$;
- (b) every homogeneous polynomial $P = P(X_0, ..., X_n)$ on \mathbb{C}^{n+1} of degree a induces a holomorphic section s_P of $\gamma^{*\otimes a} \longrightarrow \mathbb{P}^n$. Furthermore, every holomorphic section of $\gamma^{*\otimes a} \longrightarrow \mathbb{P}^n$ is given by s_P for some homogeneous polynomial P on \mathbb{C}^{n+1} of degree a.

Problem 2 (10 pts)

Show that

- (a) every holomorphic line bundle over \mathbb{C}^n is trivial;
- (b) every holomorphic line bundle over \mathbb{P}^n is isomorphic to γ^a for some $a \in \mathbb{Z}$;
- (c) if P_0, \ldots, P_n are homogeneous polynomials of degree a on \mathbb{C}^{m+1} with no common zeros (other than the origin), then the map

$$f_{P_0\dots P_n}: \mathbb{P}^m \longrightarrow \mathbb{P}^n, \qquad [X_0,\dots,X_m] \longrightarrow [P_0(X_0,\dots,X_m),\dots,P_n(X_0,\dots,X_m)],$$

is well-defined and holomorphic and the push-forward of $[\mathbb{P}^m]$ is a^m times the positive generator of $H_{2m}(\mathbb{P}^n;\mathbb{Z})$. Furthermore, every degree a^m holomorphic map $f:\mathbb{P}^m\longrightarrow\mathbb{P}^n$ is given by $f=f_{P_0...P_n}$ for some P_0,\ldots,P_n as above.

Problem 3 (10 pts)

If (X, J_X) and (Y, J_Y) are almost complex manifolds, a smooth map $f: X \longrightarrow Y$ is called holomorphic if

$$df \circ J_X = J_Y \circ df.$$

If (X, J_X) is an almost complex manifold and $(V, \mathfrak{i}) \longrightarrow X$ is a smooth complex vector bundle, a $\bar{\partial}$ -operator in (V, \mathfrak{i}) is a \mathbb{C} -linear map

$$\bar{\partial} \colon \Gamma(X;V) \longrightarrow \Gamma(X;T^*X^{0,1} \otimes_{\mathbb{C}} V) \quad \text{s.t.}$$
$$\bar{\partial}(f\xi) = (\bar{\partial}f) \otimes \xi + f\bar{\partial}\xi \quad \forall f \in C^{\infty}(M;\mathbb{C}), \, \xi \in \Gamma(M;V).$$

Show that

- (a) a connection in V induces a $\bar{\partial}$ -operator in V and every $\bar{\partial}$ -operator in V arises from a connection in V;
- (b) if $\bar{\partial}$ is a $\bar{\partial}$ -operator on V, there exists an almost complex structure on J_V on V (the total space of the vector bundle) such that
 - (i) the bundle projection map $\pi: (V, J_V) \longrightarrow (X, J_X)$ is holomorphic,
 - (ii) for all $v \in V$, the restriction of J_V to ker $d_v \pi \approx V_{\pi(v)}$ is $\mathfrak{i}|_{V_x}$, and
- (iii) if $\xi \in \Gamma(M; V)$, $\bar{\partial}\xi = 0$ if and only if $\xi : (X, J_X) \longrightarrow (V, J_V)$ is holomorphic.

Furthermore, every almost complex structure on V satisfying (i)-(iii) arises from a $\bar{\partial}$ -operator on V in this way.