MAT 545: Complex Geometry Fall 2008

Problem Set 3
Due on Tuesday, 10/21, at 2:20pm in Math P-131

(or by 2 pm on $10 / 21$ in Math 3-111)
Please write up concise solutions to 2 of the 3 problems below.

Problem 1 (10 pts)
Let $\gamma \longrightarrow \mathbb{P}^{n}$ be the tautological line bundle. Show that
(a) $\gamma^{\otimes a} \longrightarrow \mathbb{P}^{n}$ admits no nonzero holomorphic section for any $a \in \mathbb{Z}^{+}$;
(b) every homogeneous polynomial $P=P\left(X_{0}, \ldots, X_{n}\right)$ on \mathbb{C}^{n+1} of degree a induces a holomorphic section s_{P} of $\gamma^{* \otimes a} \longrightarrow \mathbb{P}^{n}$. Furthermore, every holomorphic section of $\gamma^{* \otimes a} \longrightarrow \mathbb{P}^{n}$ is given by s_{P} for some homogeneous polynomial P on \mathbb{C}^{n+1} of degree a.

Problem 2 (10 pts)
Show that
(a) every holomorphic line bundle over \mathbb{C}^{n} is trivial;
(b) every holomorphic line bundle over \mathbb{P}^{n} is isomorphic to γ^{a} for some $a \in \mathbb{Z}$;
(c) if P_{0}, \ldots, P_{n} are homogeneous polynomials of degree a on \mathbb{C}^{m+1} with no common zeros (other than the origin), then the map

$$
f_{P_{0} \ldots P_{n}}: \mathbb{P}^{m} \longrightarrow \mathbb{P}^{n}, \quad\left[X_{0}, \ldots, X_{m}\right] \longrightarrow\left[P_{0}\left(X_{0}, \ldots, X_{m}\right), \ldots, P_{n}\left(X_{0}, \ldots, X_{m}\right)\right]
$$

is well-defined and holomorphic and the push-forward of $\left[\mathbb{P}^{m}\right]$ is a^{m} times the positive generator of $H_{2 m}\left(\mathbb{P}^{n} ; \mathbb{Z}\right)$. Furthermore, every degree a^{m} holomorphic map $f: \mathbb{P}^{m} \longrightarrow \mathbb{P}^{n}$ is given by $f=f_{P_{0} \ldots P_{n}}$ for some P_{0}, \ldots, P_{n} as above.

Problem 3 (10 pts)

If $\left(X, J_{X}\right)$ and $\left(Y, J_{Y}\right)$ are almost complex manifolds, a smooth map $f: X \longrightarrow Y$ is called holomorphic if

$$
d f \circ J_{X}=J_{Y} \circ d f .
$$

If $\left(X, J_{X}\right)$ is an almost complex manifold and $(V, \mathfrak{i}) \longrightarrow X$ is a smooth complex vector bundle, a $\bar{\partial}$-operator in (V, \mathfrak{i}) is a \mathbb{C}-linear map

$$
\begin{gathered}
\bar{\partial}: \Gamma(X ; V) \longrightarrow \Gamma\left(X ; T^{*} X^{0,1} \otimes_{\mathbb{C}} V\right) \quad \text { s.t. } \\
\bar{\partial}(f \xi)=(\bar{\partial} f) \otimes \xi+f \bar{\partial} \xi \quad \forall f \in C^{\infty}(M ; \mathbb{C}), \xi \in \Gamma(M ; V) .
\end{gathered}
$$

Show that
(a) a connection in V induces a $\bar{\partial}$-operator in V and every $\bar{\partial}$-operator in V arises from a connection in V;
(b) if $\bar{\partial}$ is a $\bar{\partial}$-operator on V, there exists an almost complex structure on J_{V} on V (the total space of the vector bundle) such that
(i) the bundle projection map $\pi:\left(V, J_{V}\right) \longrightarrow\left(X, J_{X}\right)$ is holomorphic,
(ii) for all $v \in V$, the restriction of J_{V} to $\operatorname{ker} d_{v} \pi \approx V_{\pi(v)}$ is $\left.\mathfrak{i}\right|_{V_{x}}$, and
(iii) if $\xi \in \Gamma(M ; V), \bar{\partial} \xi=0$ if and only if $\xi:\left(X, J_{X}\right) \longrightarrow\left(V, J_{V}\right)$ is holomorphic.

Furthermore, every almost complex structure on V satisfying (i)-(iii) arises from a $\bar{\partial}$-operator on V in this way.

