MAT 545: Complex Geometry
 Fall 2008

Problem Set 1

Due on Tuesday, 9/16, at 2:20pm in Math P-131

(or by 2 pm on $9 / 9$ in Math $3-111$)

Please write up concise solutions to problems worth 20 points, including one of the 10-point problems.

Problem 1 (10 pts)
Let $U \subset \mathbb{C}^{n}$ be a connected open subset.
(a) Unique Continuation: If $f, g: U \longrightarrow \mathbb{C}$ are holomorphic functions and $V \subset \mathbb{C}^{n}$ is a nonempty open subset such that $\left.f\right|_{V}=\left.g\right|_{V}$, then $f=g$.
(b) Maximum Principle: If $f: U \longrightarrow \mathbb{C}$ is a holomorphic function and $\max _{z \in U}|f(z)|=\left|f\left(z_{0}\right)\right|$ for some $z_{0} \in U$, then f is a constant function.
(c) Elliptic Regularity: If $f: U \longrightarrow \mathbb{C}$ is a holomorphic function (and thus f is assumed to be C^{1}), then f is smooth.

Problem 2 (5 pts)
Let $f(z, w)=\sin \left(w^{2}\right)-z$. Find the Weierstrass polynomial

$$
g(z, w)=w^{d}+a_{1}(z) w^{d-1}+\ldots+a_{d}(z)
$$

such that $f=g \cdot h$ near $(z, w)=(0,0$ with $h(0,0) \neq 0$.

Problem 3 (10 pts)

Let R be an integral domain, i.e. a commutative ring with identity such that $f g \neq 0$ whenever $f, g \in R-0$.

- An element $u \in R$ is a unit if u is invertible in R, i.e. $u v=1$ for some $v \in R$;
- An element $u \in R$ is irreducible if u is not a unit and $u=v w$ for some $v, w \in R$ implies that v or w is a unit;
- An element $u \in R$ is prime if u is not a unit and $u z=v w$ for some $v, w, z \in R$ implies that either $v=z^{\prime} u$ or $w=z^{\prime} u$ for some $z^{\prime} \in R$;
- R is a principal ideal domain (PID) if every ideal is principal, i.e. of the form $p R$ for some $p \in R$;
- R is a unique factorization domain (UFD) if for every $f \in R$ such that f is not a unit there exist irreducible elements $f_{1}, \ldots, f_{k} \in R$ such that $f=f_{1} \ldots f_{k}$ and f_{1}, \ldots, f_{k} are uniquely determined by f up to a permutation and multiplication by units in R;
- A polynomial $f=a_{0}+a_{1} x+\ldots \in R[x]$ is primitive if only the units in R divide all the coefficients a_{0}, a_{1}, \ldots.

Show that:
(a) If R is an integral domain and $p \in R$ is prime, then $R / p R$ is an integral domain.
(b) Any prime element of R is irreducible. If R is UFD, every irreducible element is prime.
(c) If R is UFD and $f, g \in R[x]$ are primitive, then $f g$ is primitive.
(d) If R is UFD, F is the field of fractions of R, and $f \in R[x]$ is irreducible, then f is also irreducible in $F[x]$.
(e) If R is PID, every irreducible element is prime and R is a UFD.
(f) If F is a field, then $F[x]$ is a PID.
(g) If R is UFD, so is $R[x]$.
(h) If R is UFD and $f, g \in R[x]$ are relatively prime (have no common divisors other than units), there exist relatively prime $\alpha, \beta \in R[x]$ and $\gamma \in R-0$ such that

$$
\alpha f+\beta g=\gamma .
$$

Problem 4 (5 pts)
Find a value of τ such that the tori $\mathbb{C} /(\mathbb{Z} \oplus \tau \mathbb{Z})$ and $\mathbb{C}^{*} /(z \sim 2 z)$ are isomorphic as Riemann surfaces.

Problem 5 (5 pts)
Show the complex projective space \mathbb{P}^{n} and the total space of the tautological line bundle

$$
\gamma \equiv\left\{(\ell, v) \in \mathbb{P}^{n} \times \mathbb{C}^{n+1}: v \in \ell\right\} \longrightarrow \mathbb{P}^{n}
$$

are complex manifolds. Describe transition maps explicitly.

