MAT 545: Complex Geometry

Problem Set 7 Solutions

Problem 1

(a) Let $X_a \subset \mathbb{P}^3$ be a smooth hypersurface of degree $a \ge 1$. Show that

$$\dim_{\mathbb{C}} H^0_{\bar{\partial}}(X_a; \mathcal{K}_{X_a}) = \begin{cases} 0, & \text{if } a \leq 3; \\ 1, & \text{if } a = 4. \end{cases}$$
(1)

Determine the Hodge diamonds for X_a with $a \leq 4$.

(b) Let $Y_a \subset \mathbb{P}^4$ be a smooth hypersurface of degree $a \ge 1$. Determine the Hodge diamonds for Y_a with $a \le 5$.

Note: the quartic surface $X_4 \subset \mathbb{P}^3$ is a K3 surface; the quintic $Y_5 \subset \mathbb{P}^4$ is a Calabi-Yau 3-fold, popular in string theory.

(a) By definition, X_a is the zero set of a transverse holomorphic section s of the line bundle $\mathcal{O}_{\mathbb{P}^3}(a) \longrightarrow \mathbb{P}^3$ or equivalently the projectivization of the zero set of a homogeneous degree a polynomial F on \mathbb{C}^4 which has no singular values on $\mathbb{C}^4 - 0$. Thus, $[X_a] = \mathcal{O}(a)$ and by Adjunction Formula II (p147),

$$\mathcal{K}_{X_a} = \left(\mathcal{K}_{\mathbb{P}^3} \otimes [X_a] \right) \Big|_{X_a} = \mathcal{O}_{\mathbb{P}^3}(a-4) \Big|_{X_a} = H^{a-4} |_{X_a} \,,$$

with H denoting the hyperplane line bundle on \mathbb{P}^3 . In particular, $\mathcal{K}_{X_a} \longrightarrow X_a$ is a negative line bundle if a < 4 and thus admits no holomorphic sections by the dual version of the Kodaira Vanishing Theorem (p155); this proves the first case of (1). In the second case of (1), $\mathcal{K}_{X_4} \longrightarrow X_4$ is the trivial line bundle; since X_4 is compact, it follows that $H^0(X_4; \mathcal{K}_{X_4}) \approx \mathbb{C}$. We also can define a nowhere zero holomorphic section Ω of $\mathcal{K}_{X_4} \longrightarrow X_4$ by

$$\Omega_i|_{[Z_0,\dots,Z_3]} = (-1)^i \frac{dZ_0 \wedge \dots dZ_i \dots \wedge dZ_3}{\partial F/\partial Z_i|_{[Z_0,\dots,Z_3]}} \qquad \forall [Z_0,\dots,Z_3] \in X_4 \text{ s.t. } \frac{\partial F}{\partial Z_i}\Big|_{(Z_0,\dots,Z_3)} \neq 0.$$

Since $\partial F/\partial Z_i$ is a homogeneous polynomial of degree 3, $\Omega_i|_{[Z_0,...,Z_3]}$ is independent of the choice of the representative $(Z_0,...,Z_3)$ for $[Z_0,...,Z_3]$. The restrictions of the forms Ω_i and Ω_j to the intersection of the domains of their definitions agree, since

$$\frac{\partial F}{\partial Z_0} dZ_0 + \ldots + \frac{\partial F}{\partial Z_3} dZ_3 = 0 \quad \text{on} \quad F^{-1}(0) \subset \mathbb{C}^4$$

By the Lefschetz Theorem on Hyperplane Sections (p156),

 $H^{0}(X_{a};\mathbb{C}) \approx H^{0}(\mathbb{P}^{3};\mathbb{C}) \approx \mathbb{C}, \quad H^{1}(X_{a};\mathbb{C}) \approx H^{1}(\mathbb{P}^{3};\mathbb{C}) \approx 0 \implies H^{1,0}(X_{a}), H^{0,1}(X_{a}) = 0.$ (2)

By (1), (2), and Serre duality,

$$h^{0,0}(X_a) = h^{2,2}(X_a) = 1, \qquad h^{1,0}(X_a) = h^{0,1}(X_a) = h^{2,1}(X_a) = h^{1,2}(X_a) = 0,$$
$$h^{2,0}(X_a) = h^{0,2}(X_a) = \begin{cases} 0, & \text{if } a \le 3; \\ 1, & \text{if } a = 4. \end{cases}$$

Thus, it remains to find only $h^{1,1}(X_a)$. The euler characteristic of X_a is given by

$$\chi(X_a) \equiv \sum_{r=0}^{r=4} (-1)^r h^r(X_a) = \left\langle e(TX_a), X_a \right\rangle = \left\langle c(T\mathbb{P}^3) / c(\mathcal{O}_{\mathbb{P}^3}(a)), X_a \right\rangle$$
$$= \left\langle (1+x)^4 (1+ax)^{-1}, X_a \right\rangle = \left\langle (a^2 - 4a + 6)x^2, X_a \right\rangle$$
$$= \left\langle (a^2 - 4a + 6)x^2 \cdot ax, \mathbb{P}^3 \right\rangle = a(a^2 - 4a + 6),$$

where $x = c_1(H)$ is the first chern class of the hyperplane line bundle. The second, third, and fifth equalities above follow from the multiplicativity of the total chern class and Adjunction Formula I (p146), PS6 #5a, and Poincare duality, respectively. Combining this with the above, we obtain the following Hodge diamonds for X_a :

The above approach to determining $h^{2,0}(X_a)$ for a = 4 extends to a > 4. It shows that $\mathcal{K}_{X_a} = H^{a-4}|_{X_a}$. On the other hand, the short exact sequence of sheaves on \mathbb{P}^3

$$0 \longrightarrow \mathcal{O}(H^{a-4} \otimes [-X_a]) \longrightarrow \mathcal{O}(H^{a-4}) \longrightarrow \mathcal{O}_{X_a}(H^{a-4}) \longrightarrow 0,$$

gives rise to the long exact sequence

$$0 \longrightarrow H^0(\mathbb{P}^3; \mathcal{O}(-4)) \longrightarrow H^0(\mathbb{P}^3; \mathcal{O}(a-4)) \longrightarrow H^0(X_a; \mathcal{O}(a-4)) \longrightarrow H^1(\mathbb{P}^3; \mathcal{O}(-4)) \longrightarrow \dots$$

By the dual version of Kodaira Vanishing Theorem (p155), the first and the last groups above vanish. Thus, for $a \ge 4$,

$$h^{2,0}(X_a) = \dim H^0(X_a; \mathcal{K}_{X_a}) = \dim H^0(X_a; \mathcal{O}(a-4)) = \dim H^0(\mathbb{P}^3; \mathcal{O}(a-4)) = \binom{a-1}{3}.$$

Along with the other computations above (which apply for all a), this determines the Hodge diamond for X_a for any $a \in \mathbb{Z}^+$.

(b) Proceeding as above, we find that

$$\begin{aligned} h^{0,0}(Y_a) &= h^{3,3}(Y_a) = 1, \qquad h^{1,0}(Y_a) = h^{0,1}(Y_a) = h^{3,2}(Y_a) = h^{2,3}(Y_a) = 0, \\ h^{2,0}(Y_a) &= h^{0,2}(Y_a) = h^{3,1}(Y_a) = h^{1,3}(Y_a) = h^{2,0}(\mathbb{P}^4) = 0, \qquad h^{1,1}(Y_a) = h^{2,2}(Y_a) = h^{1,1}(\mathbb{P}^4) = 1, \\ h^{3,0}(X_a) &= h^{0,3}(X_a) = \begin{cases} 0, & \text{if } a \le 4; \\ 1, & \text{if } a = 5. \end{cases} \end{aligned}$$

In order to find $h^{2,1}(Y_a) = h^{1,2}(Y_a)$, we determine the euler characteristic of Y_a :

$$\begin{split} \chi(Y_a) &\equiv \sum_{r=0}^{r=6} (-1)^r h^r(Y_a) = \left\langle e(TY_a), Y_a \right\rangle = \left\langle c(T\mathbb{P}^4) / c(\mathcal{O}_{\mathbb{P}^5}(a)), Y_a \right\rangle \\ &= \left\langle (1+x)^5 (1+ax)^{-1}, Y_a \right\rangle = \left\langle (10-10a+5a^2-a^3)x^3, Y_a \right\rangle \\ &= \left\langle (10-10a+5a^2-a^3)x^3 \cdot ax, \mathbb{P}^4 \right\rangle = a(10-10a+5a^2-a^3)x^3 \cdot ax \end{split}$$

Combining with the above, we obtain the following Hodge diamonds for Y_a :

$$a=5$$

Proceeding as at the end of part (a), we can also obtain

$$h^{3,0}(Y_a) = h^{0,3}(Y_a) = \binom{a-1}{4}$$

and thus the Hodge diamond for Y_a for any $a \in \mathbb{Z}^+$.

Problem 2

Let $u: \mathbb{P}^1 \longrightarrow \mathbb{P}^n$ be a holomorphic map of degree d (thus, $u_*[\mathbb{P}^1] = d[\mathbb{P}^1] \in H_2(\mathbb{P}^n)$). If $d \leq n$, show that $u(\mathbb{P}^1)$ is contained in some linearly embedded \mathbb{P}^d in \mathbb{P}^n .

Note: this is a special case of the Castelnuovo bound. It implies for example that every degree 2 (rational) curve in \mathbb{P}^3 is in fact contained in some hyperplane $\mathbb{P}^2 \subset \mathbb{P}^3$. This makes it possible to use classical Schubert calculus (homology intersections on G(k, n)) to determine the number of such conics in \mathbb{P}^3 that pass through a points and 8-2a lines in general position.

The assumptions and PS3, #2b imply that $u^* \mathcal{O}_{\mathbb{P}^n}(1) = \mathcal{O}_{\mathbb{P}^1}(d)$. If the image of u is not contained in any hyperplane of \mathbb{P}^n , then u corresponds to a subspace of $H^0(\mathbb{P}^1; u^* \mathcal{O}_{\mathbb{P}^n}(1)) \approx \mathbb{C}^{d+1}$ by p177 and thus $n \leq d$. This implies the claim.

Problem 3

Let Σ be a compact connected Riemann surface (complex one-dimensional manifold). Show that Σ can be holomorphically embedded into \mathbb{P}^N for some N.

By the Kodaira Embedding Theorem (p191), it is sufficient to show that Σ admits a positive rational (1,1)-form. Any volume form on Σ scaled so that the volume of Σ is 1 is such a form.

Problem 4

Let M be a complex manifold of dimension at least 2 and $x \in M$. Show that the sheaf \mathfrak{I}_x of \mathcal{O} -modules is not isomorphic to the sheaf of holomorphic sections of any line bundle $L \longrightarrow M$. Note: Recall that for any open subset $U \subset M$,

$$\mathfrak{I}_x(U) = \left\{ f \in \mathcal{O}(U) \colon f(x) = 0 \text{ if } x \in U \right\};$$

this is a module over the ring $\mathcal{O}(U)$.

For any line bundle L and any sufficiently small open subset $U \neq \emptyset$ of M, there exists $e_U \in \{\mathcal{O}(L)\}(U)$ such that

$$\{\mathcal{O}(L)\}(U) = \{f \cdot e_U \colon f \in \mathcal{O}(U)\}$$

On the other hand, if U is a sufficiently small neighborhood of x and $e_U \in \mathfrak{I}_x(U)$, then

$$\mathfrak{I}_x(U) \neq \{ f \cdot e_U \colon f \in \mathcal{O}(U) \}.$$

The reason is that the homomorphism,

$$\mathfrak{I}_x(U) \longrightarrow T_x^*M, \qquad s \longrightarrow d_x s,$$

is well-defined and surjective. Since $e_U(x) = 0$, $d(f \cdot e_U) = f(x) \cdot (d_x e_U)$; thus, the image of the restriction of this homomorphism to $\mathcal{O}(U)e_U$ is a linear subspace of T_x^*M of dimension at most one.

Problem 5

Let Γ be a complete lattice in \mathbb{C}^2 (i.e. the \mathbb{Z} -span of 4 \mathbb{R} -linearly independent vectors $v_1, \ldots, v_4 \in \mathbb{C}^2$). Thus, $M \equiv \mathbb{C}^2/\Gamma$ is diffeomorphic to $(S^1)^4$.

(a) Show that the Kahler structure (complex structure and symplectic form) on \mathbb{C}^4 induce a Kahler structure on M. Describe a basis for $H_2(M;\mathbb{Z})$.

(b) Find a lattice Γ so that $H^{1,1}(M;\mathbb{Z}) = \{0\}$ and thus M is not projective (cannot be embedded into \mathbb{P}^N for any N).

Let $z = (z_1, z_2)$, with $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$, be the standard coordinates on \mathbb{C}^2 . (1) The action of the group Γ on \mathbb{C}^2 (by addition) is properly discontinuous and thus $\mathbb{C}^2 \longrightarrow M$ is a covering projection. Since this action is holomorphic (and thus preserves the standard complex structure on \mathbb{C}^2) and symplectic (i.e. preserves the standard symplectic form on \mathbb{C}^2 , $dx_1 \wedge dy_1 + dx_2 \wedge dy_2$), the standard complex structure and symplectic form on \mathbb{C}^2 descend to M. Since the natural map

$$\left(\mathbb{R}v_1/\mathbb{Z}v_1\right)\times\left(\mathbb{R}v_2/\mathbb{Z}v_2\right)\times\left(\mathbb{R}v_3/\mathbb{Z}v_3\right)\times\left(\mathbb{R}v_4/\mathbb{Z}v_4\right)\longrightarrow M=\mathbb{C}^2/\Gamma$$

is a diffeomorphism, by the Kunneth formula a basis for $H_2(M;\mathbb{Z})$ is formed by the six 2-tori

$$T_{ij} \equiv \left(\mathbb{R}v_i / \mathbb{Z}v_i \right) \times \left(\mathbb{R}v_j / \mathbb{Z}v_j \right) \subset M, \qquad 1 \le i < j \le 4.$$

(2) By the Kunneth formula, the rank of $H^2(M; \mathbb{C})$ is 6. Thus, the set of two-forms

$$dz_1 \wedge dz_2, \quad dz_1 \wedge d\overline{z}_1, \ dz_1 \wedge d\overline{z}_2, \ dz_2 \wedge d\overline{z}_1, \ dz_2 \wedge d\overline{z}_2, \quad d\overline{z}_1 \wedge d\overline{z}_2,$$

is a basis for $H^2(M; \mathbb{C})$. These closed 2-forms, originally defined on \mathbb{C}^2 , descend to M, since they are preserved by the Γ -action. They are linearly independent in $H^2(M; \mathbb{C})$, since the pairing

$$H^2(M;\mathbb{C}) \times H^2(M;\mathbb{C}) \longrightarrow \mathbb{C}, \qquad \int_M \alpha \wedge \beta$$

does not vanish on non-trivial linear combinations of these forms. Taking into consideration the types of the forms, it follows that the middle four forms above form a basis for $H^{1,1}(M)$, and so do

 $dx_1 \wedge dy_1$, $dx_2 \wedge dy_2$, $dx_1 \wedge dx_2 + dy_1 \wedge dy_2$, $dx_1 \wedge dy_2 - dy_1 \wedge dx_2$.

Thus, by part (a), $H^{1,1}(M;\mathbb{Z}) = 0$ if and only if no fixed non-trivial linear combination of the last four forms integrates to an integer on all 6 of the tori T_{ii} . Identifying \mathbb{C}^2 with \mathbb{R}^4 in the usual way, let

$$(v_1 \ v_2 \ v_3 \ v_4) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & \sqrt{3} & 0 \\ 0 & \sqrt{2} & 1 & 0 \\ 0 & 0 & 0 & \sqrt{5} \end{pmatrix}.$$

Then, the integrals of the elements of the last basis for $H^{1,1}(M)$ over the 6 tori are given by

	T_{12}	T_{13}	T_{14}	T_{23}	T_{24}	T_{34}
$dx_1 \wedge dy_1$	1	$\sqrt{3}$	0	0	0	0
$dx_2 \wedge dy_2$	0	0	0	0	$\sqrt{10}$	$\sqrt{5}$
$dx_1 \wedge dx_2 + dy_1 \wedge dy_2$	$\sqrt{2}$	1	0	0	$\sqrt{5}$	$\sqrt{15}$
$dx_1 \wedge dy_2 - dy_1 \wedge dx_2$	0	0	$\sqrt{5}$	$\sqrt{6} - 1$	0	0

If the two-form

$$\omega \equiv a \, dx_1 \wedge dy_1 + b \, dx_2 \wedge dy_2 + c(dx_1 \wedge dx_2 + dy_1 \wedge dy_2) + f(dx_1 \wedge dy_2 - dy_1 \wedge dx_2)$$

is integral on the 6 toris, then f = 0 by the last line in the table. Furthermore, for some $\alpha, \beta, \gamma, \delta \in \mathbb{Z}$,

$$\begin{cases} a + \sqrt{2}c = \alpha \\ \sqrt{3}a + c = \beta \\ \sqrt{10}b + \sqrt{5}c = \gamma \\ \sqrt{5}b + \sqrt{15}c = \delta \end{cases} \implies \begin{cases} (\sqrt{6} - 1)c = \sqrt{3}\alpha - \beta \\ \sqrt{5}(\sqrt{6} - 1)c = \sqrt{2}\delta - \gamma \end{cases} \implies \sqrt{5}(\sqrt{3}\alpha - \beta) = \sqrt{2}\delta - \gamma.$$

Since $\alpha, \beta, \gamma, \delta \in \mathbb{Z}$, the last equation implies that $\alpha, \beta, \gamma, \delta = 0$ and thus a, b, c = 0. We conclude that $H^{1,1}(M) = 0$ and M can't be embedded into \mathbb{P}^N for any N by Kodaira Embedding Theorem (p191).

Problem 6

(a) Let $C \subset \mathbb{P}^3$ be a complete intersection of bi-degree (a, b) (so $C = s^{-1}(0)$, where s is a holomorphic section of the bundle $\mathcal{O}(a) \oplus \mathcal{O}(b) \longrightarrow \mathbb{P}^3$ which is transverse to the zero set). Determine the degree of C in \mathbb{P}^3 and the genus of C.

(b) If $C \subset \mathbb{P}^3$ is a smooth rational curve of degree 3 (thus, $C \approx \mathbb{P}^1$ and $[C] = 3[\mathbb{P}^1] \in H_2(\mathbb{P}^3)$) and C is not contained in any hyperplane \mathbb{P}^2 of \mathbb{P}^3 , then C is not a complete intersection in \mathbb{P}^3 . Show that such a curve C actually exists.

(a) The homology class of C is Poincare dual to

$$e(\mathcal{O}(a)\oplus\mathcal{O}(b))=ab\,x^2,$$

if $x \in H^2(\mathbb{P}^3)$ is the first chern of the hyperplane line bundle. Thus, the degree of C in \mathbb{P}^3 is ab. The euler characteristic of C is given by

$$\begin{split} \chi(C) &= \left\langle e(TC), C \right\rangle = \left\langle c(T\mathbb{P}^3) / c(\mathcal{O}(a) \oplus \mathcal{O}(b)), C \right\rangle = \left\langle (1+x)^4 / ((1+ax)(1+bx)), C \right\rangle \\ &= \left\langle (4-a-b)x, C \right\rangle = \left\langle (4-a-b)x \cdot abx^2, \mathbb{P}^3 \right\rangle = (4-a-b) \cdot ab; \end{split}$$

see the analogous computation in Problem 1a for comments. Thus, the genus of C is

$$g(C) = \frac{1}{2} (2 - \chi(C)) = \frac{1}{2} ab(a+b-4) + 1.$$

(b) The first statement is immediate from (a), since there exist no $a, b \in \mathbb{Z}^+$ such that

$$ab = 3, \qquad \frac{1}{2}ab(a+b-4) + 1 = 0.$$

For the second statement, let

$$\iota: C \longrightarrow \mathbb{P}\big(H^0(C; \mathcal{O}(3))^*\big) \approx \mathbb{P}^3, \qquad x \longrightarrow \big\{s \in H^0(C; \mathcal{O}(3)): s(x) = 0\big\}.$$

This map is a well-defined injective immersion, since

$$H^{1}(\mathbb{P}^{1}; \mathcal{O}(3) \otimes [-x]) = H^{1}(\mathbb{P}^{1}; \mathcal{O}(2)) \approx H^{0}(\mathbb{P}^{1}; \mathcal{O}(-2) \otimes \mathcal{K}_{\mathbb{P}^{1}})^{*} \approx H^{0}(\mathbb{P}^{1}; \mathcal{O}(-4))^{*} = 0,$$

$$H^{1}(\mathbb{P}^{1}; \mathcal{O}(3) \otimes [-x - y]) = H^{1}(\mathbb{P}^{1}; \mathcal{O}(1)) \approx H^{0}(\mathbb{P}^{1}; \mathcal{O}(-1) \otimes \mathcal{K}_{\mathbb{P}^{1}})^{*} \approx H^{0}(\mathbb{P}^{1}; \mathcal{O}(-3))^{*} = 0$$

for all $x, y \in \mathbb{P}^1$; see p181.