MAT 545: Complex (Geometry

Problem Set 7 Solutions
Problem 1
(a) Let X, CP3 be a smooth hypersurface of degree a>1. Show that

0, ifa<y;

1, ifa=4. 1)

dime H3(X4;Kx,) = {
Determine the Hodge diamonds for X, with a <4.
(b) Let Y, CP* be a smooth hypersurface of degree a>1. Determine the Hodge diamonds for Y, with
a<b.
Note: the quartic surface X4 CIP3 is a K3 surface; the quintic Ys CPP* is a Calabi- Yau 3-fold, popular
i string theory.

(a) By definition, X, is the zero set of a transverse holomorphic section s of the line bundle
Ops(a) —P3 or equivalently the projectivization of the zero set of a homogeneous degree a poly-
nomial F' on C* which has no singular values on C*—0. Thus, [X,] = O(a) and by Adjunction
Formula IT (p147),

Kx, = (Kps®[Xa])

= Ops(a—4)| = HYx,

x, X

with H denoting the hyperplane line bundle on P3. In particular, Kx, — X, is a negative line
bundle if a <4 and thus admits no holomorphic sections by the dual version of the Kodaira Vanishing
Theorem (p155); this proves the first case of (1). In the second case of (1), Kx, — X4 is the trivial
line bundle; since X, is compact, it follows that H(Xy; K x,) ~C. We also can define a nowhere
zero holomorphic section 2 of Kx, — X4 by

AZo A ...d7; ... N\dZs OF
Q; — (—1) Zo, ..., 73] € X4 s.t.
izo....2) = (=1) OF/0Ziz,,..,2s) v\ | € Xa st 0Z;1(2o,....23

0.

Since OF'/0Z; is a homogeneous polynomial of degree 3, €[z, z,) is independent of the choice
of the representative (Zy,...,Z3) for [Zy,..., Z3]. The restrictions of the forms ; and Q; to the
intersection of the domains of their definitions agree, since

OF OF
—dZy+ ...+ —dZ3 = F1 4
07 0+ +6Z3 3=0 on (0)ccC

By the Lefschetz Theorem on Hyperplane Sections (p156),
H°(Xy;C) = HO(P*C)~C, H'(X;C)~H'(P;C)~0 = H"(X,),H"(X,)=0. (2)
By (1), (2), and Serre duality,
RO9(X,) = h?3(X,) =1,  hYO(X,) = A2 (X,) = h*Y(X,) = k12 (X,) =0,

0, ifa<s3;

r?0(X,) = "2 (X,) =
(%) (o) 1, ifa=4.



Thus, it remains to find only h'!(X,). The euler characteristic of X, is given by

r=4
X(X(l> = Z(_l)rhr(Xa) = <e(TXa)7Xa> = <C(TP3)/C(OP3(Q))7XG>
r=0
={(1+2)*(1+az) ™ X,) = {(a®—4a+6)2*, X,)
= ((a’~4a+6)2? - ax,P?) = a(a®—4a+6),

where x =c1(H) is the first chern class of the hyperplane line bundle. The second, third, and fifth
equalities above follow from the multiplicativity of the total chern class and Adjunction Formula I
(pl46), PS6 #5a, and Poincare duality, respectively. Combining this with the above, we obtain the
following Hodge diamonds for X,:

1 1
0 0 0 0
0 a’—4a®>+6a—2 0 1 20 1
0 0 0 0
1 1
a=1,2,3 a=4

The above approach to determining h>?(X,) for a=4 extends to a>4. It shows that Kx, = H* 4|x,.
On the other hand, the short exact sequence of sheaves on P3

0— O(H*®[-X,]) — O(H*™*) — Ox, (H*™*) — 0,
gives rise to the long exact sequence
0 — H(P?;0(—4)) — H°(P*;0(a—4)) — H?(Xq;0(a—4)) — H' (P} 0(-4)) — ...

By the dual version of Kodaira Vanishing Theorem (p155), the first and the last groups above vanish.
Thus, for a>4,

~1
h*0(X,) = dim H%(X,; Kx,) = dim H(X,; O(a—4)) = dim H°(P*; O(a—4)) = <a3 ) .

Along with the other computations above (which apply for all ), this determines the Hodge diamond
for X, for any a€Z™.

(b) Proceeding as above, we find that

hO0(Y,) = h33(Y,) =1, hO(Y,) = YY) = h32(Y,) = h?3(Y,) =0,
WO(Y,) = W2 (Y,) = B3 (VL) = h'3(Ye) = k20(PY) =0,  hM'(Ye) = h**(Ya) = AMH(PY) =1,
0, ifa<d,;

h*0(X,) = h*%(X,) =
(Xa) (Xa) 1, ifa=5.



In order to find h%!(Y,) =h'?(Y,), we determine the euler characteristic of Yy:

r=6

X(Ya) =D (=10 (Ya) = (e(TVa), Ya) = (c(TP*)/¢(Ops (a)), Ya)
r=0

=((1+2)°(1 +az)"",Y,) = ((10—10a+5a*—a®)z”, Y,)
= ((10—10a+5a*—a®)z® - az,P*) = a(10—10a+5a° —a®).

Combining with the above, we obtain the following Hodge diamonds for Yj:

0 0
0 (a*—5a3)/2 + 5a? —5a+2 (a*—5a3)/2 + 5a® —5a+2 0

0 0

a=1,2,3,4

a=>b

Proceeding as at the end of part (a), we can also obtain

BO(Y,) = WO (Y,) = (“;1>

and thus the Hodge diamond for Y, for any a€Z™.
Problem 2

Let u: P — P be a holomorphic map of degree d (thus, u,[P!] =d[P'] € Ho(P")). If d<n, show
that w(PPY) is contained in some linearly embedded P* in P™.

Note: this is a special case of the Castelnuovo bound. It implies for example that every degree 2
(rational) curve in P? is in fact contained in some hyperplane P2 C P3. This makes it possible to
use classical Schubert calculus (homology intersections on G(k,n)) to determine the number of such
conics in P2 that pass through a points and 8—2a lines in general position.



The assumptions and PS3, #2b imply that «*Opn (1) = Opi1(d). If the image of u is not contained
in any hyperplane of P, then u corresponds to a subspace of HO(P'; u*Opn (1)) ~C%! by pl177 and
thus n <d. This implies the claim.

Problem 3

Let ¥ be a compact connected Riemann surface (complex one-dimensional manifold). Show that %
can be holomorphically embedded into PV for some N.

By the Kodaira Embedding Theorem (p191), it is sufficient to show that ¥ admits a positive rational
(1,1)-form. Any volume form on ¥ scaled so that the volume of ¥ is 1 is such a form.

Problem 4

Let M be a complex manifold of dimension at least 2 and x € M. Show that the sheaf I, of O-modules
18 not isomorphic to the sheaf of holomorphic sections of any line bundle L — M.
Note: Recall that for any open subset U C M,

3.(U) = {feOU): f(z)=0ifzeU};

this is a module over the ring O(U).

For any line bundle L and any sufficiently small open subset U # () of M, there exists ey € {O(L)}(U)
such that

{0} U) = {fev: FEOU)}.
On the other hand, if U is a sufficiently small neighborhood of x and ey €3,(U), then

J:(U) # {f ey fe(’)(U)}.
The reason is that the homomorphism,
3,(U) — T M, s — dys,

is well-defined and surjective. Since ey(x) =0, d(f - er) = f(z) - (dger); thus, the image of the
restriction of this homomorphism to O(U)ey is a linear subspace of 7' M of dimension at most one.

Problem 5

Let T be a complete lattice in C? (i.e. the Z-span of 4 R-linearly independent vectors vy, . ..,v4 € C?).
Thus, M =C?/T is diffeomorphic to (S*)*.

(a) Show that the Kahler structure (complex structure and symplectic form) on C* induce a Kahler
structure on M. Describe a basis for Ho(M; 7).

(b) Find a lattice T so that HY1(M;Z)={0} and thus M is not projective (cannot be embedded into
PN for any N ).

Let z=(z1, 22), with z; =21 +iy; and 23 =x2+iys, be the standard coordinates on C2.
(1) The action of the group I' on C? (by addition) is properly discontinuous and thus C2 — M is



a covering projection. Since this action is holomorphic (and thus preserves the standard complex
structure on C?) and symplectic (i.e. preserves the standard symplectic form on C2, dz1Ady; + dxaA
dy2), the standard complex structure and symplectic form on C? descend to M. Since the natural
map

(Ru1/Zv1) x (Rug/Zvs) x (Ruz/Zvs) x (Rua/Zvs) — M = C?/T
is a diffeomorphism, by the Kunneth formula a basis for Ha(M;Z) is formed by the six 2-tori
Ti; = (Rvi/Zv;) x (Roj/Zwj) € M,  1<i<j<A4

(2) By the Kunneth formula, the rank of H2(M;C) is 6. Thus, the set of two-forms
dzy Ndzy, dzi NdZy, dzy ANdZa, dzo NdZzZy, dzo NdZs, dZzZy N\ dZs,
is a basis for H2(M;C). These closed 2-forms, originally defined on C2, descend to M, since they
are preserved by the I-action. They are linearly independent in H?(M;C), since the pairing
H*(M;C) x H*(M;C) — C, / alp,
M

does not vanish on non-trivial linear combinations of these forms. Taking into consideration the
types of the forms, it follows that the middle four forms above form a basis for H%!(A), and so do

dxy Ndyi, dxo Adye, dxri Adxo+ dy; Adys, dri Adys — dy; A dxs.

Thus, by part (a), H%'(M;Z) = 0 if and only if no fixed non-trivial linear combination of the last
four forms integrates to an integer on all 6 of the tori Tj;. Identifying C? with R* in the usual way,
let

o O =

0
1
V2
0 0

0 0
(v1 vo v3 v4) = V3 o0
1 0

0

V5

Then, the integrals of the elements of the last basis for H'*(M) over the 6 tori are given by

Ty Tz T 1o Toy T34
dzy A dy 1 V3 0 0 0 0

dzo A dyo 0O 0 0 0 V10 /5

dry Ndra +dyr Adye V2 1 0 0 NGV
dey ANdys —dyy Adze 0 0 /B V6—-1 0 0

If the two-form
w = adzry ANdy; + bdxa A\ dys + c(dxy A dzo+dyr A dy2) + f(dzy A dys — dyr A das)
is integral on the 6 toris, then f=0 by the last line in the table. Furthermore, for some «, 5,7, 9 € Z,
a+V2=a
Vda+e=p S {Wé_l)cz‘/ga_ﬂ —  V5(VBa— ) =v25 .

V10b + V5e = v VB(V6 —1)c = V25 — v
V5Bb+/15¢c =6



Since «, 8,7,0 € Z, the last equation implies that «, 3,7, =0 and thus a, b, c=0. We conclude that
HYY(M)=0 and M can’t be embedded into PV for any N by Kodaira Embedding Theorem (p191).

Problem 6

(a) Let C CP? be a complete intersection of bi-degree (a,b) (so C=s"1(0), where s is a holomorphic
section of the bundle O(a)®O(b) — P3 which is transverse to the zero set). Determine the degree
of C in P? and the genus of C.
(b) If C CP? is a smooth rational curve of degree 3 (thus, C'~ P! and [C]=3[P'] € Hy(P3)) and C
is not contained in any hyperplane P? of P3, then C is not a complete intersection in P3. Show that
such a curve C actually exists.

(a) The homology class of C' is Poincare dual to
e(O(a)®O(b)) = aba?,

if z € H?(IP3) is the first chern of the hyperplane line bundle. Thus, the degree of C' in P3 is ab. The
euler characteristic of C' is given by

X(C) = (e(TC),C) = (c(TP?) /c(O(a)®O(1)), C) = ((1+2)"/((1+az)(1+b2)),C)
={(d—a—b)z,C) = {(4—a—b)z - abz®, P*) = (4—a—b) - ab;

see the analogous computation in Problem la for comments. Thus, the genus of C is

4(C) = %(2 () = %ab(a+b—4) .y

(b) The first statement is immediate from (a), since there exist no a,b € Z* such that
ab = 3, %ab(a—i—b—ll) +1=0.
For the second statement, let
t: C — IP’(HO(C; 0(3))") = P3, xr— {SEHO(C’; 0(3)): s(z)=0}.
This map is a well-defined injective immersion, since

H'(F5;0(3)8[~a]) = H'(P1;0(2)) ~ HO(P; O(~2) 0K )* ~ HO(F; O(~4))" = 0,
H\(F, 0@)@[—x — y) = H'(PL0(1) ~ BB O(—1)@Kp)* ~ BB 0(~3))" = 0

for all =,y €P'; see p181.



