MAT 545: Complex Geometry

Problem Set 7 Solutions

Problem 1

(a) Let $X_{a} \subset \mathbb{P}^{3}$ be a smooth hypersurface of degree $a \geq 1$. Show that

$$
\operatorname{dim}_{\mathbb{C}} H_{\bar{\partial}}^{0}\left(X_{a} ; \mathcal{K}_{X_{a}}\right)= \begin{cases}0, & \text { if } a \leq 3 \tag{1}\\ 1, & \text { if } a=4\end{cases}
$$

Determine the Hodge diamonds for X_{a} with $a \leq 4$.
(b) Let $Y_{a} \subset \mathbb{P}^{4}$ be a smooth hypersurface of degree $a \geq 1$. Determine the Hodge diamonds for Y_{a} with $a \leq 5$.
Note: the quartic surface $X_{4} \subset \mathbb{P}^{3}$ is a K3 surface; the quintic $Y_{5} \subset \mathbb{P}^{4}$ is a Calabi-Yau 3-fold, popular in string theory.
(a) By definition, X_{a} is the zero set of a transverse holomorphic section s of the line bundle $\mathcal{O}_{\mathbb{P}^{3}}(a) \longrightarrow \mathbb{P}^{3}$ or equivalently the projectivization of the zero set of a homogeneous degree a polynomial F on \mathbb{C}^{4} which has no singular values on $\mathbb{C}^{4}-0$. Thus, $\left[X_{a}\right]=\mathcal{O}(a)$ and by Adjunction Formula II (p147),

$$
\mathcal{K}_{X_{a}}=\left.\left(\mathcal{K}_{\mathbb{P}^{3}} \otimes\left[X_{a}\right]\right)\right|_{X_{a}}=\left.\mathcal{O}_{\mathbb{P}^{3}}(a-4)\right|_{X_{a}}=\left.H^{a-4}\right|_{X_{a}},
$$

with H denoting the hyperplane line bundle on \mathbb{P}^{3}. In particular, $\mathcal{K}_{X_{a}} \longrightarrow X_{a}$ is a negative line bundle if $a<4$ and thus admits no holomorphic sections by the dual version of the Kodaira Vanishing Theorem (p155); this proves the first case of (1). In the second case of (1), $\mathcal{K}_{X_{4}} \longrightarrow X_{4}$ is the trivial line bundle; since X_{4} is compact, it follows that $H^{0}\left(X_{4} ; \mathcal{K}_{X_{4}}\right) \approx \mathbb{C}$. We also can define a nowhere zero holomorphic section Ω of $\mathcal{K}_{X_{4}} \longrightarrow X_{4}$ by

$$
\left.\Omega_{i}\right|_{\left[Z_{0}, \ldots, Z_{3}\right]}=(-1)^{i} \frac{d Z_{0} \wedge \ldots \widehat{d Z_{i}} \ldots \wedge d Z_{3}}{\partial F /\left.\partial Z_{i}\right|_{\left[Z_{0}, \ldots, Z_{3}\right]}} \quad \forall\left[Z_{0}, \ldots, Z_{3}\right] \in X_{4} \text { s.t. }\left.\frac{\partial F}{\partial Z_{i}}\right|_{\left(Z_{0}, \ldots, Z_{3}\right)} \neq 0 .
$$

Since $\partial F / \partial Z_{i}$ is a homogeneous polynomial of degree $3,\left.\Omega_{i}\right|_{\left[Z_{0}, \ldots, Z_{3}\right]}$ is independent of the choice of the representative $\left(Z_{0}, \ldots, Z_{3}\right)$ for $\left[Z_{0}, \ldots, Z_{3}\right]$. The restrictions of the forms Ω_{i} and Ω_{j} to the intersection of the domains of their definitions agree, since

$$
\frac{\partial F}{\partial Z_{0}} d Z_{0}+\ldots+\frac{\partial F}{\partial Z_{3}} d Z_{3}=0 \quad \text { on } \quad F^{-1}(0) \subset \mathbb{C}^{4}
$$

By the Lefschetz Theorem on Hyperplane Sections (p156),

$$
\begin{equation*}
H^{0}\left(X_{a} ; \mathbb{C}\right) \approx H^{0}\left(\mathbb{P}^{3} ; \mathbb{C}\right) \approx \mathbb{C}, \quad H^{1}\left(X_{a} ; \mathbb{C}\right) \approx H^{1}\left(\mathbb{P}^{3} ; \mathbb{C}\right) \approx 0 \quad \Longrightarrow \quad H^{1,0}\left(X_{a}\right), H^{0,1}\left(X_{a}\right)=0 \tag{2}
\end{equation*}
$$

By (1), (2), and Serre duality,

$$
\begin{gathered}
h^{0,0}\left(X_{a}\right)=h^{2,2}\left(X_{a}\right)=1, \quad h^{1,0}\left(X_{a}\right)=h^{0,1}\left(X_{a}\right)=h^{2,1}\left(X_{a}\right)=h^{1,2}\left(X_{a}\right)=0, \\
h^{2,0}\left(X_{a}\right)=h^{0,2}\left(X_{a}\right)= \begin{cases}0, & \text { if } a \leq 3 ; \\
1, & \text { if } a=4 .\end{cases}
\end{gathered}
$$

Thus, it remains to find only $h^{1,1}\left(X_{a}\right)$. The euler characteristic of X_{a} is given by

$$
\begin{aligned}
\chi\left(X_{a}\right) \equiv \sum_{r=0}^{r=4}(-1)^{r} h^{r}\left(X_{a}\right) & =\left\langle e\left(T X_{a}\right), X_{a}\right\rangle=\left\langle c\left(T \mathbb{P}^{3}\right) / c\left(\mathcal{O}_{\mathbb{P}^{3}}(a)\right), X_{a}\right\rangle \\
& =\left\langle(1+x)^{4}(1+a x)^{-1}, X_{a}\right\rangle=\left\langle\left(a^{2}-4 a+6\right) x^{2}, X_{a}\right\rangle \\
& =\left\langle\left(a^{2}-4 a+6\right) x^{2} \cdot a x, \mathbb{P}^{3}\right\rangle=a\left(a^{2}-4 a+6\right),
\end{aligned}
$$

where $x=c_{1}(H)$ is the first chern class of the hyperplane line bundle. The second, third, and fifth equalities above follow from the multiplicativity of the total chern class and Adjunction Formula I (p146), PS6 \#5a, and Poincare duality, respectively. Combining this with the above, we obtain the following Hodge diamonds for X_{a} :

1			1			
0		0		0		0
0	$a^{3}-4 a^{2}+6 a-2$	0	1		20	1
0		0		0		0
	1				1	
	$\mathrm{a}=1,2,3$				$a=4$	

The above approach to determining $h^{2,0}\left(X_{a}\right)$ for $a=4$ extends to $a>4$. It shows that $\mathcal{K}_{X_{a}}=\left.H^{a-4}\right|_{X_{a}}$. On the other hand, the short exact sequence of sheaves on \mathbb{P}^{3}

$$
0 \longrightarrow \mathcal{O}\left(H^{a-4} \otimes\left[-X_{a}\right]\right) \longrightarrow \mathcal{O}\left(H^{a-4}\right) \longrightarrow \mathcal{O}_{X_{a}}\left(H^{a-4}\right) \longrightarrow 0,
$$

gives rise to the long exact sequence

$$
0 \longrightarrow H^{0}\left(\mathbb{P}^{3} ; \mathcal{O}(-4)\right) \longrightarrow H^{0}\left(\mathbb{P}^{3} ; \mathcal{O}(a-4)\right) \longrightarrow H^{0}\left(X_{a} ; \mathcal{O}(a-4)\right) \longrightarrow H^{1}\left(\mathbb{P}^{3} ; \mathcal{O}(-4)\right) \longrightarrow \ldots
$$

By the dual version of Kodaira Vanishing Theorem (p155), the first and the last groups above vanish. Thus, for $a \geq 4$,

$$
h^{2,0}\left(X_{a}\right)=\operatorname{dim} H^{0}\left(X_{a} ; \mathcal{K}_{X_{a}}\right)=\operatorname{dim} H^{0}\left(X_{a} ; \mathcal{O}(a-4)\right)=\operatorname{dim} H^{0}\left(\mathbb{P}^{3} ; \mathcal{O}(a-4)\right)=\binom{a-1}{3}
$$

Along with the other computations above (which apply for all a), this determines the Hodge diamond for X_{a} for any $a \in \mathbb{Z}^{+}$.
(b) Proceeding as above, we find that

$$
\begin{gathered}
h^{0,0}\left(Y_{a}\right)=h^{3,3}\left(Y_{a}\right)=1, \quad h^{1,0}\left(Y_{a}\right)=h^{0,1}\left(Y_{a}\right)=h^{3,2}\left(Y_{a}\right)=h^{2,3}\left(Y_{a}\right)=0, \\
h^{2,0}\left(Y_{a}\right)=h^{0,2}\left(Y_{a}\right)=h^{3,1}\left(Y_{a}\right)=h^{1,3}\left(Y_{a}\right)=h^{2,0}\left(\mathbb{P}^{4}\right)=0, \quad h^{1,1}\left(Y_{a}\right)=h^{2,2}\left(Y_{a}\right)=h^{1,1}\left(\mathbb{P}^{4}\right)=1, \\
h^{3,0}\left(X_{a}\right)=h^{0,3}\left(X_{a}\right)= \begin{cases}0, & \text { if } a \leq 4 ; \\
1, & \text { if } a=5\end{cases}
\end{gathered}
$$

In order to find $h^{2,1}\left(Y_{a}\right)=h^{1,2}\left(Y_{a}\right)$, we determine the euler characteristic of Y_{a} :

$$
\begin{aligned}
\chi\left(Y_{a}\right) \equiv \sum_{r=0}^{r=6}(-1)^{r} h^{r}\left(Y_{a}\right) & =\left\langle e\left(T Y_{a}\right), Y_{a}\right\rangle=\left\langle c\left(T \mathbb{P}^{4}\right) / c\left(\mathcal{O}_{\mathbb{P}^{5}}(a)\right), Y_{a}\right\rangle \\
& =\left\langle(1+x)^{5}(1+a x)^{-1}, Y_{a}\right\rangle=\left\langle\left(10-10 a+5 a^{2}-a^{3}\right) x^{3}, Y_{a}\right\rangle \\
& =\left\langle\left(10-10 a+5 a^{2}-a^{3}\right) x^{3} \cdot a x, \mathbb{P}^{4}\right\rangle=a\left(10-10 a+5 a^{2}-a^{3}\right) .
\end{aligned}
$$

Combining with the above, we obtain the following Hodge diamonds for Y_{a} :

Proceeding as at the end of part (a), we can also obtain

$$
h^{3,0}\left(Y_{a}\right)=h^{0,3}\left(Y_{a}\right)=\binom{a-1}{4}
$$

and thus the Hodge diamond for Y_{a} for any $a \in \mathbb{Z}^{+}$.

Problem 2

Let $u: \mathbb{P}^{1} \longrightarrow \mathbb{P}^{n}$ be a holomorphic map of degree d (thus, $u_{*}\left[\mathbb{P}^{1}\right]=d\left[\mathbb{P}^{1}\right] \in H_{2}\left(\mathbb{P}^{n}\right)$). If $d \leq n$, show that $u\left(\mathbb{P}^{1}\right)$ is contained in some linearly embedded \mathbb{P}^{d} in \mathbb{P}^{n}.
Note: this is a special case of the Castelnuovo bound. It implies for example that every degree 2 (rational) curve in \mathbb{P}^{3} is in fact contained in some hyperplane $\mathbb{P}^{2} \subset \mathbb{P}^{3}$. This makes it possible to use classical Schubert calculus (homology intersections on $G(k, n)$) to determine the number of such conics in \mathbb{P}^{3} that pass through a points and $8-2 a$ lines in general position.

The assumptions and PS3, \#2b imply that $u^{*} \mathcal{O}_{\mathbb{P}^{n}}(1)=\mathcal{O}_{\mathbb{P}^{1}}(d)$. If the image of u is not contained in any hyperplane of \mathbb{P}^{n}, then u corresponds to a subspace of $H^{0}\left(\mathbb{P}^{1} ; u^{*} \mathcal{O}_{\mathbb{P}^{n}}(1)\right) \approx \mathbb{C}^{d+1}$ by p177 and thus $n \leq d$. This implies the claim.

Problem 3

Let Σ be a compact connected Riemann surface (complex one-dimensional manifold). Show that Σ can be holomorphically embedded into \mathbb{P}^{N} for some N.

By the Kodaira Embedding Theorem (p191), it is sufficient to show that Σ admits a positive rational $(1,1)$-form. Any volume form on Σ scaled so that the volume of Σ is 1 is such a form.

Problem 4

Let M be a complex manifold of dimension at least 2 and $x \in M$. Show that the sheaf \mathfrak{I}_{x} of \mathcal{O}-modules is not isomorphic to the sheaf of holomorphic sections of any line bundle $L \longrightarrow M$.
Note: Recall that for any open subset $U \subset M$,

$$
\mathfrak{I}_{x}(U)=\{f \in \mathcal{O}(U): f(x)=0 \text { if } x \in U\} ;
$$

this is a module over the ring $\mathcal{O}(U)$.
For any line bundle L and any sufficiently small open subset $U \neq \emptyset$ of M, there exists $e_{U} \in\{\mathcal{O}(L)\}(U)$ such that

$$
\{\mathcal{O}(L)\}(U)=\left\{f \cdot e_{U}: f \in \mathcal{O}(U)\right\}
$$

On the other hand, if U is a sufficiently small neighborhood of x and $e_{U} \in \mathfrak{I}_{x}(U)$, then

$$
\mathfrak{I}_{x}(U) \neq\left\{f \cdot e_{U}: f \in \mathcal{O}(U)\right\} .
$$

The reason is that the homomorphism,

$$
\mathfrak{I}_{x}(U) \longrightarrow T_{x}^{*} M, \quad s \longrightarrow d_{x} s
$$

is well-defined and surjective. Since $e_{U}(x)=0, d\left(f \cdot e_{U}\right)=f(x) \cdot\left(d_{x} e_{U}\right)$; thus, the image of the restriction of this homomorphism to $\mathcal{O}(U) e_{U}$ is a linear subspace of $T_{x}^{*} M$ of dimension at most one.

Problem 5

Let Γ be a complete lattice in \mathbb{C}^{2} (i.e. the \mathbb{Z}-span of $4 \mathbb{R}$-linearly independent vectors $v_{1}, \ldots, v_{4} \in \mathbb{C}^{2}$). Thus, $M \equiv \mathbb{C}^{2} / \Gamma$ is diffeomorphic to $\left(S^{1}\right)^{4}$.
(a) Show that the Kahler structure (complex structure and symplectic form) on \mathbb{C}^{4} induce a Kahler structure on M. Describe a basis for $H_{2}(M ; \mathbb{Z})$.
(b) Find a lattice Γ so that $H^{1,1}(M ; \mathbb{Z})=\{0\}$ and thus M is not projective (cannot be embedded into \mathbb{P}^{N} for any N).

Let $z=\left(z_{1}, z_{2}\right)$, with $z_{1}=x_{1}+\mathfrak{i} y_{1}$ and $z_{2}=x_{2}+\mathfrak{i} y_{2}$, be the standard coordinates on \mathbb{C}^{2}.
(1) The action of the group Γ on \mathbb{C}^{2} (by addition) is properly discontinuous and thus $\mathbb{C}^{2} \longrightarrow M$ is
a covering projection. Since this action is holomorphic (and thus preserves the standard complex structure on \mathbb{C}^{2}) and symplectic (i.e. preserves the standard symplectic form on $\mathbb{C}^{2}, d x_{1} \wedge d y_{1}+d x_{2} \wedge$ $d y_{2}$), the standard complex structure and symplectic form on \mathbb{C}^{2} descend to M. Since the natural map

$$
\left(\mathbb{R} v_{1} / \mathbb{Z} v_{1}\right) \times\left(\mathbb{R} v_{2} / \mathbb{Z} v_{2}\right) \times\left(\mathbb{R} v_{3} / \mathbb{Z} v_{3}\right) \times\left(\mathbb{R} v_{4} / \mathbb{Z} v_{4}\right) \longrightarrow M=\mathbb{C}^{2} / \Gamma
$$

is a diffeomorphism, by the Kunneth formula a basis for $H_{2}(M ; \mathbb{Z})$ is formed by the six 2 -tori

$$
T_{i j} \equiv\left(\mathbb{R} v_{i} / \mathbb{Z} v_{i}\right) \times\left(\mathbb{R} v_{j} / \mathbb{Z} v_{j}\right) \subset M, \quad 1 \leq i<j \leq 4
$$

(2) By the Kunneth formula, the rank of $H^{2}(M ; \mathbb{C})$ is 6 . Thus, the set of two-forms

$$
d z_{1} \wedge d z_{2}, \quad d z_{1} \wedge d \bar{z}_{1}, d z_{1} \wedge d \bar{z}_{2}, d z_{2} \wedge d \bar{z}_{1}, d z_{2} \wedge d \bar{z}_{2}, \quad d \bar{z}_{1} \wedge d \bar{z}_{2}
$$

is a basis for $H^{2}(M ; \mathbb{C})$. These closed 2-forms, originally defined on \mathbb{C}^{2}, descend to M, since they are preserved by the Γ-action. They are linearly independent in $H^{2}(M ; \mathbb{C})$, since the pairing

$$
H^{2}(M ; \mathbb{C}) \times H^{2}(M ; \mathbb{C}) \longrightarrow \mathbb{C}, \quad \int_{M} \alpha \wedge \beta
$$

does not vanish on non-trivial linear combinations of these forms. Taking into consideration the types of the forms, it follows that the middle four forms above form a basis for $H^{1,1}(M)$, and so do

$$
d x_{1} \wedge d y_{1}, \quad d x_{2} \wedge d y_{2}, \quad d x_{1} \wedge d x_{2}+d y_{1} \wedge d y_{2}, \quad d x_{1} \wedge d y_{2}-d y_{1} \wedge d x_{2}
$$

Thus, by part (a), $H^{1,1}(M ; \mathbb{Z})=0$ if and only if no fixed non-trivial linear combination of the last four forms integrates to an integer on all 6 of the tori $T_{i i}$. Identifying \mathbb{C}^{2} with \mathbb{R}^{4} in the usual way, let

$$
\left(\begin{array}{llll}
v_{1} & v_{2} & v_{3} & v_{4}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & \sqrt{3} & 0 \\
0 & \sqrt{2} & 1 & 0 \\
0 & 0 & 0 & \sqrt{5}
\end{array}\right)
$$

Then, the integrals of the elements of the last basis for $H^{1,1}(M)$ over the 6 tori are given by

$$
\begin{array}{ccccccc}
& T_{12} & T_{13} & T_{14} & T_{23} & T_{24} & T_{34} \\
d x_{1} \wedge d y_{1} & 1 & \sqrt{3} & 0 & 0 & 0 & 0 \\
d x_{2} \wedge d y_{2} & 0 & 0 & 0 & 0 & \sqrt{10} & \sqrt{5} \\
\wedge d x_{2}+d y_{1} \wedge d y_{2} & \sqrt{2} & 1 & 0 & 0 & \sqrt{5} & \sqrt{15} \\
\wedge d y_{2}-d y_{1} \wedge d x_{2} & 0 & 0 & \sqrt{5} & \sqrt{6}-1 & 0 & 0
\end{array}
$$

If the two-form

$$
\omega \equiv a d x_{1} \wedge d y_{1}+b d x_{2} \wedge d y_{2}+c\left(d x_{1} \wedge d x_{2}+d y_{1} \wedge d y_{2}\right)+f\left(d x_{1} \wedge d y_{2}-d y_{1} \wedge d x_{2}\right)
$$

is integral on the 6 toris, then $f=0$ by the last line in the table. Furthermore, for some $\alpha, \beta, \gamma, \delta \in \mathbb{Z}$,

$$
\left\{\begin{array} { l }
{ a + \sqrt { 2 } c = \alpha } \\
{ \sqrt { 3 } a + c = \beta } \\
{ \sqrt { 1 0 } b + \sqrt { 5 } c = \gamma } \\
{ \sqrt { 5 } b + \sqrt { 1 5 } c = \delta }
\end{array} \quad \Longrightarrow \quad \left\{\begin{array}{l}
(\sqrt{6}-1) c=\sqrt{3} \alpha-\beta \\
\sqrt{5}(\sqrt{6}-1) c=\sqrt{2} \delta-\gamma
\end{array} \quad \Longrightarrow \quad \sqrt{5}(\sqrt{3} \alpha-\beta)=\sqrt{2} \delta-\gamma\right.\right.
$$

Since $\alpha, \beta, \gamma, \delta \in \mathbb{Z}$, the last equation implies that $\alpha, \beta, \gamma, \delta=0$ and thus $a, b, c=0$. We conclude that $H^{1,1}(M)=0$ and M can't be embedded into \mathbb{P}^{N} for any N by Kodaira Embedding Theorem (p191).

Problem 6

(a) Let $C \subset \mathbb{P}^{3}$ be a complete intersection of bi-degree (a, b) (so $C=s^{-1}(0)$, where s is a holomorphic section of the bundle $\mathcal{O}(a) \oplus \mathcal{O}(b) \longrightarrow \mathbb{P}^{3}$ which is transverse to the zero set). Determine the degree of C in \mathbb{P}^{3} and the genus of C.
(b) If $C \subset \mathbb{P}^{3}$ is a smooth rational curve of degree 3 (thus, $C \approx \mathbb{P}^{1}$ and $[C]=3\left[\mathbb{P}^{1}\right] \in H_{2}\left(\mathbb{P}^{3}\right)$) and C is not contained in any hyperplane \mathbb{P}^{2} of \mathbb{P}^{3}, then C is not a complete intersection in \mathbb{P}^{3}. Show that such a curve C actually exists.
(a) The homology class of C is Poincare dual to

$$
e(\mathcal{O}(a) \oplus \mathcal{O}(b))=a b x^{2}
$$

if $x \in H^{2}\left(\mathbb{P}^{3}\right)$ is the first chern of the hyperplane line bundle. Thus, the degree of C in \mathbb{P}^{3} is $a b$. The euler characteristic of C is given by

$$
\begin{aligned}
\chi(C) & =\langle e(T C), C\rangle=\left\langle c\left(T \mathbb{P}^{3}\right) / c(\mathcal{O}(a) \oplus \mathcal{O}(b)), C\right\rangle=\left\langle(1+x)^{4} /((1+a x)(1+b x)), C\right\rangle \\
& =\langle(4-a-b) x, C\rangle=\left\langle(4-a-b) x \cdot a b x^{2}, \mathbb{P}^{3}\right\rangle=(4-a-b) \cdot a b
\end{aligned}
$$

see the analogous computation in Problem 1a for comments. Thus, the genus of C is

$$
g(C)=\frac{1}{2}(2-\chi(C))=\frac{1}{2} a b(a+b-4)+1
$$

(b) The first statement is immediate from (a), since there exist no $a, b \in \mathbb{Z}^{+}$such that

$$
a b=3, \quad \frac{1}{2} a b(a+b-4)+1=0 .
$$

For the second statement, let

$$
\iota: C \longrightarrow \mathbb{P}\left(H^{0}(C ; \mathcal{O}(3))^{*}\right) \approx \mathbb{P}^{3}, \quad x \longrightarrow\left\{s \in H^{0}(C ; \mathcal{O}(3)): s(x)=0\right\}
$$

This map is a well-defined injective immersion, since

$$
\begin{aligned}
& H^{1}\left(\mathbb{P}^{1} ; \mathcal{O}(3) \otimes[-x]\right)=H^{1}\left(\mathbb{P}^{1} ; \mathcal{O}(2)\right) \approx H^{0}\left(\mathbb{P}^{1} ; \mathcal{O}(-2) \otimes \mathcal{K}_{\mathbb{P}^{1}}\right)^{*} \approx H^{0}\left(\mathbb{P}^{1} ; \mathcal{O}(-4)\right)^{*}=0 \\
& H^{1}\left(\mathbb{P}^{1} ; \mathcal{O}(3) \otimes[-x-y]\right)=H^{1}\left(\mathbb{P}^{1} ; \mathcal{O}(1)\right) \approx H^{0}\left(\mathbb{P}^{1} ; \mathcal{O}(-1) \otimes \mathcal{K}_{\mathbb{P}^{1}}\right)^{*} \approx H^{0}\left(\mathbb{P}^{1} ; \mathcal{O}(-3)\right)^{*}=0
\end{aligned}
$$

for all $x, y \in \mathbb{P}^{1} ;$ see p 181 .

